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Abstract. Formal specification languages such as tla+ and unity are
used to design and verify concurrent programs. These languages are in-
tended for analysis rather than for execution. A compiler or a human
must implement the specified program in a lower-level executable lan-
guage. We present Shellac, a synthesized compiler from unity to Arduino
c++ and Verilog. The approach is essentially syntax-directed transla-
tion, where the translation rules are automatically generated via pro-
gram synthesis. This approach produces a correct-by-construction com-
piler without burdening the compiler writer with manual specification
and verification. We evaluate Shellac by compiling Paxos consensus in
unity to implementations in Arduino c++ for microcontrollers and Ver-
ilog for reconfigurable hardware.
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1 Introduction

Concurrent programs are notoriously difficult to write, debug, and verify. This is
especially the case with imperative programs that mix state mutation and control
flow, where the resulting state explosion makes formal analysis intractable.

Formal specification languages and program logics, e.g., tla+ and unity,
enable the design and verification of concurrent programs at an abstract level
[7, 10]. A specification written in such a language describes a state machine
by formally defining valid initial states and permitted state transitions. Such
specifications are behavioural as opposed to logical, e.g., a temporal logic formula.

A behavioural specification by itself is useful for analysis and as a design
tool, but in general, it is too abstract for direct execution. Often, a programmer
manually translates a specification to a lower-level implementation language.
This process is error-prone and verifying correctness, e.g., showing refinement,
requires substantial proof effort, e.g., seL4 [5]. Alternatively, a programmer could
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write a compiler from a specification to an implementation language, e.g., Com-
pCert, but still, the engineering and verification effort remains incredibly high [8].
We are interested in automatic and verified techniques for generating programs
that satisfy their specification. In particular, we exploit program synthesis to
reduce the proof burden of verifying an implementation against its behavioural
specification.

Program synthesis is any procedure that generates a program that satis-
fies some constraint. If the constraint is a correctness condition with regard to
a specification, then the synthesized implementation is correct by construction.
This means that, assuming the correctness of the synthesis procedure, no further
proof is required. We focus on counterexample-guided inductive program synthe-
sis (cegis), where a search-verify-refine loop uses verification counterexamples
to prune the search space [15]. Any decidable search-based synthesis procedure
places bounds, e.g., expression depth, over the infinite space of programs. This
search space explosion, exponential in the case of a bound on expression depth,
makes it difficult for cegis to find programs that satisfy nontrivial specifications.

We present a method to construct a compiler by generating verified transla-
tion rules via program synthesis. Our synthesized compiler accepts unity spec-
ifications and generates implementations in Arduino c++ and Verilog [1,4]. In-
stead of synthesizing concrete c++ or Verilog programs from a complete specifi-
cation, we synthesize implementations of elements of unity’s expression syntax.
Each of these synthesized implementations takes the form of a rewrite rule from
source to target. These synthesized rewrite rules are assembled into a recursive
syntax-guided compiler pass. We show that for channel-based unity programs,
syntax-guided translation preserves the specification’s safety and liveness prop-
erties. Shellac, our compiler synthesizer, is written in Rosette [16]. The programs
that Shellac synthesizes have all the benefits of traditional compilation: they are
deterministic and handle arbitrary source programs that satisfy a channel-based
schema. We provide:

1. A rewrite rule synthesizer that includes language embeddings in Rosette and
a procedure for generating rewrite rules between languages.

2. A proof that the compiler preserves safety and liveness properties for channel-
based unity programs.

3. An evaluation of rewrite rule synthesis performance and the compilation of
Paxos consensus from unity to Arduino c++ and Verilog.

2 Preliminaries

Shellac starts with a partial compiler, or a sketch, whose organization is il-
lustrated in Figure 1. We begin with an discussion of our state and process
model. Next, we describe an abstract channel model for asynchronous commu-
nication and a dataflow merge specification used as a running example. Given
that context, we introduce the unity specification, boolean-bitvector parallel,
boolean-bitvector scalar, boolean-bitvector sequential, Arduino c++, and Ver-
ilog languages.



