Check for
Updates

CHERI-picking: Leveraging capability hardware for
prefetching

Shaurya Patel
University of British Columbia

Alexandra Fedorova
University of British Columbia

Abstract

DRAM now accounts for over 30% of overall datacenter ex-
pense [30], due to its increasing cost and decreasing scal-
ing. [19, 22] . As applications demand more memory, opera-
tors look for cost-effective solutions to handle these increas-
ing requirements.

One way to address the problem is to use disaggregated or
far memory [18, 23, 25, 30]. Far memory solutions have an
access latency approximately an order of magnitude slower
than DRAM, thus, accurate memory page prefetching is crit-
ical. Important applications show pointer-chasing behavior,
and existing prefetchers struggle to effectively predict these
patterns. We find that 35-78% of page faults for benchmarks
we analyzed are due to pointer accesses, but the default ker-
nel prefetcher is ineffective for these patterns.

We introduce a new generalized kernel pointer prefetcher
using CHERI: Capability Hardware Enhanced RISC Instruc-
tions [32]. Our approach, called CHERI-picking, leverages
CHERI pointer capabilities to identify locations that contain
pointers and prefetch the pages those pointers reference,
subject to a policy. CHERI-picking does not require changes
to applications, profiling, or offline analysis.

We implement CHERI-picking in CheriBSD and evaluate
it using benchmarks. Our results show that CHERI-picking
is effective where traditional kernel prefetchers are not, indi-
cating the promise of this approach. We also show the over-
heads of discovering pointers and discuss blocking faults
(faults that are prefetched but still in transit when the ap-
plication accesses them) that currently stand in the way of
adopting CHERI-picking. We discuss potential avenues to
address these challenges.

ACM Reference Format:
Shaurya Patel, Sidharth Agrawal, Alexandra Fedorova, and Margo
Seltzer. 2023. CHERI-picking: Leveraging capability hardware for

This work is licensed under a Creative Commons Attribution International
4.0 License.

PLOS ’23, October 23, 2023, Koblenz, Germany

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0404-8/23/10.

https://doi.org/10.1 145/3623759.3624553

58

Sidharth Agrawal
University of British Columbia

Margo Seltzer
University of British Columbia

prefetching. In 12th Workshop on Programming Languages and Op-
erating Systems (PLOS ’23), October 23, 2023, Koblenz, Germany.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3623759.
3624553

1 Introduction

Increasing memory requirements for applications, e.g., ma-
chine learning, coupled with the slowdown of DRAM scal-
ing [19, 22], makes DRAM one of the costliest components
in data centers, constituting as much as 30% of the entire
cost [30]. To accommodate increasing application memory
demands without breaking the bank, operators often resort
to far memory or memory disaggregation [3, 4, 13, 18, 25—
27, 34]. Far memory incorporates additional tiers of slower
memory, such as NVM, SSDs, or software-based approaches,
e.g., compressed swap [2, 18, 30]. These tiers store memory
pages that are less frequently accessed, freeing up costly
DRAM for hot data.

There are various approaches to accessing far memory,
such as application transparent approaches that use the swap
subsystem [3, 4, 18, 27, 30] or accessing far memory from
userspace [23, 25]. Regardless of the approach, accurate evic-
tion and prefetching policies are essential to maintain ap-
plication performance in the presence of far memory. Leap
demonstrated that effective memory page prefetching in the
kernel increases application performance by up to 10x [3].
Kernel prefetchers similar to Leap rely on information col-
lected during page faults to accurately predict strided ac-
cesses [3, 9, 15]. However, these prefetchers are ineffective
at predicting irregular memory access patterns.

Prior work reports that memory accesses in high-level lan-
guages are predominantly reference-based and irregular [27].
A reference or pointer-based pattern is common in pointer-
chasing workloads, where the pointer’s value is crucial for
predicting the memory access pattern. Pointer prefetchers
have the ability to predict such patterns. For instance, during
a linked-list traversal, a pointer prefetcher can prefetch the
value of the next pointer. Recent systems introduced support
in the kernel for application-level prefetching, with a specific
focus on pointer prefetching [27, 34]. In both approaches,
the kernel prefetches memory pages based on requests from
application-level prefetchers. These systems produced up to
2% better performance in Redis [34] or 25% improvement in
cache hits for Spark [27].

https://orcid.org/0009-0000-6759-1069
https://orcid.org/0000-0003-3194-6037
https://orcid.org/0000-0001-6805-7300
https://orcid.org/0000-0002-2165-4658
https://doi.org/10.1145/3623759.3624553
https://doi.org/10.1145/3623759.3624553
https://doi.org/10.1145/3623759.3624553
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3623759.3624553&domain=pdf&date_stamp=2023-10-23

PLOS ’23, October 23, 2023, Koblenz, Germany

While prior work is encouraging, their implementations
are limited to specific language runtimes [27] or specific
applications [34]. Moreover, these approaches require that
application developers implement non-trivial application-
level prefetchers correctly. These approaches also require
kernel support to allow prefetch requests from userspace. We
address these shortcomings with a generalized kernel pointer
prefetcher called CHERI-picking. CHERI-picking leverages
hardware capabilities [32] in an application-agnostic man-
ner. The key insight is that CHERI [32] treats all pointers
as capabilities or fat pointers. The hardware manages the
tag metadata that indicates which memory words contain
pointers. The kernel can query the tag metadata to identify
pointers stored in memory without application support. We
design CHERI-picking using this insight and demonstrate
how pointer prefetching can be implemented in the kernel
and eventually replace application-specific implementations.
Specifically, we address the following key questions:

e How can the availability of hardware capabilities in
CHERI be used to design a pointer prefetcher; what are the
challenges of using this approach?

e What fraction of page faults that applications experience
are due to pointer accesses?

e What fraction of pointer page accesses does the default
Linux prefetcher [15] successfully prefetch?

