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Abstract

Graphs are, historically, among the most important and useful abstractions in both theoretical

and applied computer science. However, due to a recent abundance of scientific data, social data,

and machine learning and analysis methods based on graphical models, we are now facing a radical

expansion of graph computing into new research areas. Dozens of graph-structured computing

systems were published in the last decade, and graph theory itself is flourishing due to major results,

such as the graph structure theorem.

This dissertation presents several projects at the intersection of graph-structured systems, graph

theory, and research practice, which are united by the common theme of vertex sort orders. We first

present Sheep, a novel distributed graph partitioning algorithm based on vertex sorting. We show

that Sheep finds balanced edge partitions with a low communication volume in near-linear time

with excellent distributed scaling properties.

Afterwards, we investigate graph systems research practices. We construct a corpus of research

papers and identify the most referenced benchmark algorithms and datasets. We discuss systematic

biases in these benchmarks, and in particular the hidden performance impact of their “default” ver-

tex sort orders. We show this impact is significant by benchmarking a gold standard system, Galois,

while controlling the vertex order.

Finally, we address the role of synthetic data generators in graph systems research. We identify

several features of the popular Kronecker graph model that inhibit its correct use as a standard

benchmark. We propose and evaluate changes to the model to make it an appropriate benchmark.

iii



Thesis advisor: Professor Margo Seltzer Daniel Wyatt Margo

This dissertation shows that a graph’s input shape and the performance of graph-structured sys-

tem are inseparable; that a good graph shape (e.g., a partitioning) can be found as quickly as sorting;

and that, in general, onemust control the input shape to correctly measure a system’s performance.
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1
Introduction

Graphs are a common data representation in all areas of computer science. Important graphical

models include spatial meshes, Bayesian variable networks, neural networks, social networks, dis-

tributed computer networks, and the Web. Naturally, graphs are the subject of many decades of

strong research from different fields with diverse methodologies. However, these ambitions are chal-

lenged by the theoretical and practical reality that it is hard to mine knowledge from graphs.

Questions about graphs that appear simple, such as whether a graph contains a given pattern,

may reveal themselves to be extensive topics spanning four decades of ongoing algorithm research 122.

This has immediate, painful implications for every software engineer who simply wants to build a

query engine on top of graph data. Practically, we need these software tools because raw, unpro-

cessed graph data proves incomprehensible and useless. Sophisticated embedding models are re-
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quired just to visualize small graphs 117; extracting meaning from large networks might accurately be

described as one of the major goals of the 21st century “big data” movement.

At the turn of the millenium and with the inception of the Web it became obvious that we were

on the cusp of an explosion of big graph data. Major works in this period, such as Pagerank97 and

Barabasi and Albert’s preferential attachment model 13, wrestled with this data and helped establish a

research agenda for the following two decades. For system builders who work with graphs, the most

influential idea of the past 6 years is certainly Pregel 85, a distributed model for computing parallel

algorithms on graph-structured data. Pregel’s model was adopted by many dozens of different re-

search systems within a relatively short period of rapid graph systems development. These systems

have matured, and with maturity has come a better understanding of their fundamental problems.

Data bandwidth ॹ a fundamental problem for contemporary graph data processing systems. Graph

algorithm access patterns are, in general, not serial, because a stream of edges may connect to arbi-

trary vertices, and vice versa. If the graph is distributed, then data bandwidth is further throttled by

the network and the widespread use of message passing and consensus mechanisms in contempo-

rary graph systems. Most importantly, both graph serialization and distribution translate directly to

the well-known NP-hard problems of bandwidth minimization and partitioning, respectively. The

consequence of all this is that many graph algorithms and systems are stalled waiting for data. This

phenomenon is often misleadingly described as “random access,” but in practice graphs are quite

structured by e.g., spatial constraints or power laws.

The first contribution of thॹ dissertation ॹ my solution to the data bandwidth problem. I design

and implement a low-communication distributed algorithm to “sort” and partition a graph, and

thereby improve the data bandwidth of later computation stages. My algorithm, Sheep, finds com-

petitive vertex cut-minimizing solutions several orders of magnitude more quickly than the next-

fastest solvers.

During this research I became aware of many subtle issues in the assessment and measurement of
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graph systems’ performance. Consequently, it seemed important to ask whether or not published

systems are correctly measured, and if not, what implications this might have for the research field.

The second contribution of thॹ dissertation ॹ a quantitative metastudy of algorithms and datasets in

graph systems research following Pregel. I identify many systematic errors in published research that

are potentially significant and may have impacted the recent direction of the field. I substantiate this

claim by reevaluating the top algorithms and datasets while properly controlling for these factors.

Much of the error in graph systems research is the result of a crisis in the availability of represen-

tative datasets. Everyone agrees that big graph data is important, but precisely because it is valuable,

no one wants to release it. Privacy concerns introduce legal liabilities, and anonymization proves

to be yet another problem with deep graph-theoretical challenges. Research worsens this situation

by fixating on ten or so famous datasets used in comparative studies, most of which possess unique

features that inhibit generalization.

Most fields are rescued from this quandary by standardized benchmarks with synthetic data gen-

erators. To no one’s surprise, synthetic graph generation also turns out to be a “hard open prob-

lem”79. Whatever the state of the art, my study shows that the overwhelming majority of published

research uses the Kronecker model, a synthetic model with significant and well-documented statis-

tical flaws 110. Nevertheless, the Kronecker model is popular because it can efficiently generate large

graphs in parallel and has convenient parameters. The final contribution of thॹ dissertation ॹ a fix

to the Kronecker generator’s algorithm that corrects its flaws without otherwise disrupting the model’s

desirable benchmark propertiॸ. My revised algorithm is a strict superset of the previous and is there-

fore compatible with the benchmark parameters already circulating in the literature.

In summary, this dissertation shows that:

1. You can sort and partition a graph well and quickly at scale. I describe Sheep, an algorithm

that accomplishes this task.
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2. Youmust experimentally control certain factors, such as vertex sort order, when you conduct

research with graph data. I show the consequences if you do not.

3. Graph systems research suffers from a lack of diversity in benchmark algorithms and espe-

cially datasets. I show this by quantitatively studying the literature.

4. You can generate synthetic benchmark data with all of the conveniences of the Kronecker

model and none of its known flaws. I present an algorithm that accomplishes this.

1.1 Overview

In the following Chapter, I review the research history of graph-structured data processing systems.

I begin with the early history of the field through the 1990s, when spatial and physical graphical

models dominated much of the research literature. I then descibe the explosion of new graphical

models, such as social networks, that grew along with the Internet in the 90s and 2000s. This led

to a new wave of graph processing systems, such as Pregel 85 in 2010, that grew up alongside the “big

data” movement. I compare these systems with their traditional sparse matrix processing counter-

parts and discuss some shared concerns of these diverse systems as they relate to abstract problems

such as graph partitioning and vertex sorting.