Fig. 1. Source, intermediate languages, and target languages with compiler passes.
Languages with important semantic similarities are contained in boxes.

2.1 State, assignment, and processes

The source and target languages modelled here are all imperative: we effect com-
putation by mutating state. Each program is defined over a set of variables, and
a state is a mapping from those variables to values. Programs operate by inspect-
ing the current state of their variables and, if permitted, assigning new values
to a subset of them, effecting a state transition. Variables are either internal or
shared. Shared variables are reserved for channel communications, described be-
low. The languages presented differ in their assignment/state transition seman-
tics. In particular, unity, boolean-bitvector parallel/scalar, and Verilog state
transitions are parallel and atomic, while boolean-bitvector sequential and Ar-
duino c++ state transitions occur sequentially with each assignment statement.

Or model of concurrency is based upon communicating processes, with vary-
ing degrees of parallelism. Each such process, P , must be coherent: if P writes
to some variable, v, no other process writes to v; if process P reads v and some
other process, Ch, writes to v, then Ch must be a channel as described below.
Processes execute one assignment at a time. Concurrency is a property of a
system of processes, not of a process itself.

2.2 Channels

Interprocess communication is via point-to-point channels. At the specification
level, a channel, c is an abstract data type with the following operations:

– empty?(c) → boolean
– fill!(c, v) → channel, precondition empty?(c)
– full?(c) → boolean
– read(c) → value, precondition full?(c)
– drain!(c) → channel, precondition full?(c)

The channel ensures that ch := fill!(c,v) leads to a state where ¬empty?(c) holds
and from which full?(c) ∧ (read?(c) = v) will eventually hold. Likewise, ch :=



drain!(c,v) leads to a state where ¬full?(c) hold and from which empty?(c) will
eventually hold. The empty? query and fill! operation are only valid for a process
designated as the sender. Likewise, full?, read, and drain! are only valid for the
receiver.

Figure 2 illustrates the channel protocol.

Fig. 2. One round of the channel protocol. Sender to the left, receiver to the right.
Cyan boxes represent the empty state, magenta boxes the full state. Circles are states,
arrows are transitions.

2.3 Dataflow merge element

We use a merge element from dataflow programming as a running example. The
dataflow merge element is a forwarding mechanism on the receiving end of two
channels: inA and inB and the sending end of one channel: out. Two assignments
are defined:

1. If inA is full and out is empty, fill out with the value of inA and drain inA
2. If inB is full and out is empty, fill out with the value of inB and drain inB

In either assignment, the state of the other input channel is immaterial, not part
of the condition nor the object of the assignment. In the case where both input
channels are full and out is empty, the specified behaviour is nondeterministic,
and either assignment can occur.

2.4 UNITY

unity is a language for specifying parallel and distributed programs [10]. We
provide an informal overview of assignment syntax and semantics here, and pro-
vide a formalization of expressions and state transitions later, but we do not
cover Chandy and Misra’s unity program logic. A specification defines vari-
ables, initial state, and next-state assignments. A unity program may reach a



fixed point, but it does not halt in the traditional sense. We discuss datatypes,
followed by parallel assignment, then nondeterministic choice. Our examples in-
clude dataflow merge and channel processes.

Datatypes Our model of UNITY includes primitive datatypes, send/receive
buffers, and channels. Send/receive buffers are fixed length lists with a cursor
for serializing data to be sent over a channel. Presently, Shellac supports booleans
and natural numbers for primitive datatypes, send/receive buffers that are lists
of booleans, and channels for boolean data.

