Data Management for Internet-Scale Single-Sign-On

Sharon E. Perl
Google Inc.

Abstract

Google offers a variety of Internet services that re-
quire user authentication. These services rely on a
single-sign-on service, called Google Accounts, that
has been in active deployment since 2002. As of
2006, Google has tens of applications with millions
of user accounts worldwide. We describe the data
management requirements and architecture for this
service, the problems we encountered, and the expe-
rience we’ve had running it. In doing so we provide
perspective on “where theory meets practice.” The
success of the system comes from combining good
algorithms with practical engineering tradeoffs.

1 Introduction

All of Google’s applications that require sign-on or
the delivery of enhanced functionality to identified
users depend upon a common single sign-on system
(SSO). The SSO’s availability sets an upper bound
on the availability of these applications. Google has
extremely high availability goals for all but their
most experimental services (e.g., Google Labs), so
the availability goals for SSO are aggressive. One
way to achieve high availability in a distributed sys-
tem is to sacrifice data consistency. Exposing an
end-user to inconsistent views of a single logical data
item (e.g., a username/password combination) can
make the system frustratingly unpredictable. Be-
cause Google strives to provide the best user ex-
perience possible, trading off usability for availabil-
ity is a decision that is not taken lightly. Early in
the design of the SSO architecture we decided that
single-copy consistency was a usability requirement.

Achieving single-copy consistency in a highly-
available, fault-tolerant distributed computing sys-
tem is a well-studied problem. We were attracted
to the replicated state machine approach embod-
ied in Lamport’s Paxos algorithm [3] and Oki’s and
Liskov’s Viewstamped Replication work [5] because

Margo Seltzer

Harvard University & Oracle Corporation

of its generality and practicality. Lampson describes
how to use the approach along with other mech-
anisms to build high-performance distributed sys-
tems [4].

As we considered various implementation alterna-
tives for the Google SSO system, we learned of the
new replication-based high-availability functional-
ity of Berkeley DB (BDB-HA) from Sleepycat Soft-
ware (now Oracle). BDB-HA has a replication
model that is compatible with Paxos and View-
stamped Replication. It is an embedded database
that leaves configuration and policy decisions to
the application, which makes it easy to adapt to
Google’s highly distributed and somewhat uncon-
ventional production environment. The underly-
ing BDB database is well-suited to the task of ef-
ficiently storing and retrieving small, random key-
value pairs, which is a good match for the require-
ments of the SSO system.

The rest of this paper is organized as follows. Sec-
tion 2 gives a high-level overview of Berkeley DB
High Availability for background. Section 3 dis-
cusses the storage aspects of the SSO architecture
and how it incorporates BDB-HA. In Section 4, we
discuss abstractions at the boundary of the SSO ser-
vice and BDB-HA. In Section 5, we discuss our ex-
perience building and running the system, and in
Section 6, we conclude.

2 Berkeley DB Overview

Berkeley DB is an embedded, high-performance,
scalable, transactional storage system for key/data
pairs. “Embedded” indicates that Berkeley DB is
a library linking directly into an application’s ad-
dress space, avoiding the costly IPC that reduces
performance for client/server systems. On a com-
modity x86 platform, Berkeley DB returns millions
of key/data pairs per second. Berkeley DB is scal-
able in a number of dimensions: it is used to store
bytes to terabytes; its replication is used in systems



ranging from two to many tens of sites; it can be
used as a simple data repository or as a highly con-
current, transactional engine.

Berkeley DB provides both keyed and sequential
lookup. It does not support any data model (e.g., re-
lational or object-oriented), but different data mod-
els can be implemented on top of it. Its simple stor-
age model provides applications with the flexibility
to store data in whatever format is most convenient.