In Chapter 3, I present Sheep, a graph preprocessing system that addresses data bandwidth prob-

lems by reordering and partitioning a graph dataset. Sheep is parallelized, efficiently distributed, and

tries to efficiently solve the partition problemॷ quickly ॷ possible in order to scale to large datasets.

I briefly survey the research literature of competing partitioners and reorderers in Section 3.2. In

Section 3.3 I first review graph terminology and important concepts, and then explain a simplified

serial version of my partitioning algorithm in reference to those concepts. I show that the quality

of Sheep’s result is loosely bounded in terms of its communication volume, which is a standard par-

titioning metric. I then show in Section 3.4 that the algorithm can be efficiently distributed by an
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elegant use of a union-find data structure. Finally, I offer some intuition as to the nature of the par-

titioning solutions that Sheep finds. In Section 3.5 I describe my implementation of the algorithm

and how I evaluate it against competing algorithms in the literature; I show that Sheep produces

partitioning results of comparable quality but in less time by several orders of magnitude.

Sheep addresses a recurring data bandwidth problem that persists in modern graph processing

system designs. In Chapter 4, I discuss these designs in-depth. I review important and recent sys-

tems of the last decade organized by their research community and identify the novel contributions

of each system, as well as features adopted from prior work. I then generalize these features to con-

struct a taxonomy of contemporary graph systems research in Section 4.5.

In my experience working with these systems, I became conscious of systematic flaws in their eval-

uations and conclusions. Chapter 5 presents a quantitative metastudy of published graph systems

research and evaluations in the period 2011−2015, inclusive. In Section 5.2 I discuss the methodology

I used to select 65 relevant graph systems papers from a corpus of over 3236 conference publications.

I then document and discuss the algorithms and datasets used as performance benchmarks by these

papers. I place particular emphasis on relationships between the algorithms and statistical features in

the datasets that function as hidden variables in a typical experimental setup. In Section 5.3 I show

that these hidden variables have substantial impact on results via an evaluation in which I vary algo-

rithms, datasets, and the hidden variables themselves.

In Chapter 6, I scrutinize the popular synthetic Kronecker graph model specifically as it relates

to benchmarks and evaluations. In Section 6.2, I review some known problems with the model

and discuss how these affect evaluation practices. One of the most blatant issues is the model’s dis-

cretized degree distribution, and I argue that the current solution based on random noise is unused

in practice, because it burdens evaluations with additional problems. In Section 6.3, I present my

own fix to the degree distribution, which is based on averaging isomorphic variations of the Kro-

necker model by randomly permuting its operand order. My fix addresses these evaluation concerns
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and is also more effective than random noise, which I show in Section 6.5. Finally, in Chapter 7, I

conclude with a summary of my work and some thoughts about future work on graph processing

systems.
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2
Background

We briefly survey some of the history of graph computing and give some context for the problems

that we struggle with in our research. Graph computing is currently fashionable in the larger context

of “Big Data” computing, especially as it relates to social network analysis. To outside observers this

may appear strange, because graph computing never really went out of fashion and has always been

an important niche in computer science. Thus, modern data science risks enthusiastically reinvent-

ing classic ideas published in SIAM Journals in the 1980s. Conversely, there are a great many soft-

ware solutions from the 80s and 90s whose techniques truly cannot scale to modern “big” datasets.

Recognizing which case is which requires some background and expertise.

“Big” is perhaps the greatest misnomer in all of graph computing; it is dangerously close to com-

municating nothing at all. A big PageRank computation for search ranking is different in scale and
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structure from a big subgraph matching query generated by SPARQL. Which is actually more diffi-

cult in practice may depend on features of the input data that have little to do with size, such as the

presence of distinguishing vertex and edge labels. These problems are different enough that differ-

ent communities build different system architectures to deal with them, and these architectures have

different performance issues. We review some of these concerns with a particular emphasis on vexing

issues in modern systems, especially those covered by this dissertation.

2.1 Graphs: Konigsberg to the 90s

Any historical account of graphs traditionally begins with Euler’s “Seven Bridges of Konigsberg.”6

Euler proved that it was impossible to walk the city of Konigsberg and cross every bridge exactly

once. To me, the most interesting feature of this problem is its spatial construction. Though Euler

famously showed that geometry is not needed to solve this problem, the Konigsberg topology is

greatly constrained by geometric principles. The bridges do not cross, so the graph is planar. And

the bridges do not cross because of their physical and spatial construction.

Graphs with spatial constraints dominated much of 20th century graph computing. Konigsberg

is a classic example of a road network, a class of spatial graphs associated with many important and

practical problems such as reachability, shortest paths, tours, and the maximum flow of traffic. Spa-

tial meshes, such as those used in computer-aided object design (CAD), are similarly constrained by

domain-specific physical construction rules. When we decompose a CAD mesh into finite elements

to solve physical equations, we are computing on a spatially-embedded mesh.

Just as spatial graphs prompt interesting questions, their constrained topologies admit interesting

solutions. Shortest path problems admit faster solutions in planar graphs 53 and in graphs that obey

the triangle inequality44. Many CAD objects have distinct parts, and thus their meshes admit dis-

tinct partitions that respond well to partition-based divide-and-conquer algorithms 114. Broadly, the
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relationship between spatially constrained graphs and graph algorithms is governed by the relatively

recent graph structure theorem 80, which implies the existence of special algorithms for certain graph

families63. Though nascent in the 20th century this was nonethless implicitly true and admitted the

possibility of many algorithms and heuristics for spatially embedded graphs.

Explicitly spatial graphs are not the only case of a physically constrained graph class. Materials sci-

entists study the interaction between fluids and porous materials by using random graph models to

decide e.g., whether one should expect a path through the material. Thus, this percolation theory 23

defines a class of graphs produced by random physical processes. These graphs correspond elegantly

with the abstract random graph model pioneered by Paul Erdos and Alfred Reyni 37. Erdos-Reyni

graphs are defined by choosing edges from the set of all possible edges with uniform probability.

This simple model is among the most fruitful of Erdos’s career; it gives startling results regarding ex-

pected connectivity 38, clustering, and even NP-complete properties such as the maximum complete

subgraph.