Simultaneous assignment A simultaneous assignment statement has a list of
variables on the left side and an expression list on the right side. The expression
list is either simple or conditional. A simple list contains expressions correspond-
ing to the assignment’s variables: e.g., a, b := 42, a + 3 assigns the value 42 to
a and the sum of 3 and the original value of a to b. Parallel assignments are
independent and simultaneous: the expressions are evaluated to values before
any assignments are made, and all assignments occur in one atomic action. A
conditional list pairs simple expression lists with boolean guard expressions: e.g.,
for the dataflow merge assignment from inA to out :

inA.drain, out.fill :=

{
drain!(inA),fill!(out, read(inA))

if full?(inA) ∧ empty?(out)

This example introduces channel predicates full?(c) and empty?(c) and functions
fill!(c, data : boolean), drain!(c), and read(c).

In the above case, there is only one guarded assignment, but in general, a
conditional list may contain an arbitrary number of expression list and guard
pairs. Guards are not required to be exhaustive. If no guard is true the state is
left unchanged. If two guards are true, their corresponding expression lists must
evaluate to the same values. Parallel assignment is deterministic.

Nondeterministic choice Note that our description of dataflow merge does
not specify what to do if both input channels were full, when both assignments
are permitted. We express this nondeterminism in unity by composing simul-
taneous assignments with the box operator

e
:

inA.drain, out.fill :=

{
drain!(inA),fill!(out, read(inA))

if full?(inA) ∧ empty?(out)
m

inB.drain, out.fill :=

{
drain!(inB),fill!(out, read(inB))

if full?(inB) ∧ empty?(out)



Nondeterministic choice is subject to a fair selection or absolute fairness con-
straint: every assignment is executed infinitely often. Note that this property
implies weak but not strong fairness.

Channel process As described previously, channels are asynchronous processes
interfaced via channel shared variables. Channel processes propagate fill and
drain actions from sender and receiver, as transitions 2 and 4 in Figure 2. Because
fill and drain actions propagate asynchronously, parallel channel actions by one
process may appear to an observer in any sequence or simultaneously.

2.5 BBV parallel

The boolean-bitvector parallel intermediate language is a lowering of unity to
the booleans and fixed-length bitvectors. unity values are encoded as tuples of
booleans or bitvectors. Booleans are encoded as ⟨boolean⟩ and bounded naturals
are encoded as ⟨bitvector⟩. Send/receive buffers are encoded as the pair ⟨cursor :
bitvector, data : bitvector⟩. Channel values are already encoded in unity as
triples ⟨req : boolean, ack : boolean, data : boolean⟩, resembling signals on a
serial communication line. A bbv channel is empty if req = ack, full if req ̸= ack.
Senders cannot modify ack, and receivers cannot modify req or data.

Assignment semantics are identical to unity, where individual assignments
are deterministic, parallel, and atomic. Nondeterministic choice over assign-
ments is also subject to a fair selection constraint. We describe the behaviour of
dataflow merge in bbv parallel:

inA.ack, out.req, out.data :=

⟨inA.req,¬out.req, inA.data⟩
if inA.req ̸= inA.ack ∧
out.req = out.ack

m

inB.ack, out.req, out.data :=

⟨inB.req,¬out.req, inB.data⟩
if inB.req ̸= inB.ack ∧
out.req = out.ack

BBV scalar The boolean-bitvector scalar intermediate language is a scalar
version of bbv parallel, with tuple values split into scalars. Assignment semantics
are unchanged.

2.6 BBV sequential

The boolean-bitvector sequential intermediate language is a sequential version
of bbv scalar. Parallel atomic assignments are replaced by sequences of scalar
assignments, with fair selection over sequences. We describe the behaviour of
dataflow merge in bbv sequential:



if inA.req ̸= inA.ack ∧ out.req = out.ack
out.data := inA.data;

out.req := ¬out.req;
inA.ack := inA.req;

m

if inB.req ̸= inB.ack ∧ out.req = out.ack
out.data := inB.data;

out.req := ¬out.req;
inB.ack := inB.req;

A bbv sequential program executes variable assignments one at a time and
in order. This exposes intermediate states not accounted for in the specification,
opening the possibility to a violation of a specification property. We describe
in Section 3.4 ordering constraints that rewrite rules must encode such that
sequential implementations preserve the behaviours of the original specification.