To understand how to use CHERI capabilities for prefetch-
ing, we present a prototype prefetcher implemented in
CheriBSD [11].

By utilizing CHERI capabilities, CHERI-picking can iden-
tify pointers to make prefetching decisions. Similar to ex-
isting prefetchers, CHERI-picking runs at page fault time
allowing it to consider spatio-temporal locality, as pointers
on a currently faulted page are likely to be accessed in the
near future. Unlike prior work, CHERI-picking is application-
agnostic. To understand the applications that are suitable
targets, we use dynamic analysis to analyze applications and
quantify the potential of pointer prefetchers. We evaluate
the CHERI-picking prototype using microbenchmarks and
show that CHERI-picking can increase cache hits by 3.7x.
But, using it for real workloads still remains challenging, due
to its runtime overheads. We discuss potential avenues to
address these overheads.

2 Background and Related work
2.1 CHERI

CHERI [28, 32] is an ISA extension that adds new architec-
tural features to enable fine-grained memory protection. It
complements the page-based access protection model that
the MMU provides. Each pointer in CHERI is a 129-bit CHERI
capability with a memory address in the lower 64 bits and
other information, such as allowed permissions and range in
the next higher 64 bits. To ensure that capabilities cannot be
tampered with, the architecture also stores an additional tag

59

Patel, et al.

bit (129" bit) in separate tag memory, which indicates that
the memory address contains a capability. If an instruction
tries to increase the bounds of the capability or extend its
permissions, the tag bit is cleared, thus invalidating the capa-
bility. When a memory address is accessed via capability, the
CPU allows access only if the capability is valid and has the
right permissions. In "purecap" compilation mode [29], every
pointer of an application is treated as a capability, giving
the hardware fine-grained information about what memory
ranges the application can access. The CHERI instruction set
also provides an instruction to read the tag bit, which makes
it possible to identify pointers stored in memory. This in-
struction was used by Cornucopia [31] and CHERIvoke [33]
to prevent temporal memory bugs (such as use after free)
by scanning the process heap for pointers, i.e., capabilities,
at runtime. In contrast, we use this instruction to detect
addresses to prefetch.

CheriBSD [11] is a port of the FreeBSD operating system to
CHERI-enabled hardware. For an operating system to run on
CHERI and to provide CHERI capabilities to its userspace, the
port had to change exception handling, process loading, and
the swap subsystem. We focus only on the swap subsystem
modifications made in CheriBSD. When a memory page is
swapped out, it might contain CHERI capabilities (pointers),
so CheriBSD saves those tag bits. It then restores those tag
bits when the page is swapped back in. This added overhead
due to saving and restoring the tag bits is an unavoidable
overhead of using CHERL

2.2 Page prefetching

Page prefetchers are used in most modern operating systems
to reduce the latency of page access from swap. Traditional
algorithms prefetch based on sequential access to virtual ad-
dresses [9, 15] and are successful at fetching spatially related
pages. Leap [3] improved traditional prefetching using ma-
jority trend detection to identify strided patterns; this makes
Leap resilient to short-term irregularities in the memory ac-
cess stream. Leap improved performance for many applica-
tions but cannot prefetch irregular accesses. Memliner [26]
coordinates memory accesses from the garbage collector
(GC) and an application such that GC accesses don’t inter-
fere with the application’s access history. This technique
increases the efficiency of Leap. We focus on prefetching
pointer-chasing patterns, which are usually irregular.

Prior work [27, 34] addressed Leap’s shortcomings to vary-
ing degrees. Canvas [27] introduced a new mechanism to 1)
isolate the swap subsystem and the memory access histories
of threads inside the kernel. and 2) issue an upcall to the
application-specific prefetcher if the default prefetcher [15]
cannot decide which pages to prefetch. The prefetcher runs
in the JVM for Java applications and can prefetch pointer-
chasing patterns. We focus on prefetching pointers in the

CHERI-picking: Leveraging capability hardware for prefetching

general case without changing the language runtime. Di-
LOS [34] introduced a libOS-based approach to disaggre-
gated memory that allows the system to perform application-
level prefetching without the overhead of upcalls. Using an
application-level prefetcher for Redis, DiLOS improves the
performance of the kernel prefetcher in prefetching pointer-
chasing workloads. CHERI-picking focuses on generalizing
such application level approaches.

3 Motivating study

To investigate which applications encounter pointer-based
page faults, we developed a tool that analyzes a dynamic
trace of register loads and page faults. We classify page faults
into pointer-based and non-pointer-based and evaluate the
performance of the default kernel prefetcher [15]. Prior work
performed a similar analysis to determine whether pointer
chasing causes cache misses [14]. However, the existence of
pointer-chasing based cache misses does not guarantee the
presence of pointer-based page faults. For example, cache
misses within a page do not cause page faults; only cache
misses across pages might cause them. Furthermore, page
faults occur only when the application accesses swapped-out
data.