Berkeley DB supports a primary copy replication
model, with a single writer (called the master) and
multiple read-only replicas. Conceptually, Berkeley
DB’s replication is simple: all writes are directed
to the master. The master applies the update(s)
and then propagates the corresponding database log
records to the replicas, each of which applies the
changes, as if it were running “redo” recovery [2].
The replicas apply operations on a transactional
basis, so transactions that abort on the master re-
quire no work on the replicas other than writing
log records. The replicas and the master maintain
identical logs. When the master fails, the replicas
hold an election, and the winning replica becomes
the new master. All the other replicas synchronize
with this new master, rolling their logs backwards
and forwards as necessary to ensure that the replicas
have identical logs.

3 SSO Architecture

Figure 1 illustrates the SSO data architecture. The
SSO service maps usernames to user account data
and services to service-specific data.! These map-
pings are stored in the SSO database, which is par-
titioned into hundreds of pieces (called shards) for
load balancing and data localization. Each shard
is a replicated Berkeley DB database composed of
between 5 and 15 replicas, depending on the shard’s
purpose. The SSO data in each replica is stored in
a single Berkeley DB Btree database 2.

Smaller shards have five full replicas, any of which
is capable of becoming a master. All updates must
go to the master. Consistent reads must also go

1To give a sense of scale, the distributed database cur-
rently contains over a billion keys and averages about one
kilobyte of data per user account. While the system does not
contain a huge volume of data, the need for scalability comes
from supporting real-time updates, a sustained, high request
rate, and high availability for a growing user base.

2More precisely, Berkeley DB provides B+4-link-trees

to the master. We sometimes allow “stale reads”,
which may be slightly out-of-date by an amount of
time that we control, and which can be performed at
non-master replicas. The larger replication groups
typically have five replicas capable of becoming mas-
ters (“electable replicas”) plus additional read-only
replicas. Read-only replicas receive updates from
the master, but do not participate in elections or
contribute to commit quorums for updates, so the
number of read-only replicas and their distance from
other replicas does not affect the latency or avail-
ability of operations. When the system is running
well (the normal case) the state of read-only replicas
will be fairly closely synchronized with the master.
A shard can have a master as long as more than half
its electable replicas are up and communicating.

We spread replicas across multiple, geographically
distributed data centers for availability in the face of
failures of machines, networks, or data centers. At
the same time, we try to keep replicas within a shard
fairly close to one another because the communi-
cation latency between replicas affects how long it
takes to commit a write operation to a shard or to
elect a new master. The set of shards is geograph-
ically dispersed for data locality. We try to assign
new users to shards based on where their data is
likely to be accessed. This becomes tricky when the
user data is shared by a variety of services that also
may be spread over geographically dispersed data
centers. We could do more optimization of data
placement than we currently do, however it has not
turned out to be a high priority for system perfor-
mance.

As illustrated in Figure 1, there are logically two
different kinds of shards. The vast majority of
shards are independent databases that map a set
of userids to account data and service ids to user-
independent service data. The remaining shards
implement the ID-map, which maps usernames to
userids and userids to shards.

The ID-map is used for login, e-mail delivery, and
at other times when we need to find a user’s ac-
count data given a username. The ID-map shards
are chained together in a doubly-linked list to store
an extensible map, for scalability. Each shard in
the chain handles a sub-range of the key space.
Adjacent shards store adjacent ranges. Client li-
brary code keeps hints for the names of the com-
ponent shards of the ID-map and their correspond-
ing key ranges, so that we do not have to traverse
the list for each key access. If the keys get rebal-



Google SSO Database (Logical View)

sharon@gmail.com

Sharon’s account data

gmail Gmail specific data

ID Map (Implementation)

0x123456
USA-west-shard

sharon@gmail.com
0x123456

... Map Shards ...

’ ’ ’

~ —

Account Data (Implementation)
0x123456 Sharon’s account data
0x987654 Gmail specific data

... Account Shards ...
Single Shard T~

Figure 1: Single-Sign-On Database Architecture. Logically, the database consists of a mapping between user or service names and
detailed user or service data. The logical database is realized by two physical databases: the ID-Map and the Account-Data. The ID-
Map contains mappings from user names to userids and from userids to shards. The Account-Data contains mappings from userids
to user data and service-ids to service data. The ID-Map comprises a linked list of ID shards. The Account-Data comprises the vast
majority of independent account shards. For example, an account shard might contain account details for customers in the western
United States. Each shard is implemented as a Berkeley DB replication group.

anced among the shards (which they can using of-
fline tools), clients of the storage system will notice
the changes and adjust their cached locations.