2.2 “Power Law” Graphs: The 00s to the 10s

In 1999, Barabasi and Albert analyzed many “complex networks” and observed that these graphs

are dissimilar from the common meshes, etc. seen in other applications 13. A famous observation is

that the Web graph’s degree-frequency plot is long-tailed in both directions: there are many vertices

with a small degree and a few vertices with a large degree. This distribution is abnormal in physical

graphs, because physical constraints, such as locality, contraindicate high-density constructs such as

fully-connected subgraphs, which cannot trivially embed in three-dimensional space.Likewise, high

degree vertices are vanishingly infrequent in the Erdos-Reyni generative model. Derek de Solla Price

had previously made similar observations regarding scientific citations in 1976 101. The similarity

between hypertext links and citations suggests a common phenomenon: both groups proposed
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nearly identical generative models based on the “preferential attachment” of neighboring vertices in

proportion to their degree.

The preferential attachment model ultimately proved too limited in scope and spawned a field

of successors seeking to “correctly” model various graphs. Of these models, the most successful have

been stochastic block models such as R-MAT28 and the Stochastic Kronecker Model75. Underly-

ing all these models is a common belief that we have encountered important new graph data that is

meaningfully different from our old data. This new data has suffered from many misnomers; for

consistency with the literature, we will adopt the term “power law graphs.” This refers to the re-

lationship between vertex degrees and frequency, which supposedly follows a power law cd = f

where d is a degree, f is its frequency, and c is some graph-specific constant. In practice this “law” is

rarely obeyed; both R-MAT and the Kronecker Model are actually log-normal 110. Other misnomers

include “scale-free networks,” “skew networks,” “complex networks,” and “social networks.”

The power law graphs typically model generative processes with many hidden variables. Friend-

ship is not literally determined by a preference for people with more friends or a preference to form

triangles; these are merely statistical observations of the results of hidden friendship processes. Even

the gross physical process of neuron-synapse formation gives rise to a power law network, because

synapse formation is precipated by hidden processes in the external sensory environment. The com-

plexity and heterogeneity of these processes is reflected in the complexity of the network structure.

Unfortunately, these heterogeneous features can be adversarial to efficient graph processing. The

mere existence of high-degree vertices presents a challenge for load balancing, as there is now a mean-

ingful load distinction between one vertex and another. High-degree vertices are predisposed to

forming star-like topologies and, insofar as they prefer to attach to one another, dense cores. In 2001,

Tauro et al. visualized this observation as a “jellyfish” 118, which was further formalized by Fan Chung

in 2002 31. Both stars and dense cores are adversarial to divide-and-conquer strategies based on par-

titioning vertices into balanced sparsely-connected disjoint subsets. This is a painful reversal from
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three-dimensional CAD meshes with visually obvious partitions.

This is not to say that the power law graphs lack structure. For example, the Internet routing

network is clearly organized around a multi-dimensional address structure. Many researchers, such

as Boguná et al. 18, have confirmed that this network structure is embeddable and efficiently routable

in hyperbolic space. Web URLs are similarly organized by a hierarchical principle; a classic folklore

trick to improve locality in Web analysis is to sort URLs by their reverse domain and forward path

so that their sort order expresses this hierarchy 15. There are concrete exploitable structures in power

law graphs, but the challenge is to recognize these structures, which are more domain-specific than

physical structures.

There is some good work from this period that in our opinion is under-recognized. In 2004 Boldi

and Vigna implemented WebGraph21, an impressive graph computing framework that is still com-

petitive with modern systems for many practical problems. WebGraph computes on a stream of

source-sorted edges that are reordered and compressed using novel methods that consciously ac-

count for the power law model. For example, edges are expressed as intervals between two vertices

in a universal compression code, but the code is tailored to the interval distribution predicted by a

power law model. The interval lengths depend on the vertex sort order, and early versions of Web-

Graph exploited the folklore URL ordering trick described above. WebGraph is noteworthy for its

early focus on the graph’s structure as it relates to data bandwidth, which is a major issue in modern

systems and a running theme throughout this dissertation.

2.3 Vertex Programming: 2010 to the Present

Malewicz et. al’s Pregel 85 appeared at the end of a period in which data systems research was dom-

inated by a prior Google system, MapReduce 32. Like MapReduce, Pregel describes the high-level

architecture and user interface of a system intended for distributed processing of large datasets.
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However, MapReduce benefited from a great deal of prior art: the map and reduce idioms were

well-established, to the point that some criticized the system’s novelty 33. In contrast, Pregel’s authors

intended to solve a hard open problem: “Despite the ubiquity of large graphs and their commer-

cial importance, we know of no scalable general-purpose system for implementing arbitrary graph

algorithms over arbitrary graph representations in a large-scale distributed environment.”

Pregel’s “vertex-centric” programming paradigm has been reproduced by dozens of systems and

thus deserves a brief overview. In a vertex program, the user codes an update function that runs

once per iteration for each active vertex in the graph. The update function can access per-vertex local

data and per-edge local data from neighboring edges, and can pass messages to neighboring vertices.

A vertex is active if it received a message in the previous iteration, and a limited set of global data

aggregators are supported. The goal of this model is to decompose a graph algorithm into nearly-

independent tasks that may be freely distributed and scheduled. In practice, the model differs some-

what across different systems with different distribution and scheduling idioms.

The absence of any clear reference implementation for Pregel’s paradigm spawned an enormous

number of competing systems. Apache produced Giraph as a layer on top of their Hadoop imple-

mentation of MapReduce, but were soon challenged by Guestrin et al.’s GraphLab 81 and especially

its second version, PowerGraph45. PowerGraph was especially noteworthy for introducing the

“edge partition” distribution model that was expanded on by later systems such as PowerLyra29.

The authors’ argument for this model makes extensive reference to the supposed power law data

model governing large graphs of interest. Apache and some authors of GraphLab would later build

another system, GraphX, on top of Apache Spark46. These systems are collectively discussed in-

depth in Chapter 4.
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2.4 Sparse Matrices

Another class of graph programming models that have enjoyed revived interest are generalized

sparse vector and matrix (SpVM) operations over abstract algebraic semirings. SpVM systems for

graph processing, such as Pegasus 59, actually predate Pregel, and computational linear algebra is, of

course, a well-established area beyond the scope of this dissertation. However, these models are not

as popular as vertex programming for processing graph datasets in industry. This situation may be

changing as recent works such as GraphMat 116 have shown that a broad subset of vertex programs

can be compiled to SpVM frameworks.

Graphs and sparse matrices may appear superficially different, but in the details of implemen-

tation the distinction is not so clear. The overwhelming majority of graph processing systems use

compressed sparse row (CSR) and column (CSC) data structures that are virtually identical to their

sparse matrix equivalents. Even the venerable edge list format is essentially identical to a sparse

coordinate (COO) matrix. Furthermore, many popular graph metrics have clear realizations in

the SpVM domain, such as the relationship between PageRank and the principle eigenvector of a

stochastic walk matrix97. Graph systems mainly differ from SpVM systems in how these metrics are

realized as algorithms and implementations. In particular, graph algorithms have a rich tradition of

disjoint-set and priority queue data structures, whose realizations in SpVM systems are less obvious.

