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Abstract. Valuable, sensitive, and regulated data flow freely through
distributed systems. In such a world, how can systems plausibly com-
ply with the regulations governing the collection, use, and management
of such data? We claim that distributed data provenance, the directed
acyclic graph documenting the origin and transformations of data holds
the key. Provenance analysis has already been demonstrated in a wide
range of applications: from intrusion detection to performance analysis.
We describe how similar systems and analysis techniques are suitable
both for implementing the complex policies that govern data and veri-
fying compliance with regulatory mandates. We also highlight the chal-
lenges to be addressed to move provenance from research laboratories to
production systems.
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1 Vision

We live in an information economy. However, the goods on which that economy
is based, i.e., the information itself, are of questionable quality. Individuals, cor-
porations, and governments are overwhelmed with data, but the path from data
to information is opaque. Imagine a different world, one we call Provtopia.

In Provtopia, the information we consume comes with a description of its
composition, just as the food we buy comes with nutrition labels that alert us to
allergens or additives or excessive amounts of some substance we wish to limit.
Imagine that the next time you received a piece of spam, you could click on the
why link and obtain a clear and concise explanation of why you received that
email. Even better, imagine that clicking on the never again link ensured that
you never received another piece of spam for that reason.

Now imagine that the programs and services with which we interact can also
consume such labels, what will that enable? Your corporate firewall examines
the labels of outgoing data and prohibits the flow of sensitive data. Or perhaps
it checks to see if your customer data has been routed through a suitable aggre-
gation mechanism, before being released to third parties. Maybe each service in
your network checks the data it consumes to see if the owners of that data have
authorized its use for the particular service.
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Finally, imagine that we can empower users of all sorts to ask, “Where has
my data been used?” whereby a graphic, such as the one shown in details
the flow of their information. And just as easily, they can indicate places to which
they do not want their information to flow, and all future uses are prevented.
We do not yet live in Provtopia, but we could.
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Fig. 1. In Provtopia, the path of information is tracked and can be managed.

Provtopia exists in millions of distributed computers, large and small, that
comprise our cyberinfrastructure. The currency of Provtopia is data provenance.

We begin our journey to Provtopia with a brief introduction to data prove-
nance in the next section. We then present examples of how provenance has
enabled or could enable applications ranging from security to regulatory compli-
ance in[§ 3 describes the technologies that exist today and form the founda-
tion of Provtopia. In[§ 5] we discuss the obstacles that lie between today’s world
and Provtopia, and in we chart the path from here to there.

2 Provenance explained

Digital provenance—or just provenance or lineage or pedigree—is metadata de-
tailing the origin and history of a piece of data. It is typically represented formally
as relationships (interactions) among entities (data), computational activities,
and the agents responsible for the generation of information or the execution
of actions [I]. Its representation frequently takes the form of a directed acyclic
graph (DAG) as formalised by the W3C provenance working group [6], which
is derived from earlier work on the open provenance model [35]. As an illustra-
tion, depicts how the W3C provenance data model represents provenance
information. It depicts a scenario reporting the outcome of a continuous integra-
tion (CI) result. We have three microservices, each implemented by a different
company: git from g¢itCo, CI from SquareCI, and Flack from FlackCo. Each
service is an activity, each company is an agent, and each service is related to
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the company that provides it via the associated with relationship. The diagram
shows that the Flack service is responsible for monitoring the CI process. The CI
process produces reports, represented here by the wasGeneratedBy relationship
connecting the report entity to the CI activity. The Flack activity consumes
those reports, represented via the uses relationship connecting Flack and the
report. In this case, the report came from a CI run on a particular repository,
which is related to both the CI and git services: the CI service used the reposi-
tory, which wasGeneratedBy git. Additionally, that instance of git was the result
of a particular commit from Alice, represented by the used relationship between
git and the commit and the wasAttributedTo relationship between the commit
and Alice. Note that the formal models of provenance express dependencies, not
information flow, so the arrows in provenance diagrams are all instances of the
depends-on relationship.

Alice gitCo
P/asAttributedTo FvasAssociated\Vith
commit —used git yasGeneratedBy  yopo,

wasInformedB;{/v
used

wasAssociated With I
SquareCI
TwasGeneratedBy

report

sed

FlackCo wasAssociated With Flack

Fig. 2. A simple W3C PROV-DM provenance graph.