4 Database Integration

Berkeley DB leaves many policy decisions up to the
application. For example, the application is respon-
sible for providing the communication infrastruc-
ture. The application registers a callback function
that Berkeley DB uses when it wants to send mes-
sages; the application receives messages and calls
a Berkeley DB function to process messages. Be-
cause the application owns the communication in-
frastructure, it is responsible for deciding how syn-
chronously the replicas run. At one extreme, the
master can dispatch messages to the replicas and
continue immediately, assuming at least one of the

replicas receives the messages. At the other ex-
treme, the master can wait until all the replicas
acknowledge that they have applied the transmit-
ted records. The choice affects the performance and
semantics of the system, of course.

4.1 Quorums

Following the Paxos and Viewstamped Replication
algorithms, Google implements a quorum protocol
to guarantee that updates are never lost, even if a
site—including the master—suffers a catastrophic
data loss. Whenever Berkeley DB indicates to the
SSO application that the message it is sending is es-
sential to transactional semantics, the master waits
until it has received a positive acknowledgement
from a majority (over half) of the replicas, including
itself. Only after it has received those acknowledge-
ments does the SSO application consider a trans-



action completed. Therefore, even if the master
crashes and loses all its data, the data is guaran-
teed to reside on the other sites that acknowledged
the transaction. Similarly, SSO requires a major-
ity of replicas to agree when electing a new master.
Because any two majorities overlap, we are guaran-
teed that at least one replica participating in the
election will have seen the most recent update from
the last master. Berkeley DB elections always select
a replica with the latest log entry during an election,
so we are guaranteed that a new master’s log will
include all updates committed by the previous mas-
ter.

4.2 Leases

A pure Paxos-based system requires the involve-
ment of a majority of replicas for reads as well as
writes, making reads prohibitively expensive. Prac-
tical systems typically use a mechanism called leases
to allow a master to perform reads locally without
the danger of returning stale data if a partition or
other failure causes a master to lose its mastership
without noticing for some period of time [1, 4].

Google implemented a lease mechanism on top of
Berkeley DB replication. The master must hold a
master lease whenever responding to a read request.
The master refreshes its lease every lease timeout in-
terval (currently a small number of seconds) by suc-
cessfully communicating with a majority of replicas.
The application must also prohibit elections from
completing within the lease timeout interval. Leases
are not required to ensure proper write behavior, be-
cause the application must obtain successful replies
from a majority of the replicas before considering a
write complete. Leases renew automatically as long
as a master is in communication with a majority of
replicas.

To see the need for leases when a master performs
local reads, consider a replication group with five
replicas, A through E. At time 0, A is the mas-
ter. At time 1, the network partitions leaving A on
one side and B through E on the other. Without
leases, B through E could hold an election, elect B
as the new master, and process new updates. Si-
multaneously, A could continue to respond to read
requests locally, unknowingly returning stale data.
The lease mechanism prevents B through E from
holding a successful election until A’s master lease
expires, even though A is no longer in communcia-
tion with the other replicas.

4.3 Replica Group Membership

In addition to the quorum protocols and leases, an-
other key feature of a replicated system not handled
within Berkeley DB is replication group member-
ship. For the SSO application, we implemented our
own replica group management.

A replica configuration includes the logical (DNS)
name of each replica along with its current IP ad-
dress and the value of the master lease timeout. To
change the physical machine associated with a log-
ical name, we change the DNS entry. To add a new
logical replica, we need to add its name and IP ad-
dress to the configuration.

While we don’t have room to describe the complete
algorithm, some of the key ideas are:

e Only the master performs DNS resolution.

e When the master sees the DNS settings change,
it initiates a configuration change.

e The configuration gets stored in the database
and is updated via normal database operations.

e Non-master replicas check the database to learn
the configuration (certain cues tell them when
to check).

e Additions or deletions to the configuration can
be specified in a file that the master reads pe-
riodically.

e For critical operations (commits and elections)
a replica will only process messages from other
replicas that have the same configuration.