This graph-matrix equivalence works both ways, and many SpVM systems encounter graph-

structured problems in their details of implementation. Notably, numerous sparse factorization al-

gorithms reorder their matrices using a conceptual structure called an elimination tree * Elimination

trees find their roots in Umberto and Francesco’s 1972 work on nonserial dynamic programming 14,

and were then rediscovered by graph theoretician Rudolf Halin in 197649, and again by Robertson

and Seymour in 1984 103, and ultimately played a key role in their monumental proof of Wagner’s
* It is difficult to informally describe elimination trees; see the next Chapter and specifically Section 3.3 for

a formal definition, and for perspective from the sparse matrix community see Joseph Liu 78.
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Conjecture in 2004 104. Generally, many optimization problems in sparse matrix representations are

reducible to graph problems such as balanced partitioning, bandwidth minimization, and the Trav-

eling Salesman problem. Thus, it is useful and arguably inevitable to think about graphs and sparse

martices as one heterogeneous domain.

2.5 Common Problems

Throughout this dissertation we will repeatedly refer to a closely related set of theoretically and em-

pirically hard problems that frequently occur in graph-structured computing. These include graph

partitioning and distribution, vertex ordering and its relationship with sparse matrix reordering,

and bandwidth minimization. All of these problems admit no easy solutions and are the source

of serious design and performance issues in the graph processing domain. We should review these

problems before delving into our particular niche.

Graph partitioning problems are one of the best-known classes of NP-hard problems and arise

in diverse domains. A general partitioning divides one of the graph’s two sets of elements, either

vertices or edges, into disjoint subsets while minimizing two functions. The disjoint subsets of one

set (e.g., vertices) induce non-disjoint subsets on the other set (e.g., edges) in which some elements

are shared between induced subsets and are said to be “cut” (see Figure 2.1). The “cost” function

penalizes these cuts, and the “balance” function penalizes size differences between partitions. With-

out the cost function, the problem reduces to bin-packing, and without the balance function, the

problem reduces to min-cut. Together, they form a problem that is, in most cases, difficult to even

approximate7.

Such broad language is necessary because variations of graph partitioning are common and al-

most all are similarly difficult. The cost of a particular cut may vary with the cut element’s “weight,”

or it may be uniform. Similarly, the partition balance depends on the size of their elements, and
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Figure 2.1: Vertex parধধons with edge cuts, and edge parধধons with vertex cuts, respecধvely.

the “size” of graph elements may vary with the element or may be uniform. One common variant

admits any balanced partitionings within a particular margin of error (e.g., equal plus or minus a

percent). Finally, one should note that in a vertex partitioning the cut edges are shared by exactly

two partitions, whereas in an edge partitioning the cut vertices are shared by two or more partitions.

In the edge-partitioned model, it is common to measure cut costs in proportion to the number of

partitions that share a cut vertex, which is usually called the communication volume.

Bandwidth minimization is a closely related problem that replaces the partitions with a sort or-

der and discards the balance function. The cost function is defined in terms of distances in the sort

order, e.g., the distance between the endpoints of an edge in a vertex order. This problem is NP-

hard even if the goal is just to minimize the longest distance. Naively, bandwidth minimization is

hard because the space of orders is exponential, and there is no trick to simplify the search unless

P = NP. Graph partitioning can be understood similarly, if we think about a k-part partitioning as

a bandwidth minimization with a discrete cost function defined by k sort buckets of equal size.

Both of these problems are difficult to avoid in graph processing and have a quantifiable and sub-

stantial impact on real graph systems. For example, if we want to distribute a graph computation by

sharding the graph data across multiple machines, then the shards are partitions, the machine capac-

ity is the balance function, and any inter-machine data references are cuts. Consequently, it is hard
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to minimize the number of inter-machine data references and the network traffic. Similarly, suppose

the elements on each machine are stored in serial arrays. When we look up a vertex’s neighbors, the

prefetcher’s hit rate depends on whether those neighbors follow the vertex in the array. This serial

order and locality-based cost function give a bandwidth minimization problem. Thus, serializing a

graph does not optimize your cache hit rate unless you also solve an NP-hard problem.

These examples are performance problems, so any proposed solution must itself run quickly if

its goal is to improve end-to-end runtime. This means that practical solutions are domain, scale, and

system-specific. Many historical solvers do not target the performance domain or do not improve

end-to-end runtime on sufficiently large graphs. For example, METIS61 is a gold standard parti-

tioner for finite element meshes, but takes hours to run on social networks with billions of edges.

Conversely, many modern solvers heuristically target “power law” graphs or are engineered for spe-

cific system designs, such as streaming graph partitioners 115. Ultimately, many systems consider par-

titioning to be a pre-processing step outside of their scope.

It is normal to see published system results that are throttled by these problems. For example,

Figure 2.2 reproduces a connected components benchmark on Giraph++, a system presented in

VLDB’14 by Tian et al. 119 HP and GP compare partitions assigned by hashing and by a distributed

METIS-like algorithm, respectively. VM, HM, and GM compare different implementations. For

the best implementation, GM, the METIS-like partitions give up to a 25x performance improve-

ment over hashing, and the paper shows similar results for other benchmarks. However, these parti-

tions take between 1082 and 6891 seconds to compute on these graphs.

Here we see empirically that a large performance improvement is blocked by a graph partitioning

problem. Note also that for the worst implementation, VM, the METIS-like partitions are, in some

cases, a performance regression over hashing! Thus, these partitions are not generically “good.”

Rather, the valuation of partitions is problem-specific, as we discussed previously.

The sparse matrix community also struggles with these problems and has developed their own
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Figure 2.2: A connected components benchmark, reproduced from Giraph++119, for two parধধoning schemes (HP
and GP) and three implementaধons (VM, HM, and GM).

tools to solve them. In general sparse matrices unify these problems under the framework of ma-

trix reordering. A reordering maps the rows and columns of a matrix to new rows and columns

in an isomorphic matrix. This new matrix minimizes a cost function, such as the number of cells

that become non-zero during a particular algorithm, such as Cholesky decomposition. The prob-

lem is solved in the new matrix and then permuted back to the original input. Partitions are easily

expressed as diagonal and off-diagonal cost functions; therefore, reordering is also NP-hard.

As we previously mentioned, elimination tree structures are an important matrix reordering tool.

But they are also graph concepts and, because reordering and partitioning are closely related, one can

adapt them to graph partitioning and bandwidth minimization problems. Doing so neatly simpli-

fies the “sandwich” of matrix and graph theories and produces an elegent partitioning solution for

graph systems. Our work on this approach is covered in Chapter 3 of this dissertation.