As a topic of research, digital provenance originated in the database com-
munity, where it provided a way to explain the results of relational database
queries [S9T2]. It later attracted attention as a means to enable reproducibility
of scientific workflows, by providing a mechanism to reconstruct the computa-
tional environment from formal records of scientific computation [I8/44U5354].
Next, storage or operating system provenance emerged as a general purpose
mechanism to document the transformation and flow of data within a single
system [38]. Naturally, network extensions came next, and network provenance
emerged as a way to debug network protocols [63]. More recently, the cybersecu-
rity community has explored using provenance for explaining [31] and detecting
system intrusions [2324]. These applications use provenance both to explain the
origin of data and to represent system execution in terms of information flow.
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3 Use cases

Some of the following provenance-based applications have been implemented in
prior systems, frequently using data collection infrastructures designed specifi-
cally for the application; some of have been implemented using existing prove-
nance capture systems; and some seem possible, but have not been implemented
to the best of our knowledge. Ideally, these exemplar applications provide a
glimpse of what is possible in Provtopia. As a practical matter, using prove-
nance in these applications addresses two different challenges that arise in com-
plex distributed systems: it replaces one-off custom collection infrastructures
with a single general one, and it enables an interesting class of applications for
explanation, documentation, auditing, and enforcement.

3.1 Performance monitoring

Today’s cloud applications are hosted on distributed systems that interact in
complex ways. Performance monitoring of these systems is particularly chal-
lenging, because the root cause of an application slowdown frequently appears
on a machine different from the one that reports anomalous behavior [34J59].
However, even in these complex situations, the interactions can be captured in
a provenance graph. Since there must be an interaction of some sort between
the faulty component and the component registering anomalous behavior, prove-
nance can assist in being able to trace backwards along edges in the interaction
graph to help pinpoint the root cause. We are aware of large cloud organizations
such as eBay [57] already applying this sort of graph analysis to performance
monitoring.

3.2 Debugging

Modern applications are composed of large numbers of interacting heterogeneous
components (i.e., microservices). In these environments, managing the volume of
diagnostic information itself becomes a challenge. Alvaro et al. [I] advocate for
using provenance traces to help with such tasks, because they reveal the causal
relationships buried in software system logs. Provenance data provides a con-
sistent and systematic source of information that can expose correlated system
behaviors. Automated analysis of such data has the potential to replace some
of the manual debugging work that might otherwise be needed. For example,
engineers debugging performance problems expend significant effort analyzing
outlier events, trying to correlate them to behaviors in the software [17]. Once
such outliers are detected, provenance graphs contain the necessary informa-
tion to identify such correlations. While, to the best of our knowledge, no such
automated tools yet exist, constructing them seems entirely feasible.

3.3 Causal Log Analysis

Provenance enables causal analysis of complex systems. Most such systems are
assembled from pre-existing software components, e.g., databases and message
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queues, each of which may run on a different host. Such software components
often already perform their own logging. However, because unexpected behavior
can emerge from the interactions between such components, it is necessary to
correlate data from these independent logging facilities.

Some modern provenance capture systems [42] allow information from sep-
arate software components’ logs to be embedded directly into the provenance
graph. The resulting provenance graph provides a qualitatively more complete
view of system activity, highlighting the causal relationships between log en-
tries that span different software components. This use case also illustrates one
way that application-specific provenance (in the form of log records) can be in-
tegrated with system-level provenance to provide a complete and semantically
meaningful representation of system behavior. One could imagine similar integra-
tion between multiple application-level provenance capture systems [28/39/56//61]
using system provenance.

A further benefit of this approach to causal log analysis is that provenance
makes information about interrelationships readily available and explicit. Tradi-
tional log analysis techniques have instead tried to infer this sort of information
post hoc, which is potentially computationally expensive and error-prone.

3.4 Intrusion Detection

Provenance also plays a crucial role in system security. The two main types of
(complementary) intrusion detection system (IDS) are (a) network-based, and
(b) host-based. Existing provenance-based work focuses on host-based IDS, as
even in a distributed system, an intrusion begins at one or more hosts within
the network. However, the approaches described here for host-based intrusion
detection can potentially be made to work in a distributed setting given existing
infrastructures that can transmit provenance to an external host in real time.
If many such hosts export provenance to a single analysis engine, that engine is
free to implement distributed system wide detection.