A new replica starts out as a non-voting member of
its replication group. It won’t participate in elec-
tions until it is deemed to be caught up to the mas-
ter at least as of the time the new replica started
running. So a new replica cannot cause an election
outcome to be incorrect.

We require all configuration transitions to have a
subset of members that is a quorum in both old
and new sets. This is slightly restrictive, but makes
it much easier to rule out the possibility of having
more than one master at once or of being unable to
elect a master.

The most common configuration change is the re-
placement of a single physical machine correspond-



ing to a logical replica name. This must be han-
dled automatically for smooth system operation.
Other configuration changes require some operator
actions.

The correctness of Paxos and related protocols re-
lies on replicas not losing their stable storage. If
too many replicas lost state, but continued to par-
ticipate in the protocols as usual, updates could po-
tentially be lost if one of those replicas were elected
master. This situation is similar to replacing one
physical replica machine with another. A replica
that has lost state restarts as a non-voting member
of its configuration and begins participating in elec-
tions only when it has caught up to the master as
of the time the replica restarted.

5 Experience

5.1 Database vs. Application

Google began development of SSO with the first
Berkeley DB HA release. Sleepycat was developing
a generic infrastructure component and Google was
developing a specific application. Each organization
needed to make different tradeoffs, but we worked
closely together to determine whether various func-
tionality should reside in the application or in the
Berkeley DB library.

All of the abstractions described in the previ-
ous section—quorums, leases, and replica group
management—straddle the boundary between
database and application. For example, Google im-
plemented master leases in the application, because
at the time, Sleepycat did not see the demand for
this feature from other customers. In retrospect,
master leases should be implemented in Berkeley
DB, because Berkeley DB has more complete and
precise knowledge about when masters change.
By adding interfaces, we were able to implement
master lease support in the application, but it is an
unnatural implementation.

The initial Berkeley DB election algorithm was not
compatible with Paxos in its use of a concept called
election generations. When a replica starts a new
election, it chooses a generation number greater
than any it has seen before. Other replicas partic-
ipate in the election only if they have never par-
ticipated in an election with a higher generation

number. To implement Paxos-like behavior, elec-
tion generations numbers must be stored stably, so
that if all replicas go down (either for planned main-
tenance or an unplanned outage), old messages that
may still be floating around the system when the
replicas come back up cannot cause incorrect be-
havior in subsequent elections. The probability that
such bad behavior occurs is low, but in an installa-
tion as large as Google’s, even low probability events
must be considered possible. None of Sleepycat’s
other customers considered such a scenario a viable
threat.

Implementing stable election ids meant costly disk
writes during elections and additional persistent
state. Sleepycat wanted to avoid disk writes during
elections, because database updates are unavailable
during elections, reducing overall system availabil-
ity. While a few millisecond wait for the disk write
might be acceptable for Internet-based applications,
it might be perceived as an intolerable delay in a
backplane-based system, such as a switch manag-
ing TCP connections. The two teams discussed this
feature at length to determine whether it was an
essential piece of the infrastructure (in which case
Sleepycat should implement it) or an application-
specific behavior (in which case Google should im-
plement it). Ultimately, Sleepycat decided to imple-
ment stable election generations because there was
essentially no way to implement them correctly in
the application and because Sleepycat saw value in
a fully Paxos-compatible implementation.

5.2 Operation

The replicated Berkeley DB-based SSO system was
deployed in late 2003. Operationally, everything
went extremely smoothly as we first replaced an
early version of the SSO system with an unrepli-
cated version of the system based on Berkeley DB
and subsequently turned on replication. The sys-
tem continued to perform well and run smoothly
for months while we began to work on improve-
ments to handle the anticipated scaling bottlenecks.
For example, the initial deployment did not include
the ability to manage replica group membership au-
tomatically. This was implemented about a year
later, when we had enough shards that our small
operations team was spending too much time manu-
ally replacing failed machines. As another example,
the ID-map originally was implemented by a single
shard, for simplicity and expedience. The scalable
ID-map was introduced about a year after initial de-



ployment, when traffic growth predictions indicated
that the existing single ID-map master would soon
become overloaded.