3.1 Analyzer design

Our analyzer merges two traces: a dynamic trace of all values
loaded into registers and a trace of page fault addresses. A
pointer is simply a memory location containing an address;
without type information, it is impossible to distinguish a
pointer from a non-pointer. So, we borrow from prior work
on cache prefetching [14] to analyze dynamic application ex-
ecution trace. If a value is loaded into a register from memory
and is then used as an address or in an address computation,
we consider it to be a pointer-based access. For example, con-
sider the linked list traversal and its corresponding assembly
shown in Listing 1. The value of curr stored on the stack, is
first loaded into register rax (Line 2) and subsequently ac-
cessed to load curr->next from memory (Line 3). We classify
this as a pointer-based access because the value of curr was
initially loaded into a register and subsequently used as an
address. If the access to curr caused a page fault, we classify
that page fault as a pointer-based page fault.

1| ;curr = curr->next;

2 | mov -0x600028(%rbp),%rax;load address of curr to rax
3| mov @xffo(%rax),%rax;load the value of the curr->next
1 | mov %rax,-0x600028(%rbp);store the loaded value

Listing 1. x86 Assembly for traversal

3.2 Analyzer implementation

We collect the dynamic trace of all values loaded into regis-
ters using Intel PIN (v3.26) [21] and the page fault trace using
perf [1] on Linux (v5.19). We run the analysis on Linux due
to the availability of Intel PIN and perf, but we expect the

60

PLOS ’23, October 23, 2023, Koblenz, Germany

Workload Source WSS
Array streaming Microbenchmark 50%
Random linked list traversal (LL) Microbenchmark 50%
Canneal Parsec [8] 50%
xHPCG HPCG [12] 50%
BFS on twitter dataset [17] GapBS [7] 25%
Redis benchmark LRANGE Redis [24] 25%

Table 1. Workloads used for analysis. They represent a di-
verse spectrum of pointer-based fault intensity as shown
in Fig. 1. WSS is the working set size in RAM

v 100
=
=}
& g0
Q
jo)) /
&L 60
=
g
£ 40
<)
o
« 20
S)
S B 7
array LL canneal bfs xhpcg redis

Figure 1. Percentage of pointer-based page faults for differ-
ent workloads

100
80

60 =3 Prefetched

E=A Not Prefetched
40

20

LL canneal bfs redis
Figure 2. Accuracy of the kernel prefetcher on pointer-based
page faults.

analysis approach to generalize across platforms. We gather
these traces during one program execution. We merge the
two traces using timestamps and process them in sequen-
tial order. The analyzer maintains two data structures; the
current state of the execution in a registers-to-value map
and a set of loaded values. Once all the registers containing
a particular value are overwritten, we remove the original
value from the loaded values set. When a page fault occurs,
the analyzer checks if the page address was loaded into a
register by checking the currently loaded values set and then
classifies the page fault as pointer-based if it is present. The
analyzer can analyze traces in both offline and streaming
mode.

PLOS ’23, October 23, 2023, Koblenz, Germany

3.3 Pointer-based page faults

We analyzed different benchmarks (Tab. 1). In order to eval-
uate the potential of CHERI-picking in ideally suited work-
loads, we looked for benchmarks that demonstrate pointer-
chasing behavior. We chose benchmarks based on prior
work [6, 34] having identified that they would benefit from
pointer prefetching: Parsec’s canneal [8], xHPCG [12] and
Redis [24]. To have confidence in the validity of our tool,
we also designed a linked list traversal microbenchmark,
which dynamically allocated page-sized nodes and ordered
them randomly to render the kernel prefetcher ineffective.
For the array traversal microbenchmark, we allocated an
array and streamed it sequentially twice. To focus on page
fault behavior, we constrained the program’s memory using
cgroups [20].

Fig. 1 presents our results. As we expect, a majority of the
faults in the linked list microbenchmark are pointer-based,
while none of the faults in the array streaming benchmark
are. Unsurprisingly, pointer-based page fault rates vary in
other workloads, ranging from about 30% for xHPCG to
almost 100% for canneal. Canneal accesses elements by in-
dexing into two lists of pointers, so we expect it to have
a majority of pointer-based faults. The xHPCG benchmark
maintains sparse vector objects and uses them to perform
computation, leading to a lower percentage of pointer-based
faults. The BFS benchmark performs breadth first search
on a graph, stored in compressed sparse row format. Every
access from a vertex to its children dereferences a pointer.

Our results suggest that some applications can bene-
fit significantly from pointer prefetchers. An ideal pointer
prefetcher should identify applications that can benefit from
pointer prefetching without imposing overhead on applica-
tions that cannot, and achieve high prediction accuracy.

3.4 Performance of default kernel prefetcher on
pointer-based page faults

The default kernel prefetchers detect sequential and strided
accesses, make decisions quickly, and add little latency to
the page fault path. Therefore pointer prefetchers should
focus only on applications where the kernel prefetcher is
ineffective. Figure 2 illustrates the accuracy of the default
kernel prefetcher [15] on page faults that were classified
as pointer-based. As expected, the results show that kernel
prefetcher performance also varies, thus pointer prefetchers
should be used to predict only those page faults that the
default prefetcher misses. In the case of the linked list traver-
sal, the kernel prefetcher predicts approximately 50% of the
pointer faults because the benchmark contains two loops;
the first loop accesses the linked list nodes in the allocation
order, while the second loop accesses them in random order.
Accessing items in allocation order tends to produce a se-
quential access pattern that the default prefetcher handles
well; accessing items in a random order produces an arbitrary

61

Patel, et al.

Check swap
device

CHERI-
picking

Figure 3. CheriBSD swap workflow. CHERI-picking is in-
voked after the I/O request is completed.

pattern, so the default prefetcher fails. Surprisingly, although
78% of page faults for BFS [7] are classified as pointer-based,
the kernel prefetcher successfully predicts 65%, likely due
to the compressed representation, which frequently places
many child nodes on the same page. These applications leave
limited room for improving prefetcher performance. In con-
trast, the kernel prefetcher predicts only about 8% of the
pointer-based faults in Redis, indicating significant poten-
tial. These findings emphasize that identifying applications
where the default kernel prefetcher is ineffective is a key
part of designing a pointer prefetcher.