2.7 Arduino C++

To demonstrate Shellac, we use Arduino armmicrocontroller prototyping boards
with fpgas [1]. This allows us to demonstrate compilation to both hardware
and software. With several Arduino boards and some wire, we demonstrate a
distributed system on a desk. The Arduino language is an api in C++ derived
from the Wiring [3] language. The API provides functions for reading and writing
from hardware input/output pins. A toolchain by the Arduino project compiles
C++ into arm machine code and uploads the program into prototyping board
flash memory.

Arduino programs are centred around an infinite event loop with conditional
statements. Shellac generates a compiler with a backend from bbv sequential to
Arduino c++.

2.8 Verilog

The Arduino prototyping boards also include Intel Cyclone fpgas. Shellac gen-
erates a compiler with a backend from bbv scalar to synthesizable Verilog [4].
An Intel toolchain compiles Verilog into a bitstream that configures the fpga
into a custom digital device.

Verilog programs emitted by our compiler are centred around an always block
containing nonblocking assignments. The always block is triggered by external
events, e.g., clock transitions. All nonblocking assignments inside an always block
defer variable updates until the end of the block, when the values update with
the next clock transition.



3 Formalization and mechanization

The unity specification language is structured around an explicit separation
between functional expression evaluation and atomic state transition. This sep-
aration allows us to formulate correctness by focusing on each concern inde-
pendently. Two compilation passes engage in a semantic transformation that
requires a formalization of correctness:

1. unity assignment to bbv simultaneous assignment, where we wish to show
that specification expression semantics are preserved

2. bbv simultaneous to sequential assignment, we wish to show that target
state transitions are a refinement of the specification

We describe these formal relations, their mechanization in Rosette, and how
Shellac generates verification conditions for synthesizing rewrite rules.

3.1 The implements relation between expressions

Our language embeddings give a functional interpretation of expression seman-
tics. The expressions of a language L are defined over:

– A set of values vals(L)
– A set of variables vars(L)
– A set of operators ops(L)
– An inductively defined set of expressions exprs(L)

• If t ∈ vals(L), then t ∈ exprs(L)
• If t ∈ vars(L), then t ∈ exprs(L)
• If n-ary op ∈ ops(L) and a0, . . . an ∈ exprs(L), then op(a0, . . . an) ∈
exprs(L)

– A set of states, states(L), each a mapping function vars(L) → vals(L)
– A partial function evalL : exprs(L) × states(L) → vals(L)

We describe relations between a source language S and a target language T .
Because S and T may be at different levels of abstraction, we describe a scheme
where values in vals(S) can be encoded using n-tuples of values in vals(T )n. We
define a value mapping function valmap from T value tuples to S values:

valtuples(T ) =

∞⋃
n=1

vals(T )n

valmap ⊂ valtuples(T )× vals(S)

Similarly, we define a variable mapping function varmap from S variables to T
variable tuples:

varmap ⊂ vars(S)× vartuples(T )

In the following, we will treat valmap as a partial function from valtuples(T ) to
vals(S) and varmap as a function from vars(S) to vartuples(T ) when convenient.



With inter-language value and variable mappings, we can describe what it means
to relate states across languages. We say that stt in states(T ) encodes sts in
states(S), or stt ≾ sts iff there exist value and variable mappings such that
information in sts is recoverable from stt after variable and value mapping:

∀stt ∈ states(T ), sts ∈ states(S).

stt ≾ sts ⇐⇒
∃valmap, varmap.

∀⟨vars, vals⟩ ∈ sts.

vals = valmap(stt(varmap(vars)0), . . .)

Now we are ready to describe an implementation relation between source ex-
pressions and target expression tuples. We define a set of expression tuples over
the expressions of T :

exprtuples(T ) =

∞⋃
n=1

exprs(T )n

We say that exprtt in exprtuples(T ) implements exprs in exprs(S), or exprtt ◁expr

exprs iff there exists a value mapping such that for all target states stt and source
states sts, if stt ≾ sts, value mapping of the evaluation of exprtt in stt is equal
to evaluation of exprs in sts:

∀exprtt ∈ exprtuples(T ), exprs ∈ exprs(S).

exprtt ◁expr exprs ⇐⇒
∃valmap.