Most of the problems discussed in this section are “hard” only in the case of general graphs. Of

course, concrete graph datasets for a particular application are rarely general. For example, a pro-

cess might generate a graph dataset in its bandwidth-minimizing order and thus “solve” the cache

prefetcher’s performance problems. The research community is strongly focused on graph datasets

and graph generating models that are large, publicly available, and appear in prior work for com-

parative analysis. Insofar as these graphs are not general (i.e., are not chosen at random from some

general distribution), this has implications for the use of these graphs in evaluations and their gener-
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alizability as benchmarks. For example, if a widely referenced graph is distributed in a serial format

correlated with its bandwidth-minimizing order, then cache hit rate may be better in these pub-

lished results than in general practice. We quantify, discuss, and propose solutions to this problem

in Chapter 5.
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3
A Scalable Partitioner

We present Scalable Host-tree Embeddings for Efficient Partitioning (Sheep), a distributed graph

partitioning algorithm capable of handling graphs that far exceed main memory. * Sheep produces

high quality edge partitions an order of magnitude more quickly than both state of the art offline

(e.g., METIS) and streaming partitioners (e.g., Fennel). Sheep’s partitions are independent of the

input graph’s distribution, which means that graph elements can be assigned to processing nodes

arbitrarily without affecting the partition quality.

Sheep transforms the input graph into a strictly smaller tree structure via a distributed map-

reduce operation using a disjoint-sets data structure. By partitioning this tree, Sheep finds an upper-

* This chapter was originally published in VLDB 2015 86. However, Sections 3.3 and 3.4 have been consid-
eraby expanded to provide more background and context.
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bounded communication volume partitioning of the original graph.

We describe the Sheep algorithm and analyze its space-time requirements, partition quality, and

intuitive characteristics and limitations. We compare Sheep to contemporary partitioners and show

that Sheep creates competitive partitions, scales to larger graphs, and has better runtime.

3.1 Introduction

Graph partitioning is an important problem that affects many graph-structured systems. For exam-

ple, partitioning quality greatly impacts the performance of distributed graph analysis frameworks91

such as Giraph 11 and PowerGraph45. PowerGraph even integrates a novel streaming partitioner into

its loader. These designs have received considerable attention and invited much comparison 108.

METIS61 is the gold standard for graph partitioning and remains competitive even after 15 years.

Though METIS and related work “solve” the small graph partitioning problem, these approaches

do not scale to today’s large graphs. Distributed systems, such as PowerGraph, have emerged to

address graph-structured problems that exceed the main memory of a single machine, and METIS

and similar approaches are unable to partition graphs of this scale in reasonable time and space.

Additionally, there is growing interest in partitioning algorithms that minimize metrics other than

edge-cut. For example, the minimum communication volume metric 22 has become attractive for the

growing classes of graphs and analyses that do not partition well in edge-cut models.

Fundamentally, graph partitioning for distributed computing is a chicken and egg problem. We

want to partition large graphs so we can process them at memory speed when they exceed the mem-

ory of a single machine. Distribution lets us handle larger graphs and parallelize computation, but

it is only efficient when the partitions distribute the data well. Unfortunately, partitioning requires

us to solve an NP-hard problem on an out-of-memory graph without an a priori well-partitioned

data distribution! Streaming graph partitioners 115 and streaming graph analysis systems, such as
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GraphChi72, are recent approaches to this problem.

But streaming graph systems pose two problems. First, they are sensitive to the stream order,

which can affect performance (as in triangle counting9) or solution quality (as in PowerGraph or

the more recent Fennel partitioner 120). These results are unsurprising, because many graph ordering

problems are NP-complete 16 and related to partitioning. The second problem is that streams cannot

always take advantage of parallel scaling. Some streaming algorithms are difficult to parallelize (Fen-

nel), while others support multiple streams (PowerGraph). However, if a multi-stream algorithm is

sensitive to the input stream partitioning, it is yet another partitioning chicken and egg problem.

We present Sheep, a distributed graph partitioner that embraces the relationship between or-

dering and partitioning. Given an order or ranking on an undirected graph’s vertices, Sheep finds

partitions by a method that does not vary with how the input graph is distributed among tasks.

Thus, Sheep can arbitrarily divide the input graph to exploit parallelism and fit tasks in memory.

Using simple degree ranking, Sheep creates competitive edge partitions an order of magnitude more

quickly than both offline and streaming partitioners. As a result, Sheep scales well on large graphs.

Sheep is founded on a synthesis of insights between sparse matrix and complex network theories.

Sheep reduces the input graph to a small elimination tree99, a venerable structure that expresses ver-

tex separators of the input graph (defined in Section 3.3). Sheep then solves a partitioning problem

on this tree that translates to an upper-bounded communication volume partitioning on the orig-

inal graph. This “reduce and partition” technique is similar to METIS, but the theory and details

are quite different. In particular, Sheep’s tree transformation is a distributed map-reduce operation.

This distributed reduction is itself an interesting avenue for future research.

The contributions of this work are:

• A new parallel and distributed partitioning algorithm that addresses the minimum commu-

nication volume partitioning problem on undirected graphs.
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• A demonstration that Sheep scales well to graphs that exceed single machine memory and is

faster than competing algorithms without sacrificing partition quality.

• A distributed elimination tree construction that avoids construction of a chordal graph.

• A novel theory that relates partitioning, complex networks, and sparse matrix theories.

The rest of this Chapter is structured as follows. In the following Section we present background

material and related work. In Section 3.3 we present the high-level Sheep algorithm and show how

it creates partitions. In Section 3.4 we go into detail on the distributed tree reduction step and give

some theory and intuitions governing why Sheep works. We evaluate Sheep in comparison to other

partitioners and against itself at various scales in Section 3.5. Section 3.6 addresses the limitations of

Sheep and suggests future research.

3.2 Background and Related Work

There are four areas of research on which this work builds: graph partitioning algorithms, graph an-

alytic systems that are impacted by partitioning, sparse matrix theory, and complex network analysis.

We address the first three topics below, but we defer complex networks to Section 3.4.3, because its

relevance to our algorithm is clearer in context.

3.2.1 Graph Partitioning

METIS61, which has been a reliable standard for graph partitioning, is amulti-level graph parti-

tioner that creates a sequence of “coarsened” graphs where each vertex represents a union of vertices

in the previous graph. It computes partitions on the smallest graph and then projects them back to

each larger graph in succession, refining the partitions as it does so. METIS can optimize edge cuts

or communication volumes, but the solutions discovered in either case are sometimes similar60.
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Multi-level methods are frequently used for graphs with tens or hundreds of millions of elements.