4 Design and Implementation

We begin by providing an overview of page fault handling
in CheriBSD [11] to illustrate how CHERI-picking fits into
the existing code. Traditional prefetchers rely on memory
access history, which is accessible at page fault time, whereas
CHERI-picking relies on the contents of memory pages,
which is available only after a page has been swapped in.
This algorithmic difference produces a rather different im-
plementation described in Sec. 4.2.

4.1 CheriBSD swap workflow

Fig. 3 illustrates the high-level design of the CheriBSD swap-
ping workflow; the numbers in this section refer to the figure.
When a page fault occurs (#1), the operating system checks
if the page is already in memory (#2). If it is, CheriBSD maps
the page into the application’s address space and resumes
application execution; this is known as a soft fault.

If the page is not present in memory, the OS must retrieve
the page from swap (in this case, the disk); this is called
a major fault. The page fault dispatches a request to get
pages (#3). While getting the pages, the kernel executes the
default prefetcher to detect sequential accesses (#4). If the
prefetcher detects a pattern, it checks if the requested page
is present in the swap device (#5). If the requested page is
in swap, it prepares for prefetching by allocating physical
frames (#6). It registers a callback for prefetched pages to put
them into appropriate page queues when their I/O requests
are completed (#7). Then it finally issues an I/O request for

CHERI-picking: Leveraging capability hardware for prefetching

the faulting page and any pages to be prefetched (#8). The
swap manager returns after the faulting page is swapped in.

4.2 CHERI-picking policy

CHERI-picking is highly configurable. We begin with an
overview of when CHERI-picking is invoked, a description
of the algorithm, and then discuss some key parameters
available for tuning and future research. CHERI-picking
does not change the CheriBSD page fault path at all. In-
stead, after the callback for the faulting page occurs (#9);
CHERI-picking runs (#10), and according to configuration
parameters, prefetches some pages (#11)

Algo. 1 describes the CHERI-picking algorithm. When the
system swaps in a page, it obtains the kernel address for the
physical page and iterates through its contents (lines 1-3).
For each address, CHERI-picking queries the hardware to
retrieve the tag bit to determine if the address contains a
pointer (line 4). Upon finding a pointer, it confirms that the
page is not already present in memory or prefetched (line
6-7). It then verifies if the corresponding page is present
in swap (line 8). If the page is present in swap it is added
to an asynchronous prefetch queue (line 9), and the swap
manager fetches these pages into main memory. We prefetch
a fixed number of pages, a parameter called prefetch_count
(line 3), which can be tuned. We could limit ourselves to
prefetching a small number of pages, pages whose pointers
reside in certain ranges on the page, or addresses that meet
any desired or learned criteria. CHERI-picking could also
run on soft faults. We leave this kind of policy exploration
for future work (Sec. 6).

Algorithm 1 CHERI-picking algorithm

Require: faulting_page, prefetch_count
1: page_addr < kernel_addr(faulting_page)
2: while page_addr < page_addr + page_size AND

3: count < prefetch_count do
4: is_ptr « cheri_gettag(xpage_addr)
5 if is_ptr then

6: if !'page_in_ram() AND

7 page_prefetched() then
8 if page_in_swap() then
9 get_page_async()

10: count + +

11: end if

12: end if

13: end if

14: page_addr + = sizeof (CHERI_Cap)
15: end while

> 16 bytes

4.3 CHERI-picking design

We chose to implement CHERI-picking as a standalone func-
tion invoked by the callback to isolate our implementation

62

PLOS ’23, October 23, 2023, Koblenz, Germany

during development and evaluation. This has several conse-
quences and suggests directions for future work.

Rather than implementing CHERI-picking in the swap
callback function, one could merge CHERI-picking with the
CheriBSD function swp_pager_meta_cheri_get_tags()
that restores a page’s capabilities [10]. While we have not yet
done that, this will likely reduce CHERI-picking’s runtime
overhead penalty, as discussed in Sec. 5.3.

Recall from Sec. 2 that CHERI’s purecap compilation mode
ensures that every pointer in an application is tagged by the
hardware and treated as a capability. Thus, CHERI-picking
works only on applications compiled in purecap mode.

As currently implemented, CHERI-picking always runs
after the default prefetcher. On one hand, CHERI-picking
detects, and prefetches accesses that the default prefetcher
cannot. On the other hand, sometimes (as we’ll see in the
microbenchmark results in Sec. 5.1), this can disrupt the
performance of the default prefetcher. Better communication
between the default prefetcher and CHERI-picking should
be able to remedy this.

5 Evaluation

We assess CHERI-picking’s performance on key prefetching
metrics by comparing it to the default kernel prefetcher [9].
We use a subset of the workloads we analyzed in Sec. 3.
Specifically, we evaluate: the linked list microbenchmark,
canneal on the native dataset, and BFS on the Wikipedia-
links dataset [16]. We do not further analyze xHPCG as we
saw that it is not pointer dense and has relatively few page
faults (~50k). We also don’t analyze the array traversal bench-
mark as the default prefetcher is expected to be effective. We
leave further analysis of Redis as future work.

We implemented CHERI-picking in the CheriBSD kernel
version 22.12 [11], which delays mapping prefetched pages
until they are accessed, unlike the default CheriBSD kernel,
which proactively maps in prefetched pages. We run eval-
uations on an ARM Morello CHERI-capable processor [5]
that contains 4 cores running at 2.4GHz. We limit memory
so that the working set size of applications is twice that of
the available memory, inducing memory pressure.