∀stt ∈ states(T ), sts ∈ states(S).

stt ≾ sts =⇒
valmap(evalT (exprtt0, stt), . . .) = evalS(exprs, sts)

3.2 Generating the verification condition for rule synthesis

Shellac generates syntax-guided recursive functions that translate elements of
the source syntax, i.e., variables, literal values, and operators. Shellac provides
a deep embedding of unity and uses Rosette’s boolean and bitvector functions
for a shallow embedding of bbv. The user provides:

1. typemap a mapping from unity types to tuples of bbv types
2. valmap, a mapping from tuples of bbv values to unity values
3. evalU , an evaluation function for unity expressions
4. precondU , a mapping from unity operators to precondition predicates

Variable translation is via a generated lookup table varmap, from declared vari-
ables of the unity specification and the corresponding fresh bbv variables ac-
cording to typemap. Literal translation is via runtime synthesis, using Rosette
to generate an smt query to invert valmap for the given unity literal.



We show how a rewrite rule is synthesized for the channel fill operator:
channel × boolean → channel. The corresponding bbv expression types are
determined by typemap:

typemap(channelout) = ⟨boolean, boolean, boolean⟩
typemap(boolean) = ⟨boolean⟩

Therefore the corresponding bbv expression tuple will be of type:

⟨boolean, boolean, boolean⟩ × ⟨boolean⟩ →
⟨boolean, boolean, boolean⟩

From here we can see the shape of the rewrite rule: from four bbv expressions
to three bbv expressions. Shellac uses Rosette’s symbolic execution features to
evaluate the fill operator for any proper input. It begins by allocating symbolic
booleans to elements of the domain: creq, cack, cdata for the channel and v for
the value written to the channel. Given these symbolic constants, it constructs a
three-tuple of symbolic booleans representing as-yet unknown expressions over
the domain constants, represented by �i:

⟨�req : ⟨creq, cack, cdata⟩ × ⟨v⟩ → boolean

�ack : ⟨creq, cack, cdata⟩ × ⟨v⟩ → boolean

�data : ⟨creq, cack, cdata⟩ × ⟨v⟩ → boolean⟩

Elements of the unity domain for fill are derived by applying valmap to the
symbolic constants:

fill!(valmap(creq, cack, cdata), valmap(v))

The fill operator is only defined over empty channels. Applying the channel
empty predicate to the mapped symbolic domain elements yields the symbolic
precondition P :

P = empty?(valmap(creq, cack, cdata)) : boolean

Applying channel fill to the mapped symbolic domain elements yields the sym-
bolic postcondition Q:

Q = fill!(valmap(creq, cack, cdata), valmap(v))

Additionally, a bbv invariant I restricts synthesis from choosing a different ac-
knowledge value:

I = �ack = cack

The verification condition that synthesis must satisfy is the following, pred-
icated on the precondition P , where the value mapping of the as-yet unknown
expressions equals the postcondition Q and satisfies the invariant I:

P =⇒ I ∧ valmap(�req,�ack,�data) = Q



3.3 Inversion over target expressions for rule synthesis

Shellac engages in a bounded search over target expressions to satisfy a verifica-
tion condition. The search space is generated using Rosette choose expressions,
e.g., to choose between the numbers 1, 2, or 3:

> (choose* 1 2 3)

(ite x?$1 1 (ite x?$2 2 3))

The result of the choose expression is a symbolic union whose value, 1, 2, or 3
is predicated on the true values of fresh boolean constants x?$1 and x?$2. We
use choose expressions to build symbolic syntax trees that represent all expres-
sions allowed by a language up to some depth. To find satisfying expressions
for channel fill, Shellac starts by generating symbolic syntax trees at zero-depth
for �req,�ack,�data, pushes the verification condition onto Rosette’s verifica-
tion stack, then asks Rosette to start cegis. If cegis succeeds, Rosette has
found a model that satisfies the verification condition, i.e., a valid rewrite rule.
If cegis returns unsat, the search depth is increased until a model is found or a
user-defined depth limit is exceeded.