However, they consume memory and are an order of magnitude slower than streaming methods,

so multi-level partitioners are challenged by the billion-element graphs becoming common today.

ParMETIS62 is a distributed version of METIS, but it suffers from a partitioning chicken and egg

problem: each distributed task works on a subgraph and needs to communicate with other tasks in

proportion to the edges between subgraphs. So the performance of this method is harmed without

some a priori partitioning.

The streaming partitioning model 115 was created to address partitioning problems on large scale

graphs. In this model each graph element arrives in sequence and must be immediately assigned to a

partition. Streaming forbids partition refinement or any global introspection such as spectral analy-

sis; it is also well suited for integration with the data loaders of graph analysis engines. Fennel 120 is a

representative work in this area that interpolates between two established heuristics 100,115. Bourse et

al. extend Fennel’s method to communication volume partitioning. 22 However, all streaming parti-

tioners are sensitive to the stream order and random orders are pessimal approximations 120. Thus, it

is more difficult to quantify the practical quality of a streaming partitioner; but, in general, stream-

ing partitioners produce worse partitions than METIS, though they operate much more quickly.

Sheep outperforms both METIS and Fennel in runtime, is competitive with METIS in quality

for a small number of partitions (i.e., less than 5), and is competitive with Fennel for larger counts.

3.2.2 Partitioning in Graph Analytic Engines

PowerGraph45 is representative of graph analysis frameworks that use stream partitioning to break

a large graph into pieces small enough to run on individual nodes. It uses an edge placement parti-

tioning model, assigning edges to machines and duplicating vertices on multiple nodes as necessary.

PowerGraph integrates a novel multi-streaming partitioner into its data loader to minimize du-

plicates. This design has received much attention but is well known to have a problem with severe
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partition imbalances 22. Pregel 85 and Giraph 11 are frameworks that partition vertices instead of edges,

whereas GPS 107 and PowerLyra 29 are recent hybrid systems: they partition the edge sets of high-

degree vertices but keep the edge sets of low-degree vertices together. Sheep is most effective for edge

partitions, and it intuitively produces partitions that exploit this same property as GPS and Power-

Lyra, although it does so indirectly by a different method; we discuss this further in Section 3.4.4

GraphChi72 is a single-machine graph analysis system that handles out-of-memory graphs by cre-

ating partitions that it processes as parallel streaming working sets. While in principle this system

could benefit from well partitioned sets, out of memory partitioning is traditionally addressed by

adding more memory; so GraphChi, which targets low-memory systems, does not feature any parti-

tioner at all. X-Stream 106 is a similar streaming analysis system.

3.2.3 Sparse Matrix Theory

Sheep partitions a graph by partitioning a data structure called an elimination tree99, as described in

the following Section. Elimination trees are a famous data structure, but Sheep constructs the tree

using a novel distributed method. Nested dissection42 is an alternate method to construct elimina-

tion trees in parallel. It works by finding small vertex separators and then recursing into the remain-

ing components of the graph. Because vertex separators are a form of partitioning (Section 3.3.4),

this is a chicken and egg problem for partitioning applications. However, there is a sense in which

Sheep “reverses” nested dissection by deriving partitions from an elimination tree constructed by

other means. Ashcraft and Liu explored a similar idea 10 with an algorithm that extracts separators

from an elimination tree and then sorts the separators to find a better tree, although they optimize

for different parameters than does Sheep.
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3.3 Overview

3.3.1 The Sheep Algorithm

Given an undirected graph,G, we partition it by:

1. Sorting the vertices,

2. Reducing the the graph to an elimination tree99, T, according to the order in step 1,

3. Partitioning the elimination tree, and then

4. Translating the tree partitions into graph partitions.

Elimination trees are defined in detail in the rest of this Section, as is the partitioning method for

T and the translation of partitions from T toG. The vertex sort and tree reduction are discussed in

detail in Section 3.4.

3.3.2 Conventions

Graphs

A graph G = (V,E) is an arbitrary set of verticॸ V and a subset of edgॸ E from V × V. To distin-

guish the element sets of different graphs, we may refer toGV andGE. By convention, n = |V| and

m = |E|. G is said to be undirected when (x, y) in E iff (y, x) in E, in which case we ignore the dis-

tinction between (x, y) and (y, x). Else, G is directed, and for (x, y), x is called a source and y a target.

In either case we say that x and y are adjacent inG.

For the remainder of this dissertation, we assume graphs to be undirected unless stated otherwise;

in particular, Sheep partitions undirected graphs. Where explicitly stated, we may sometimes treat a

directed graph as if it were undirected by ignoring the distinction between (x, y) and (y, x). Broadly,

we prefer this convention because most partitioning cost metrics are symmetric, i.e., independent

of edge direction. Furthermore, many graph systems and algorithm implementations, such as pull-
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based PageRank, store and use a directed graph’s transpose, where (x, y) in the transpose iff (y, x) in

G. Thus, such systems effectively store undirected graphs.

We assume that a graph contains no self-edges (x, x) or multi-edges (x, y), (x, y) unless stated

otherwise. It is trivial to extend our work to these cases, but they needlessly complicate notation.

Given this assumptions, a graph is complete and called a clique if every possible edge in E exists.

The set of all y in V such that x is the source of some (x, y) in E is called the out-neighbors or out-

puts of x inG. Similarly, the set of all y in V such that x is the target of some (y, x) in E is called the

in-neighbors or inputs of x inG. The union of these two sets is called the neighbors or adjacenciॸ of x

inG. For undirected graphs, all three sets are equivalent. The cardinalities of these sets are called the

out-degree, in-degree, and degree of x inG, respectively.

A path inG is a sequence of edges (a, b), (b, c)...(y, z) in E such that for each sequential pair

(a, b), (b, c) the target of (a, b) is the source of (b, c). We say that x is weakly connected to y, or that y

is reachable from x inG, if there exists a path inGwhose first source is x and final target is y. If x and

y are weakly connected and y and x are weakly connected, we say that x and y are strongly connected

inG. For undirected graphs we ignore this distinction and say that x and y are connected inG. An

entire graph is weakly connected if for all x and y in V, either x is weakly connected to y or vice versa.

Similarly we may say a graph is strongly connected or just connected.

A subgraph ofG = (V,E) is a graphG′ = (V′,E′) such that V′ is a subset of V and E′ is a subset

of E. An induced subgraph is a subgraph with the additional property that if x and y in V′ and (x, y)

in E, then (x, y) in E′. A weakly-connected component of G is a weakly-connected induced subgraph

G′ such that no vertex inG′ is weakly connected inG to a vertex not inG′ (that is,G′ is maximal).