We evaluate prefetching performance using the following
metrics:

o Soft faults: These page faults occur when a page is al-
ready in memory, but not mapped into an application’s ad-
dress space; indicating the prefetcher’s prediction capacity.

e Major faults: These page faults occur when the page
is not present in memory and indicate the faults not pre-
dicted by the prefetcher, encompassing mandatory misses
and prefetcher miss predictions.

e Coverage: The percentage of page faults that were satis-
fied by previously prefetched pages.

In Sec. 6, we discuss CHERI-picking performance overhead
and challenges.

PLOS ’23, October 23, 2023, Koblenz, Germany

Patel, et al.

Workload Soft faults (higher is better) | Major faults (lower is better) | Coverage (higher is better)
Default | CP | Change |Default | CP | Change | Default [CP | Change
Linked list sequential | 401K 227K 0.56% 23K 224K 9.3% 94.5% 50.2% 0.53%
Linked list random 11K 236K 21.45% 429K 235K 0.54% 2.07% | 50.12% 24.2x
canneal 953K 3543K 3.7X 13.39M | 14.57M 1.08x 6.47% 19.39% 3%
BFS 149K 204K 1.35% 92K 88K 0.95% 62.01% | 70.27% 1.13X

Table 2. CHERI-picking (CP) improves the number of soft faults on standard benchmarks by up to 3.7x. Values in red indicate
instances where CP performs worse than the default prefetcher.

5.1 Microbenchmark results

We use two different versions of the linked list microbench-
mark from Sec. 3. In one version, we traverse the list in
allocation order, while in the other, we traverse the elements
in random order. We allocate a total of 500k pages (equal to
2GB). When we order the pages in allocation order (sequen-
tial), the default prefetcher proves effective, as demonstrated
in Tab. 2. The default prefetcher’s initial prediction requires
two sequential major faults to detect a sequential pattern.
However, CHERI-picking, which also prefetches pages here
due to pointer-chasing, eliminates the second major fault
and prevents the default prefetcher from detecting the se-
quential pattern. Further, CHERI-picking is worse than the
default prefetcher here, because it prefetches one page at a
time (in the current prototype), while the default prefetcher
could fetch several (minimum 7 pages). This interference
issue could be resolved by combining the two prefetching
algorithms or communicating between them.

When we order the pages randomly, CHERI-picking works
as expected and outperforms the default prefetcher; as we
saw above, it still prefetches only 50% of the faulting pages,
due to its not running at soft fault time. Given the random
order of page accesses, the default prefetcher fails to predict
any of the faults. This scenario can be present in various
pointer-chasing workloads where the data structure’s allo-
cation and access order differ.

5.2 Standard Benchmarks

We next ran the BFS and canneal benchmarks described
in Sec. 3. We set the prefetch_count to four pages for these
tests as analysis indicates that these benchmarks are pointer-
dense.

The default prefetcher predicts 900k faults for the canneal
benchmark, 6.47% of the total page faults. CHERI-picking
predicts 3M faults, covering 19.39%, and improving upon the
default prefetcher by 3x. The canneal benchmark maintains
a list of elements, with each element containing two lists of
pointers to other elements in the elements list. The bench-
mark first randomly indexes into the elements list to select
an element and then traverses through every element in the
two lists within the selected element. The randomness in
indexing the first element makes it challenging to prefetch.

63

However, CHERI-picking can predict the pointers accessed
by the two lists inside the element, leading to an increase in
soft faults and coverage compared to the default prefetcher.

The default prefetcher worked well for BFS, based on the
results from Fig. 2. CHERI-picking improves coverage by
13% over the default prefetcher, demonstrating that pointer
prefetchers can improve coverage for BFS, albeit only by a
small amount.

5.3 CHERI-picking overhead

Currently, CHERI-picking has two major sources of over-
head. First, when we traverse the page looking for pointers,
this adds latency to the page fault. Second, when we don’t
prefetch the page early enough (timeliness), it leads to block-
ing soft faults. The execution time of the sequential linked
list microbenchmark with CHERI-picking is twice that of
the default prefetcher because CHERI-picking adds about
7ps to every page fault (which is clearly unacceptable) and
also disrupts the default kernel prefetcher (Sec. 5.1). The
execution time of the random linked list microbenchmark is
the same for both prefetchers. Even though this is a pointer-
chasing workload, we do not see a performance boost, be-
cause CHERI-picking also causes many blocking soft faults,
which occur when a prefetched page is still in transit from
disk. In part, this is due to the nature of our microbenchmark;
we do not process the nodes on the list at all. In reality, there
will be some processing on each node in the list, which could
mitigate these blocking faults. In canneal, for example, only
13% of soft faults block.

6 Challenges and Future work

Our focus in CHERI-picking was to demonstrate the feasi-
bility of a generalized kernel pointer prefetcher. However,
the prototype is not yet a complete implementation. While
CHERI-picking improves coverage for BFS and canneal, it
does not reduce the number of major faults for canneal; Can-
neal is a pointer-dense benchmark and a challenging one for
CHERI-picking. Each faulted page contains many pointers;
canneal first indexes into a pointer array randomly. If that ac-
cess causes a page fault, CHERI-picking will prefetch 4 pages
that will not be used. In fact, CHERI-picking prefetches 30
million pages, but only about 10% of those are ever accessed.
BFS provides a nice contrast here; although it too is pointer

CHERI-picking: Leveraging capability hardware for prefetching

dense, since we are traversing the entire data structure, ev-
ery pointer prefetched is ultimately accessed. This results
in 5% fewer major faults compared to the default prefetcher.
Optimizing the CHERI-picking policy parameters such as
prefetch_count is critical to reduce thrashing.