The philosophy of delaying complexity until nec-
essary works well for deploying reliable, scalable
systems in a timely way in the setting of Inter-
net services. Some problems need to be addressed
before you can deploy anything, while others can
wait. While the scaling bottlenecks in the SSO sys-
tem were fairly predicatable before initial deploy-
ment, actual experience with the system helped us
prioritize the various followup tasks as the system
evolved. While this approach works for Internet ser-
vices that exert full control over the running soft-
ware, it does not necessarily work well when ship-
ping a product that others will run and manage.

The SSO storage system is currently low mainte-
nance from an operational standpoint, freeing the
team to concentrate on supporting new applications
and features. It has scaled by more than an order of
magnitude since its initial deployment and still has
room to grow.

6 Conclusions

Large systems require robust algorithms needing lit-
tle maintenance. It is better to design for correct-
ness in the face of as many errors as possible than to
place bets on what failure scenarios will and will not
occur. Highly-fault-tolerant algorithms like Paxos
are valuable. It still helps to understand your op-
erating environment, however. We decided not to
use a byzantine fault-tolerant replication algorithm
because we felt that the extra cost and complexity
were not justified.

Trading-off availability and consistency will always
require careful consideration. FExperience with the
running system gave us confidence that we could
ease some of the comsistency requirements with-
out sacrificing the user experience. For example,
the mapping from usernames to user identifiers al-
most never changes, and the mapping from names
to shards changes only rarely. We can allow slightly
stale reads for these types of data without sacrificing
usability. The database design fundamentally does
not support best-effort writes, however, so we have
to pay latency and availability costs for all writes in
this design.

An unsurprising lesson is that availability and re-
liability need to be considered for the system as a
whole. The SSO system consists of a distributed col-
lection of front-end servers, middle-tier servers, load
balancers, etc., in addition to the many replicated
database shards. It is tempting to get caught up in
fascinating replication algorithms, dwelling on how
available the system can be and still have single-
copy consistency. While these are important issues,
a highly-available, highly-reliable database is only
one component; one must also consider issues like
partitions outside of the database component, the
location of services relative to account data, and
how to set reasonable timeouts on user-level opera-
tions.

7 Acknowledgements

Many people contributed to the successful design
and implementation of the Google Accounts sys-
tem. We'd like to thank Mike Burrows, the Google
Accounts team, the Sleepycat core team, and Su-
san LoVerso. Thanks also to Butler Lampson for
some illuminating discussions about Paxos. Finally,
thank you to the reviewers who gave us excellent
feedback on an earlier draft of this paper and to our
program committee shepherd, David Andersen.

References

[1] GrAy, C., AND CHERITON, D. Leases: an efficient fault-
tolerant mechanism for distributed file cache consistency.
In SOSP ’89: Proceedings of the twelfth ACM symposium
on Operating systems principles (New York, NY, USA,
1989), ACM Press, pp. 202—-210.

[2] HARDER, T., AND REUTER, A. Principles of transaction-
oriented database recovery. ACM Comput. Surv. 15, 4
(1983), 287-317.

[3] LAMPORT, L. The part-time parliament. ACM Transac-
tions on Computer Systems 16, 2 (May 1998), 133-169.

[4] Lampson, B. W. How to build a highly available system
using consensus. In 10th International Workshop on Dis-
tributed Algorithms (WDAG 96) (1996), Babaoglu and
Marzullo, Eds., vol. 1151, Springer-Verlag, Berlin Ger-
many, pp. 1-17.

[5] Oxi, B. M., AND Liskov, B. H. Viewstamped replication:
a new primary copy method to support highly available
distributed systems. In PODC ’88: Proceedings of the
seventh annual ACM Symposium on Principles of dis-
tributed computing (New York, NY, USA, 1988), ACM
Press, pp. 8-17.