It has been common practice to design host-based IDS to analyze recorded
traces of system calls. Recently, though, the approach of using traces of sys-
tem calls has run into difficulty correlating complex chains of events across flat
logs [23]. Whole-system provenance [5J24/42] provides a source of information
richer than traces of system calls, because it explicitly captures the causal rela-
tionships between events. Provenance-based approaches have shown particular
promise in their ability to detect advanced persistent threats (APTs). APTs
often involve multi-phase attacks, and detecting them can be difficult, due to
the phases of attack often being separated by long periods of time. Solutions
to APTs using system call traces have been elusive due to the challenge of cor-
relating related events over long time periods using existing forms of log files.
However, provenance can provide a compact and long-lived record that facilitates
connecting the key events that are causally related. Provenance approaches that
filter data at run-time can further reduce the volume of data that needs to be
maintained to analyze attacks within emerging, provenance-based IDS [26]43].
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3.5 Intrusion and Fault Reporting

Beyond detecting intrusions, or other software faults, provenance can also help
visualize and explain these attacks and faults. Provenance may also help in
assessing the extent of the damage caused by a leak. Such a capability may help
in complying with GDPR article 33 [16], for example, which requires that users
affected by breaches of personal data to be notified within a short time-window
of the discovery of the breach.

Attack graphs [40l52/55], which represent computer exploits as a graph, are a
common way to collect relevant information about chains of correlated activities
within an attack. A provenance graph is an ideal source of data to be transformed
into an attack graph to explain how an intrusion progressed and escalated.

Provenance can provide insight into the parts of the system that were affected
in the process of a developing attack. The flexibility in how and what provenance
data is recorded can lead to systems that capture additional context, which may
help in identifying related weaknesses preemptively. These capabilities are useful
in enabling system administrators to strengthen their systems, given a deeper
understanding of the source of vulnerabilities.

3.6 Data Protection Compliance

The EU GDPR and similar regulations emerging in other jurisdictions place
strong, enforceable protections on the use of personal data by software systems.
Due to the wide-spread impact of the GDPR on existing cloud services, public
attention has been drawn to both the regulation and its underlying motive—
e.g., users of popular services have been notified that those services’ terms and
conditions have been updated both to effect the more direct simplicity and trans-
parency required by the GDPR, and to get users’ consent to use of their data.

However, there is little value in the users being given rights that they are
unable to usefully exercise [41J47]. At present, most software systems that ma-
nipulate user data are largely opaque in their operations—sometimes even to
experts. This makes it extremely unlikely that users will be able to fully under-
stand where, how, when and why their data are being used.
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Fig. 3. Representing provenance as comic strips [51]. The comic show how Alice down-
loaded and visualized fitbit data.
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Provenance can provide a useful means to explain the behavior of systems
to end users, because it can provide both a high-level overview of the complete
operation of a system and fine-grained details underlying each high-level opera-
tion. That said, transforming provenance into explanation, is a non-trivial task,
requiring further research. Explanations from today’s provenance systems are
crude, presenting a user with multiple graphs and highlighting their differences
or providing metrics that have no intuitive meaning to a user.

Nonetheless, promising approaches are emerging for making the behavior
of distributed software systems more generally intelligible. For example, recent
research demonstrated the approach of presenting data in comic-book form (see
Fig. 3) [6I]—mot yet widely deployable, but a step in the right direction.

4 Existing Technologies

Provtopia from and the use cases from present a compelling vision of
what is possible in a provenance-aware world. In this section, we outline exist-
ing technologies that can help realize this vision while identifies the areas
requiring further research.

Based on our experience developing many provenance-aware applications, in-
cluding some of those discussed in we propose that the key to large-scale
distributed system analysis, management, and policy enforcement lies in per-
vasive use of whole-system provenance. First, system level provenance makes
it possible to collect provenance without requiring the use of provenace-aware
application and services. Second, in the presence of provenace-aware applica-
tions, system level provenance provides a mechanism to combine provenance
from multiple applications in a manner that preserves causality. Third, system
level provenance provides visibility into implicit interactions, for example, mul-
tiple applications that use the same data, but do not explicitly communicate.
The greatest problem with system level provenance is that it does not capture
application semantics. Deriving both the benefits of system level provenance and
application semantics requires some form of cooperation or layering [37] among
the different captures mechanisms. In we discuss mechanisms to facilitate
such integration.