There are several avenues of performance optimization
that we intend to investigate to address the overheads of
CHERI-picking. First, we need to add better communica-
tion between the swap system, the default prefetcher, and
CHERI-picking; by re-using swap data structures, we can
optimize the CHERI-picking policy and record sufficient
metadata to prevent CHERI-picking from running for cases
when the default prefetcher is effective. Second, we do not
run CHERI-picking on soft-faulting pages, but doing so asyn-
chronously provides for more aggressive prefetching. Third,
blindly prefetching a fixed number of pages on every faulted-
in page is unlikely to be a good strategy; we need to explore
how to better identify the right pointers to prefetch. Fourth,
optimizing the I/O requests that CHERI-picking issues is es-
sential; along with examining CHERI-picking performance
on other swap backends such as RDMA. The overhead of
scanning pages might be a bottleneck for faster swap back-
ends such as CXL-attached memory or RDMA. To maintain
performance in these scenarios, investigating techniques
such as asynchronous execution of the CHERI-picking algo-
rithm will be critical. Additionally, potential future hardware
optimizations such as scanning the tags in hardware while
copying a page can help remove the overhead.

7 Conclusion

CHERI-picking represents an initial step towards integrating
application-specific prefetchers in the kernel. Our analy-
sis reveals that both applications and benchmarks exhibit
pointer-chasing patterns that the default kernel prefetcher
fails to predict effectively. Through evaluation, we demon-
strate benchmarks where the kernel prefetcher’s effective-
ness is limited, while CHERI-picking successfully predicts
future accesses. CHERI-picking significantly enhances cov-
erage for two standard benchmarks, improving it by up to a
factor of three. However, much remains to be done to trans-
form our prototype into a practical reality.

Acknowledgments

The authors would like to thank — Robert Watson for access
to Morello hardware; George Neville-Neil, Jessica Clarke,
Brooke Davis, John Baldwin, and Mark Johnston for their
help with CheriBSD; Reto Achermann, Joel Nider, and the
anonymous reviewers of PLOS for their feedback on the
draft. We acknowledge the support of the Natural Sciences
and Engineering Research Council of Canada (NSERC).

64

PLOS ’23, October 23, 2023, Koblenz, Germany

References

[1] 2000. Linux perf probe. https://man7.org/linux/man-pages/man1/perf-
probe.1.html
2008. zswap — The Linux Kernel documentation. https://www.kernel.
org/doc/html/v4.18/vm/zswap.html
Hasan Al Maruf and Mosharaf Chowdhury. 2020. Effectively Prefetch-
ing Remote Memory with Leap. In Proceedings of the 2020 USENLX
Conference on Usenix Annual Technical Conference (USENIX ATC 20).
USENIX Association, USA, Article 58, 15 pages.
Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy
Ousterhout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy,
and Scott Shenker. 2020. Can Far Memory Improve Job Through-
put?. In Proceedings of the Fifteenth European Conference on Computer
Systems (Heraklion, Greece) (EuroSys °20). Association for Comput-
ing Machinery, New York, NY, USA, Article 14, 16 pages. https:
//doi.org/10.1145/3342195.3387522
ARM. 2022. Morello Program - ARM.
architecture/cpu/morello
Grant Ayers, Heiner Litz, Christos Kozyrakis, and Parthasarathy Ran-
ganathan. 2020. Classifying Memory Access Patterns for Prefetching.
In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS °20). Association for Computing
Machinery, New York, NY, USA, 513-526. https://doi.org/10.1145/
3373376.3378498
Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The
GAP Benchmark Suite. CoRR abs/1508.03619 (2015). arXiv:1508.03619
http://arxiv.org/abs/1508.03619
Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D.
Dissertation. Princeton University.
CheriBSD. 2023. CheriBSD prefetcher. https://github.com/CTSRD-
CHERI/cheribsd/blob/565ae56372dec95ac74e3cc3f5130ada41a80b05/
sys/vm/vm_fault.c#L862
CheriBSD. 2023. Swap pager. https://github.com/CTSRD-
CHERI/cheribsd/blob/565ae56372dec95ac74e3cc3f5130adad1a80b05/
sys/vm/swap_pager.c#L529
Brooks Davis, Robert N. M. Watson, Alexander Richardson, Peter G.
Neumann, Simon W. Moore, John Baldwin, David Chisnall, Jessica
Clarke, Nathaniel Wesley Filardo, Khilan Gudka, Alexandre Joannou,
Ben Laurie, A. Theodore Markettos, J. Edward Maste, Alfredo Mazz-
inghi, Edward Tomasz Napierala, Robert M. Norton, Michael Roe, Peter
Sewell, Stacey Son, and Jonathan Woodruff. 2019. CheriABI: Enforc-
ing Valid Pointer Provenance and Minimizing Pointer Privilege in the
POSIX C Run-Time Environment. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19).
Association for Computing Machinery, New York, NY, USA, 379-393.
https://doi.org/10.1145/3297858.3304042
[12] Jack Dongarra, Michael A. Heroux, and Piotr Luszczek. 2016.
A new metric for ranking high-performance computing systems.
National Science Review 3, 1 (01 2016), 30-35. https://doi.
org/10.1093/nsr/nwv084 arXiv:https://academic.oup.com/nsr/article-
pdf/3/1/30/31565532/nwv084.pdf
[13] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G. Shin. 2017. Efficient Memory Disaggregation with
Infiniswap. In 14th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 17). USENIX Association, Boston,
MA, 649-667. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/gu
M. Karlsson, F. Dahlgren, and P. Stenstrom. 2000. A prefetching tech-
nique for irregular accesses to linked data structures. In Proceedings
Sixth International Symposium on High-Performance Computer Archi-
tecture. HPCA-6 (Cat. No.PR00550). 206-217. https://doi.org/10.1109/
HPCA.2000.824351