3.4 Ordering to satisfy refinement

In the case of channel fill, the order of assignments on a sequential execution
matters a great deal. The final phase of rewrite rule synthesis finds an ordering
of assignments such that the externally visible states induced by the assignments
satisfies refinement, i.e., intermediate states map to P or Q, and the transition
is monotonic. The notion of refinement used here is of Lynch and Vaandrager
from their work on simulation relations between automata [9].

The final rewrite rule for the fill operation is encoded in a translation-rule
form:

(translation-rule

;; Precondition (channel empty)

(<=> req ack)

;; Domain

(list (list req ack data) (list value))

;; Codomain (synthesized expressions)

(list (! req) ack value) ;; Codomain

;; Ordering constraints (indices into codomain)

(list (ordering 2 0) (ordering 1 0)))

A translation-rule form containts symbolic constants, e.g., req, ack, data, and
value. The ordering constraints specify “come before or synchronously with” re-
lationships between indices in the tuple of synthesized expressions for sequential
assignment. For example, (ordering 2 0) specifies that the value assignment
must come before or synchronously with the (! req) assignment.



3.5 Correctness of the synthesized programs

The asynchronously composed simultaneous assignments are partitioned by the
user into processes. Processes can be channels or compute-processes. Channels
provide point-to-point communication between two (not-necessarily distinct)
processes. A property is stable in a process if no actions by other processes
can falsify it. The channel protocol ensures that a channel being full is a stable
property of the process that reads the channel; furthermore, the value of such a
channel is stable when the channel is full. Likewise, a channel being empty is a
stable property of the process that writes the channel.

The rules for translating channels to bbv (sequential or parallel) are provided
by the Shellac developer – they are effectively an api. These rewrite rules ensure
that a receive channel is only read or drained from states in which a channel
is full, and likewise for send channels. When synthesizing sequential code, all
read operations on a channel in a simultaneous assignment must be performed
before any drain operation; likewise, the data value of a send channel must be
updated before the status is set to full. Finally, guards on receive channels must
be monotonic in the channel being full, and guards on send channels must be
monotonic in the channel being empty. We can now sketch the correctness and
liveness properties for programs synthesized by Shellac.

Correctness of synthesized sequential implementations For each simul-
taneous assignment of the compute process, Shellac synthesizes code that evalu-
ates the guard(s), then evaluates the right-hand side(s), and finally updates the
left-hand side(s) of the assignment. When execution reaches a point where the
guard(s) have been shown to be satisfied, the abstraction function can map the
implementation state, and all subsequent states until the code block is finished,
to the state corresponding to a completed simultaneous assignment. The careful
reader might note that a single simultaneous assignment could fill and/or drain
several channels, that the sequential implementation will perform these oper-
ations in some order, and this could enable external processes to fill or drain
channels written or read by this process before the sequential implementation of
the simultaneous assignment is complete. This is indeed the case. Such opera-
tions are non-interfering due to the stable properties noted above, and thus they
do not affect the outcome of the simultaneous assignment. The “explanation” in
the abstraction of implementation state to specification state is that the simul-
taneous assignment completed (as soon as it was started), and these operations
by other processes happened later.

Correctness of parallel implementations Each simultaneous assignment is
performed on a single clock “tick” and the state update matches the specification.

Liveness unity requires fair selection but does not provide stronger fairness
guarantees. Both the sequential and parallel implementations produced by Shel-
lac perform round-robin execution of the simultaneous assignments in each pro-
cess. This ensures fair selection.