Similarly we may refer to strongly connected or just connected components.

A set of vertices S ⊂ V is called a vertex separator if the induced subgraph V/S (that is, Vwithout

S) has more components thanG. Intuitively, there are connected components inG that are discon-

nected if S is “deleted” fromG. We say that S separatॸ these components. A separator isminimal if
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it does not contain a smaller separator as a subset. Vertex separators are one way of modeling graph

cuts and partitions and will feature heavily in this Chapter.

Trees, DAGs, and Partial Orders

A cycle is a path that starts and ends at the same vertex. A cycle is simple if it repeats no edge and

each vertex in the cycle appears as a source and a target exactly once. We will assume cycles are simple

unless stated otherwise. An undirected graph is called a forest if it admits no simple cycles and a tree

if it is a connected forest.

A directed acyclic graph (commonly called aDAG) may also be called a tree if it is a tree when

treated as undirected. A directed tree is called an in-tree if each vertex x has at most one out-neighbor

y, and an out-tree if each vertex x has at most one in-neighbor y. In either case, x is called a child of y,

and y is the singular parent of x. If a vertex z has no children, then z is called a leaf. If z has no parent,

then z is called a root. All trees have exactly one root. The distinction between in-trees and out-trees

is sometimes unimportant, so we will collectively refer to them as rooted treॸ.

A partial order P = (V,≤) is a set V and a binary relation≤ over V such that for all x, y, z ∈ V,

1. x ≤ x (reflexivity)

2. If x ≤ y and y ≤ x then x = y (antisymmetry)

3. If x ≤ y and y ≤ z then x ≤ z (transitivity)

For clarity, we may refer to≤P and<P. We say that P is total when x ≤ y or y ≤ x for all x and

y ∈ P. In this Chapter the symbol P usually represents a total order over a graph’s vertex set V and is

therefore a permutation of V. A suborder of P = (V,≤) is an order P′ = (V,≤′) such that≤′ is a

subset of≤. Conversely, we say P is an extension of P′. A linear extension is an extension that is total.

Because≤ is a binary relation over V, a partial order also defines a directed graph (V,E′). By con-

vention if x ≤ y then (x, y) ∈ E′ where x is the source and y is the target. This graph is necessarily
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a DAG because a cycle would contradict the antisymmetry property. Conversely, the transitive clo-

sure (reachability graph) of any DAG is a partial order, so we may say that a DAG “defines a partial

order”. In particular, an elimination tree (following Section) is a DAG and therefore defines a partial

order. This order is not a total order unless the DAG is a linear path graph.

3.3.3 Elimination Trees

LetG = (V,GE) be an undirected graph and T = (V,TE) be a directed rooted tree or forest with

the same vertex set: that is, for any connected component TC ∈ T there is a unique r ∈ TC that is

reachable from all x ∈ TC. This implies that T is an in-tree where edges point from leaves towards

the root. Then, T is an elimination tree ofG iff T holds the following property:

Property 1 (Elimination Property). For each (x, y) ∈ GE, either x ॹ reachable from y in T or vice-

versa. Equivalently, x and y share an ancestor-descendant relation in T, and T definॸ a partial or-

der where x < y or y < x.

IfG is a complete graph (clique) then Tmust be a linear path graph. T is usually more inter-

esting than a line, but in general T is not a well balanced tree. IfG is connected then Tmust be a

single tree, but for graphs with k connected components, T can be a forest with at most k trees. An

elimination tree is deeply related to the components and connectivity of its associated graph via the

following corollaries:

Corollary 1.1. Let x and y be children of z in T. Let subt(x) be the set of verticॸ in the subtree rooted

at x in T. Then, there doॸ not exist any edge (x′, y′) ∈ GE between subt(x) and subt(y). Thॹ ॹ a

well known result 52.

Corollary 1.2. Let x and y be children of z in T. Let supr(z) be the set of z and reachable verticॸ

from z in T. If we delete supr(z) from G, then in the resulting graph subt(x) ॹ not reachable from

subt(y) and vice-versa.
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Figure 3.1: Graph G (leđ) and eliminaধon tree T (right). For (x, y) ∈ GE, x is reachable from y in T or vice-versa.
Note that supr(6) = {6, 7} is a vertex separator of 1 and 2, and similarly 7 is a separator of subt(5) and subt(6)

Corollary 1.2 is true because any path from subt(x) to subt(y)must contain a vertex in supr(z).

Thus, supr(z) is a vertex separator of subt(x) and subt(y), because it is a set of vertices whose removal

separatॸ sets of graph elements. Note that supr(z) is not necessarily minimal, because it may contain

vertices whose removal is unnecessary to separate subt(x) and subt(y). However, supr(z) is bounded

above by the depth of the elimination tree, which is called its tree-depth 17. Figure 3.1 depicts an ex-

ample tree; we discuss tree construction in Section 3.4.

3.3.4 Partitioning

An edge k-partitioning ofG is an assignment E → {1, ...k} to k partition sets such that each edge

is assigned to one partition and no partition is larger than (1 + b)(m/k), where b is called the bal-

ance factor. Similarly, a vertex k-partitioning is an assignment V → {1, ...k}where no partition is

larger than (1 + b)(n/k). Partition optimizations usually minimize the balance factor and another

constraint called the cost.

Sheep is a communication volume 22 minimizing partitioner, like PowerGraph and some versions

of Fennel. Communication volume is a partition cost that counts the unique partitions adjacent to
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each vertex, minus 1 for normalization so that the cost of a 1-partitioned graph is 0.

∑
x∈V
|{partition(element) : element ∈ adjacent(x)}| − 1

Note that for edge partitions element is an edge, but for vertex partitions element is a vertex and

adjacent(x) is inclusive of x. In general, edge partitionings achieve lower volumes because there are

more edges than vertices and therefore more degrees of freedom to assign partitions.

Informally, communication volume counts the number of “duplicate” vertices in some graph-

structured systems. For example, PowerGraph partitions edges across machines and then instan-

tiates adjacent vertices on each machine. Each vertex has one duplicate instance for each partition

adjacent to it, minus one primary instance. Of course, which instance is primary does not affect the

count. If we say the primary instance rests with the highest-ordered partition in some arbitrary or-

der, then we can equivalently express communication volume by a summation over the partitions.

LetK be the set of partitions. Then, an equivalent expression of communication volume is:

∑
i∈K
|{x : x ∈ V, x ∈ adjacent(i) ∩ adjacent(j), i < j ∈ K}|

That is, each vertex x adjacent to partition i is a duplicate iff x is also adjacent to a higher-ordered

partition j; else, the primary instance of x rests with i. For vertex partitions, adjacent(i) is inclusive

of all x ∈ i. This duplicate set is trivially a vertex separator of adjacent(i) from all adjacent(j) in the

subgraph induced onG by the union of adjacent(i) and all adjacent(j). Therefore, we can model

a partitioning as a separator series: each partition in arbitrary order separates its primary vertices

from the graph of “remaining” unclaimed vertices. The duplicate vertices are the separators, and the

communication volume is the sum of the separators.