The use of whole system provenance does not require agreement on any
particular provenance capture system, but does require agreement on data rep-
resentation. While a provenance standard exists [6], we have found it insuffi-
ciently expressive to support applications. Instead, we have had to create our
own schema on top of the standard. Nonetheless, we believe better standardiza-
tion is possible, but is premature until we have significantly more widespread
adoption and use of provenance. In the absence of such standardization, it is
still possible today for organizations to deploy and use provenance capture sys-
tems in their own data center, without having to negotiate standards with other
organizations.

We begin this section with a brief overview of whole-system provenance cap-
ture, including its practicality and how such systems can provide guarantees
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of completeness. Next, we discuss how to integrate provenance from different
capture mechanisms, whether they be the same mechanism running on differ-
ent hosts or different mechanisms on a single host, but at different layers of
abstraction. Finally, we discuss the state of the art in provenance analysis.

4.1 Whole-system provenance capture

Early whole-system provenance capture systems, such as PASS [38], implemented
OS-level provenance capture via system call interception and extensive, manual,
and non-portable instrumentation of an existing operating system. This archi-
tecture suffered from two serious problems. First, it was unmaintainable; each
new operating system release required hundreds of person hours of porting ef-
fort, and in practice, PASS died as the version of Linux on which it was based
aged. Second, the fundamental architecture of system call interception is prone
to security vulnerabilities relating to concurrency issues [20/58].

Hi-Fi [49] provided a better approach that relied on the reference monitor
implementation in Linux: the Linux Security Module framework (LSM) [60).
Using the reference monitor—a security construct that mediates the interactions
between all applications and other objects within an operating system [2]—
provides increased confidence in the quality of the provenance data captured.

CamFlow built upon Hi-Fi and PASS to provide a practical and maintain-
able implementation of the reference monitor approach. CamFlow modularized
provenance-capture, isolating it from the rest of the kernel to reduce mainte-
nance engineering cost [42]. While PASS and Hi-Fi where one-off efforts, Cam-
Flow has been actively maintained since 2015, has been upgraded consistently
and easily with new Linux versions, and is used in several research projects. Both
Hi-Fi and CamFlow use LSM, for which mediation completeness has been dis-
cussed [I5/T92TI30]. Pasquier et al. elaborate on how these mediation guarantees
relate to provenance completeness [43]. Further, CamFlow represents temporal
relationships directly in the graph structure, rather than through metadata, im-
proving computational performance and easing data analysis [43].

USerspace [ oot atom

kernelspace

VES

LSM

kernel objects

Fig. 4. Capturing provenance via the LSM framework.



From Here to Provtopia 9

shows how all interactions between processes and kernel objects (e.g.,
files, sockets, pipes or other processes) are mediated by the LSM framework.
Details of the CamFlow implementation appear in prior work [10/42/46].

4.2 Integration of Capture Mechanisms

CamFlow neatly integrates with semantically rich information from applications
in two ways. First, records from existing provenance capture mechanisms such as:
“big data” analytics frameworks [29], Data Science programming languages [33],
network communication [62], and databases [I3] can simply inject provenance
records into the provenance stream [42]. Second, as discussed in[§ 3.3] CamFlow
can incorporate application log records into its provenance stream. It connects a
log event to the node representing the precise version of the thread of execution
that generated it. It is then possible to correlate the surrounding graph struc-
ture to log content, enriching the system-level provenance with application-level
semantics [42].

It is also possible to integrate CamFlow provenance from multiple hosts. Just
as CamFlow allows applications to inject provenance records into the provenance
stream, it can transmit its own system level provenance to the messaging mid-
dleware, enabling a single machine to coalesce provenance from multiple hosts.
CamFlow identifies causal connections between the different hosts by analyzing
the nodes representing network packets between them. This approach provides a
relatively simple way to build and analyze provenance graphs that represent the
execution of a distributed system [42]. We envision such a deployment within a
single organization’s data center. When traffic flows across multiple networks,
packet labeling techniques can retain the provenance relationships (see [5]).

Summarizing the state of the art, capture mechanisms exist, they are effi-
cient both in execution time, and storage requirements (via selective capture and
storage), and system level provenance provides an easy way for them to inter-
operate, without requiring changes to existing infrastructure. Research-quality
prototypes of all these systems exist; the only missing piece is a compelling
application that convinces organizations to adopt the approach.