4 Evaluation

We evaluate Shellac by synthesizing rewrite rules for unity operators. We then
demonstrate the efficacy of the generated compiler with a single-proposer version
of the Paxos consensus algorithm [6]. We target the Arduino mkr Vidor 4000
development board, which contains an arm Cortex-M0 microprocessor and an
Intel fpga [2]. The processor provides a platform for compiled Arduino C++,
and the fpga provides a platform for compiled Verilog. Each development board
has 22 i/o pins, which limits the physical size of the system we can implement,
because each one-way channel uses three pins.

4.1 Experimental setup

We synthesized code on an Intel Core i7-6660U 2.4 GHz cpu with 16 GiB of
memory. Shellac ran on Racket 8.3 with Rosette 4.1. We used the version of the
Z3 smt solver bundled with the Rosette distribution.

4.2 Rewrite rule synthesis

We study the synthesis time for various unity operations, presented in Table
1. Operators are categorized by their general types: boolean, natural numbers,
channels, and arbitrary-length boolean list buffers. Rewrite rules for boolean,
natural number, and channel operators synthesize quickly; this is due to the
similarities in abstraction level between source and target. Buffer operations
deserve further study. Because arbitrary-list-of-booleans buffers are encoded as
bitvectors in bbv, buffer operations turn into bitwise operations. Setting and
reading arbitrary bits in a bitvector requires a composition of bitwise functions.
In the case of recv-buf-put, the synthesized bbv expression was 4 deep. In
addition to the exponential growth in the search space as expression depth in-
creases, it is known that cegis is less efficient at finding useful counterexamples
for bitvector program synthesis [13].

4.3 Paxos consensus

We implemented Lamport’s single-decree synod consensus algorithm [6] in unity.
Paxos solves the problem of achieving distributed consensus: getting a collec-
tion of distributed processes to agree on a value. The processes execute in a
shared nothing environment, which means that they interact with each other
only through message passing.

The basic Paxos protocol defines three classes of participants: proposers, ac-
ceptors, and learners. Proposers and acceptors are active participants and learn-
ers are passive. Proposers initiate a protocol round by sending prepare messages
to a majority of the acceptors. The acceptors reply with promise messages,
promising to accept a proposed value. Once a proposer receives promise replies
from the majority of the acceptors, it sends accept messages to acceptors to com-
mit a value. Acceptors reply to the accept message with an accepted message,



Category Operator Rosette Rosette + smt

Boolean and 47 125
or 49 123
not 27 74
<=> 39 117

Natural =? 196 724
<? 61 207
+ 28 131

Channel empty? 31 91
full? 43 118
drain 21 80
fill 98 199
read 10 37

Buffer empty-recv-buf 23 51
empty-send-buf 24 52
nat->send-buf 55 104
recv-buf->nat 25 145
recv-buf-full? 29 92
recv-buf-put 1244 527877
send-buf-empty? 23 87
send-buf-get 690 92228
send-buf-next 80 213

Table 1. UNITY to BBV rewrite rule synthesis time in milliseconds

indicating that the value is committed and the round is complete. After a value
is accepted by an acceptor, additional accepted messages are sent from acceptors
to learners: this propagates the consensus value.

The safety guarantee of the Paxos algorithm ensures that once a value has
been chosen, that value will remain stable. The algorithm guarantees this by as-
sociating each protocol round with a ballot number. Proposers’s prepare messages
are required to have a ballot number greater than that of any existing prepare
request. Acceptors are required to inform proposers in promise messages if they
have already accepted a value and the associated ballot number. When an accep-
tor sends a promise reply, it promises to ignore any requests with lesser ballot
numbers. Proposers are required to propose the previously accepted value with
the greatest ballot number. This ensures that once a value is accepted, it remains
so.

4.4 Specification of Paxos

Specifications for the proposer and acceptor in unity use a pair of channels
between each proposer and acceptor. Each pair of channels require six i/o pins.
With a 22 pin budget, this limits specifications to three channel pairs using 18



Role bbv parallel bbv sequential

Proposer 2940 22
Acceptor 1039 6

Table 2. Paxos compilation time for bbv parallel and sequential passes in milliseconds

pins. The specification defines a topology with one proposer and three acceptors.
The acceptor and proposer specifications contain 14 and 34 clauses respectively.