[2

—

E

—

[4

[l

(5

—

https://www.arm.com/

(6

—

[7

—

8

—

[9

—

[10]

[11]

[14]

https://man7.org/linux/man-pages/man1/perf-probe.1.html
https://man7.org/linux/man-pages/man1/perf-probe.1.html
https://www.kernel.org/doc/html/v4.18/vm/zswap.html
https://www.kernel.org/doc/html/v4.18/vm/zswap.html
https://doi.org/10.1145/3342195.3387522
https://doi.org/10.1145/3342195.3387522
https://www.arm.com/architecture/cpu/morello
https://www.arm.com/architecture/cpu/morello
https://doi.org/10.1145/3373376.3378498
https://doi.org/10.1145/3373376.3378498
https://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
https://github.com/CTSRD-CHERI/cheribsd/blob/565ae56372dec95ac74e3cc3f5130ada41a80b05/sys/vm/vm_fault.c#L862
https://github.com/CTSRD-CHERI/cheribsd/blob/565ae56372dec95ac74e3cc3f5130ada41a80b05/sys/vm/vm_fault.c#L862
https://github.com/CTSRD-CHERI/cheribsd/blob/565ae56372dec95ac74e3cc3f5130ada41a80b05/sys/vm/vm_fault.c#L862
https://github.com/CTSRD-CHERI/cheribsd/blob/565ae56372dec95ac74e3cc3f5130ada41a80b05/sys/vm/swap_pager.c#L529
https://github.com/CTSRD-CHERI/cheribsd/blob/565ae56372dec95ac74e3cc3f5130ada41a80b05/sys/vm/swap_pager.c#L529
https://github.com/CTSRD-CHERI/cheribsd/blob/565ae56372dec95ac74e3cc3f5130ada41a80b05/sys/vm/swap_pager.c#L529
https://doi.org/10.1145/3297858.3304042
https://doi.org/10.1093/nsr/nwv084
https://doi.org/10.1093/nsr/nwv084
https://arxiv.org/abs/https://academic.oup.com/nsr/article-pdf/3/1/30/31565532/nwv084.pdf
https://arxiv.org/abs/https://academic.oup.com/nsr/article-pdf/3/1/30/31565532/nwv084.pdf
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://doi.org/10.1109/HPCA.2000.824351
https://doi.org/10.1109/HPCA.2000.824351

PLOS ’23, October 23, 2023, Koblenz, Germany

(15]

(16]

(17]

[18

—

(19]

[20

[t

[21

—

[22

—

(23]

—
[
Ny

fla

[25

[’

[26]

(27]

[28

—

[29]

Linux kernel. 2017. Linux Kernel VMA readahead prefetcher. https:
//lwn.net/Articles/716296/

Jérome Kunegis. 2013. KONECT: The Koblenz Network Collection.
In Proceedings of the 22nd International Conference on World Wide
Web (Rio de Janeiro, Brazil) (WWW ’13 Companion). Association for
Computing Machinery, New York, NY, USA, 1343-1350. https://doi.
org/10.1145/2487788.2488173

Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.
What is Twitter, a Social Network or a News Media? (WWW ’10).
Association for Computing Machinery, New York, NY, USA, 591-600.
https://doi.org/10.1145/1772690.1772751

Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal,
Radoslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule,
Nan Deng, Junaid Shahid, Greg Thelen, Kamil Adam Yurtsever, Yu
Zhao, and Parthasarathy Ranganathan. 2019. Software-defined far
memory in warehouse-scale computers. In International Conference
on Architectural Support for Programming Languages and Operating
Systems. http://doi.acm.org/10.1145/3297858.3304053

Seok-Hee Lee. 2016. Technology scaling challenges and opportunities
of memory devices. In 2016 IEEE International Electron Devices Meeting
(IEDM). 1.1.1-1.1.8. https://doi.org/10.1109/IEDM.2016.7838026
Linux. 2008. Control Group -V2. https://www.kernel.org/doc/html/
latest/admin-guide/cgroup-v2.html

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. 2005. Pin: Building Customized Program Analysis Tools with Dy-
namic Instrumentation. In Proceedings of the 2005 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (Chicago,
IL, USA) (PLDI ’05). Association for Computing Machinery, New York,
NY, USA, 190-200. https://doi.org/10.1145/1065010.1065034

Chris A. Mack. 2011. Fifty Years of Moore’s Law. IEEE Transactions on
Semiconductor Manufacturing 24, 2 (2011), 202-207. https://doi.org/10.
1109/TSM.2010.2096437

Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon
Peter. 2021. HeMem: Scalable Tiered Memory Management for Big
Data Applications and Real NVM. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles (Virtual Event, Ger-
many) (SOSP ’21). Association for Computing Machinery, New York,
NY, USA, 392-407. https://doi.org/10.1145/3477132.3483550

Redis. 2023. Redis | Real-time Data Platform. https://redis.com/
Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam
Belay. 2020. AIFM: High-Performance, Application-Integrated Far
Memory. In 14th USENLX Symposium on Operating Systems Design
and Implementation (OSDI 20). USENIX Association, 315-332. https:
//www.usenix.org/conference/osdi20/presentation/ruan

Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao, Jonathan Eyolfson,
Christian Navasca, Shan Lu, and Guoqing Harry Xu. 2022. MemLiner:
Lining up Tracing and Application for a Far-Memory-Friendly Run-
time. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22). USENIX Association, Carlsbad, CA, 35-53.
https://www.usenix.org/conference/osdi22/presentation/wang
Chenxi Wang, Yifan Qiao, Haoran Ma, Shi Liu, Yiying Zhang, Wen-
guang Chen, Ravi Netravali, Miryung Kim, and Guoging Harry Xu.
2022. Canvas: Isolated and Adaptive Swapping for Multi-Applications
on Remote Memory. https://doi.org/10.48550/ARXIV.2203.09615
Robert NM Watson, Simon W Moore, Peter Sewell, and Peter G Neu-
mann. 2019. An introduction to CHERI. Technical Report. University
of Cambridge, Computer Laboratory.

Robert N. M. Watson, Alexander Richardson, Brooks Davis, John
Baldwin, David Chisnall, Jessica Clarke, Nathaniel Filardo, Simon W.
Moore, Edward Napierala, Peter Sewell, and Peter G. Neumann. 2020.
CHERI C/C++ Programming Guide. Technical Report UCAM-CL-
TR-947. University of Cambridge, Computer Laboratory. https:
//doi.org/10.48456/tr-947

65

[30]

[31]

[32]

[33]

[34]

Patel, et al.

Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao
Wang, Blaise Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain,
Chungiang Tang, and Dimitrios Skarlatos. 2022. TMO: Transparent
Memory Offloading in Datacenters. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS
2022). Association for Computing Machinery, New York, NY, USA,
609-621. https://doi.org/10.1145/3503222.3507731

Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff,
Sam Ainsworth, Lucian Paul-Trifu, Brooks Davis, Hongyan Xia,
Edward Tomasz Napierala, Alexander Richardson, John Baldwin,
David Chisnall, Jessica Clarke, Khilan Gudka, Alexandre Joannou, A.
Theodore Markettos, Alfredo Mazzinghi, Robert M. Norton, Michael
Roe, Peter Sewell, Stacey Son, Timothy M. Jones, Simon W. Moore,
Peter G. Neumann, and Robert N. M. Watson. 2020. Cornucopia: Tem-
poral Safety for CHERI Heaps. In 2020 IEEE Symposium on Security
and Privacy (SP). 608-625. https://doi.org/10.1109/SP40000.2020.00098
Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert Norton, and Michael Roe. 2014. The CHERI Capability
Model: Revisiting RISC in an Age of Risk. In Proceeding of the 41st An-
nual International Symposium on Computer Architecuture (Minneapolis,
Minnesota, USA) (ISCA ’14). IEEE Press, 457-468.

Hongyan Xia, Jonathan Woodruff, Sam Ainsworth, Nathaniel W. Fi-
lardo, Michael Roe, Alexander Richardson, Peter Rugg, Peter G. Neu-
mann, Simon W. Moore, Robert N. M. Watson, and Timothy M. Jones.
2019. CHERIvoke: Characterising Pointer Revocation Using CHERI
Capabilities for Temporal Memory Safety. In Proceedings of the 52nd An-
nual IEEE/ACM International Symposium on Microarchitecture (Colum-
bus, OH, USA) (MICRO ’52). Association for Computing Machinery,
New York, NY, USA, 545-557. https://doi.org/10.1145/3352460.3358288
Wonsup Yoon, Jinyoung Oh, Jisu Ok, Sue Moon, and Youngjin Kwon.
2021. DiLOS: Adding Performance to Paging-Based Memory Disaggre-
gation. In Proceedings of the 12th ACM SIGOPS Asia-Pacific Workshop
on Systems (Hong Kong, China) (APSys °21). Association for Comput-
ing Machinery, New York, NY, USA, 70-78. https://doi.org/10.1145/
3476886.3477507

https://lwn.net/Articles/716296/
https://lwn.net/Articles/716296/
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/1772690.1772751
http://doi.acm.org/10.1145/3297858.3304053
https://doi.org/10.1109/IEDM.2016.7838026
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1109/TSM.2010.2096437
https://doi.org/10.1109/TSM.2010.2096437
https://doi.org/10.1145/3477132.3483550
https://redis.com/
https://www.usenix.org/conference/osdi20/presentation/ruan
https://www.usenix.org/conference/osdi20/presentation/ruan
https://www.usenix.org/conference/osdi22/presentation/wang
https://doi.org/10.48550/ARXIV.2203.09615
https://doi.org/10.48456/tr-947
https://doi.org/10.48456/tr-947
https://doi.org/10.1145/3503222.3507731
https://doi.org/10.1109/SP40000.2020.00098
https://doi.org/10.1145/3352460.3358288
https://doi.org/10.1145/3476886.3477507
https://doi.org/10.1145/3476886.3477507

	Abstract
	1 Introduction
	2 Background and Related work
	2.1 CHERI
	2.2 Page prefetching

	3 Motivating study
	3.1 Analyzer design
	3.2 Analyzer implementation
	3.3 Pointer-based page faults
	3.4 Performance of default kernel prefetcher on pointer-based page faults

	4 Design and Implementation
	4.1 CheriBSD swap workflow
	4.2 CHERI-picking policy
	4.3 CHERI-picking design

	5 Evaluation
	5.1 Microbenchmark results
	5.2 Standard Benchmarks
	5.3 CHERI-picking overhead

	6 Challenges and Future work
	7 Conclusion
	References