4.3 Provenance analysis

Early provenance capture systems assumed that provenance data must be stored
and then analyzed later. This architecture introduces a significant delay between
provenance capture and analysis, precluding real time applications that can pre-
vent data movement. However, through careful design of the provenance data and
graph structures, we have demonstrated that efficient runtime analysis of prove-
nance is possible [43]. As noted in high-speed provenance analysis creates
the opportunity for enforcement in addition to detection. The ability to decouple
storage from analysis opens up new opportunities in the design of provenance
storage as it can be removed from the critical path both of the system being
monitored and the applications monitoring it.
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5 From Vision to Reality

In this section we discuss areas of research into provenance systems that will
support the achievement of our vision.

Machine Learning and data analytics: While provenance can be tracked
within data analytics frameworks [29], understanding overall information flow
is challenging when using algorithms that combine large amounts of data in
relatively opaque ways. For example, it has been demonstrated that membership
within a training dataset can be inferred from ML models [50]. Should this risk
be presented to end-users? Are such dependencies still understandable across
long chains of transformations? The interrelations between complex analytical
techniques and data tracking need to be more thoroughly investigated.
Securing provenance: Provenance security is fundamental to its use in almost
all applications. Provenance security encompasses confidentiality, integrity, un-
forgeability, non-repudiation and availability. Securing provenance is particularly
difficult as the stakeholder interested in auditing a particular application may
differ from those administrating or using the application. Further, provenance
and the data it describes may have different security requirements [7]. For exam-
ple, in a conference review scenario, the reviews (the data) should be available
to authors, but the provenance of those reviews (the reviewers) should not. Con-
versely, we may be allowed to know the authors of a confidential report (parts
of its provenance), while we may not have access to the contents of the report
(the data).

Techniques exist to verify that the provenance chain has not been broken [25],
and we can use hardware root of trust techniques, such as TPM [3] or vIPM [48],
and remote attestation techniques [14122] to verify the integrity of the kernel
containing the provenance capture mechanism and the user space elements that
manage and capture provenance data [5]. While prior work has shown that LSM
mediates all flows in the kernel, there is no proof that any capture mechanism
correctly and completely captures the provenance.

Storing provenance for post-hoc analysis: Recording the entire provenance
graph of the execution of large distributed systems remains a significant chal-
lenge. Moyer et al. show that even a relatively modest distributed system could
generate several thousand graph elements per second per machine [36]. Rela-
tively quickly, this means handling graphs containing billions of nodes. Several
options exist to reduce graph size, such as identifying and tracking only sensitive
data objects [4/45] or performing property-preserving graph compression [27]. We
have demonstrated that runtime provenance processing can be used to extract
critical information [43], but this might not be sufficient to support some prove-
nance needs. To our knowledge no deployment at scale has yet been attempted
to demonstrate the practicality of such provenance storage approaches.

Provenance Reduction: Generating high-level execution representations (see
figures and |3|) from low-level provenance capture at the system or language
level requires that provenance be trimmed and summarized. A common tech-
nique that is applied is to identify meaningful repeating patterns that can be
aggregated in a single node representing a set of actions [32]. Such summarization
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eases the conversion to graphical representations such as Summarization
may also reduce storage needs. However, potential data-loss needs to be consid-
ered carefully as important information for forensic investigations may be lost.
Provenance across administrative domains: Managing and using prove-
nance across administrative domains introduces myriad problems, including 1)
semantic interoperability, 2) transmitting (trustworthy) provenance across do-
mains, 3) long term provenance archival and access. Although provenance stan-
dards exist [0], they are too general to support most applications. This is a vital
area of investigation to build a practical deployable solution that reaches beyond
a single organization.

6 Conclusion

We have introduced Provtopia—a world in which the path from data to in-
formation is annotated so as to effect its careful management and curation. In
Provtopia, users have clear visibility of, and control over the use of their data
by commercial organizations and government agencies. Those organizations are
confident that their distributed systems comply with data handling regulation.

Despite seeming far-fetched, Provtopia is more attainable than you might
expect. The provenance technologies required are emerging rapidly from many
research projects, today. We provide an overview of the technologies that we and
others have developed that help support this vision and highlight a number of
key research challenges that remain to be addressed.
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