Topologies containing up to three proposers and three acceptors are possible.
A 3× 3 topology requires a modified acceptor specification to include the addi-
tional proposers. No changes to the proposer specification are required, because
proposers communicate only with acceptors.

Compilation of proposer and acceptor Compilation times for proposer
and acceptor specifications are shown in Table 2. Translating from unity to
bbv parallel takes a few seconds mostly due to smt verification that guards
discharge any operator preconditions generated during the pass. In comparison,
translating from bbv parallel to sequential only requires solving for ordering
constraints and completes very quickly.

5 Related work

We are not aware of other work in the synthesis of rewrite rules for compil-
ing concurrent specifications. However, we consider related work in inductive
program synthesis, compiler synthesis, and asynchronous circuit design.

The space of expressions is encoded as a symbolic syntax tree structure,
where the choice of possible children for a node is taken from the grammar of
the language. Many of the expressions we are interested in synthesizing involve
bitwise manipulations and comparisons. This is the case when encoding buffers at
bitvectors. Solar-Lezama et al. provide the first example of sketch-based program
synthesis, referring to their technique as compilation by constraint-solving [14].
This work also provided the first example of the insight behind the cegis tech-
nique. Sketch-based programming requires the user to provide a partial program
with holes that the program synthesizer fills to satisfy a constraint.

There have been previous efforts in exploiting program synthesis to guarantee
compiler correctness. Van Geffen et al. use sketch-based program synthesis to
build a just-in-time compiler from the ebpf virtual instruction set to risc-v [18].
The search space of assembly routines for an instruction set like risc-v is huge, so
they partition the search space an ordered set of compiler metasketches. Our work
differs in the relative abstraction difference between source and target languages.
Both ebpf and risc-v are load-store register machines, while our focus on unity
is to enable the compilation of concurrent or distributed programs.



Our focus on channel-based unity specifications was inspired by self-timed
digital circuit design. Udding described three classes of circuit specifications
invariant to signal delay: for synchronization, data communication, and arbi-
tration [17]. Our channel model is defined to satisfy the properties of Udding’s
arbitration class of specifications. Our notion of channel state and a specification
of a channel as a participant in data propagation is descended from Roncken’s
link-and-joint model, where channels are equivalent to links [11, 12]. Roncken
gives us a model to bifurcate our specifications between processes with parallel
atomic assignment and concurrent communications.

6 Future work

Shellac has shown that given a specific domain-specific language, a compiler with
a relatively high-level of assurance can be built using program synthesis. Extend-
ing the language or developing other dsls for other systems-level programming
problems would extend this level of assurance to those areas.

The intermediate languages are a shallow embedding of the boolean and
bitvector libraries of the Rosette language. Industrial intermediate representa-
tions such as llvm or mlir, or alternate virtual machines like Webassembly are
possible targets for compiler synthesis.

The specifications that the current syntax-guided compilers generated by
Shellac preserve liveness by hewing closely to the assignments specified in the
unity program and by following a round-robin scheduling. This is admittedly
conservative, and static or dynamic analysis should allow us to find more efficient
schedulings.

7 Conclusion

Concurrent, imperative programs that mix state mutation and control flow admit
a state explosion that makes debugging notoriously difficult and formal analysis
intractable. The advent of formal specification languages allow for a concurrent
program or system of concurrent programs to be described as a state machine.
Such a specification enables automated reasoning. Unfortunately, formal specifi-
cations are usually too abstract for direct execution. Instead of manually trans-
lating a specification to a low-level implementation, which can introduce errors,
we describe a method for exploiting program synthesis to generate compiler
rewrite rules. We show that such a compiler can process unity specifications
with channel-based communication and output both hardware and software im-
plementations that preserve safety and liveness properties. Source code is avail-
able at https://github.com/chchen/shellac-can.
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