An elimination tree also expresses a series of separators that are upper bound by its tree-depth.
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Recall that by Corollary 1.2, if x and y are children of z in T, then supr(z) is a vertex separator of

subt(x) and subt(y) inG. Furthermore, by recursion supr(z) is a separator of subt(x) and subt(y′) for

all y′ such that y′ is a child of z′, z′ ∈ supr(z). In effect, supr(z) is a vertex separator of subt(x) from

the “remaining” vertices not in subt(x) (see Figure 1).

Using these properties we establish a translation between the elements of T andG, such that a

vertex partitioning of T translates to an edge or vertex partitioning ofG, with an upper bound on

the communication volume given by the tree-depth of T.

3.3.5 Translating Partitionings

First, we model a cut-minimizing vertex partitioning problem on T that will translate to a bounded

communication edge partitioning problem onG. Let the partition of each edge (x, z′) ∈ GE be the

partition of x ∈ TV, where x ∈ subt(z′) by the Elimination Property and x is a child of z in T. It

follows that z′ ∈ supr(z), and that the adjacencies of (x, z′) and the adjacencies of all (y′, z′)where

y′ /∈ subt(x) intersect in supr(z), or else supr(z) is not a vertex separator of x and y′ and contradicts

Corollary 1.2. More generally, the adjacencies of every edge mapped in subt(x) and every edge not

mapped in subt(x)must intersect in supr(z).

Therefore, let the weight of x ∈ TV be |{(x, z′) ∈ GE : x ∈ subt(z′)}|, and let the cut cost

of (x, z) ∈ TE be |supr(z)|. These costs decrease from leaf to root. It turns out that weighted tree

partitioning is trivial for decreasing edge costs: there is a simple leaf to root dynamic program69 that,

given a decreasing edge-costed tree and a maximum subtree weight, finds a minimum cost partition-

ing of T into subtrees less than that weight. Each subtree maps to an edge partition inG, and its cut

cost |supr(z)| gives an upper bound on the intersection of the adjacencies of that partition and every

partition that follows it in T. The sum of these cuts upper bounds the communication volume inG.

If the maximum subtree size is (1 + b)(m/k) this will sometimes produce k′ ≥ k partitions. To

achieve exactly k partitions it may be necessary to bin-pack subtrees into partitions: this is a com-
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mon feature of balanced tree partitioning algorithms. However, we can always achieve exactly k

partitions by relaxing the balance factor. Since bin packing has a constant approximation factor,

we know that the amount we may relax the balance is similarly bounded; in practice we achieve

partitions with less than 3% imbalance. Packing partitions together can only decrease the com-

munication volume, so this does not affect the correctness of the upper bound, which is at worst

O(k′ × depth(T)) because depth(T) ≥ |supr(z)|.

For a vertex partitioning ofG, let the partition of each x ∈ GV be the partition of x ∈ TV.

However, in this case the cut cost of each edge (x, z) ∈ TE must be |subt(x)|+ |supr(z)|, because the

adjacencies inG of vertices x′ ∈ subt(x) and z′ ∈ supr(z)may intersect in subt(x) as well as supr(z).

Intuitively, in an edge partitioning we have the freedom to map each edge to the “lower” vertex, and

this lets us restrict the partition intersections to supr(z), the set above the lower vertex. However,

a vertex partitioning constrains edges to map to both endpoints. We could also construct an edge

partitioning that assigns each edge to the higher vertex with a cut cost of |subt(x)|, but these costs do

not decrease from leaf to root. If the costs do not decrease then we must partition T by some other

algorithm. However, since T is small compared toGwe could use a powerful tool such as METIS

even for largeG. For example, the UK Web dataset 20 is 44.8GB as a graph file, but only 841MB as a

tree file. For now we focus on edge partitionings and leave this idea for future work.

Sheep produces better edge partitions, because its bounds are tighter in that case. This reflects

the greater degree of freedom in edge partitioning problems; in particular, the freedom to divide up

the edge sets of higher vertices. However, for both edge and vertex partitions, the cut cost is upper

bound by the tree-depth of T, so in both cases Sheep’s partitions improve with more shallow trees.

Tree-depth minimization is NP-complete 17 but this goal opens up some new approaches. In partic-

ular, elimination tree construction is usually modeled as an ordering problem, so this lets us reason

about partitioning in terms of the vertex order or ranking that would give an ideal tree. This leads to

a novel observation regarding elimination trees and complex network theories (Section 3.4.3).
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Require: G is an undirected graph (V,GE)
Require: P is a total order (V,≤)

function Elimination Game(G, P)
H← G
T← (V, ∅)
for all x ∈ V in order P do

S← {y : (x, y) ∈ HE, x <P y}
HE ← HE ∪ {(y, z) : y, z ∈ S}
TE ← TE ∪ (x,minP(y ∈ S))

Algorithm 1: The Eliminaধon Game

3.4 The Tree Construction

We present our tree construction in three parts. First, we review the elimination game, a classic elimi-

nation algorithm (Section 3.4.1). We then present our own elimination algorithm and prove that we

can distribute it across arbitrary partitions of the graph(Section 3.4.2). Finally, we discuss how ver-

tex orders affect the trees we build, and how we derive good orders from complex networks theory

(Section 3.4.3). Finally, we give some intuition for these results (Section 3.4.4).

3.4.1 Elimination Games

The elimination game is a classic algorithm98 that takes an undirected graph and produces an elimi-

nation tree; please see Algorithm 1. The following section describes Algorithm 1 in detail.

For each vertex x, we add edges to the graph between all y such that y is a P-greater neighbor of

x. The parent of x ∈ T is the P-minimum over all such neighbors. The Elimination Property

that (x, y) ∈ GE share an ancestor descendant relationship in T holds because in iteration x ei-

ther TE gains (x, y) or some (x, x′), in which caseHE gains (x′, y). Then, in iteration x′ either TE

gains (x′, y), or we continue until TE gains some (x′′, y). Then, x, x′...x′′, y is a path from x to y in

T. Note that T is not a subtree ofG, because TE gains (x, y) fromHE andH is a supergraph.
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H is called a chordal graph or elimination graph. Chordal graphs are important generalizations

of trees with many interesting properties 52, some of which are inherited by the elimination tree T,

which is called a host tree ofH. In particular, chordal graphs haveO(n)minimal separators (recall

that n = |V|). However,H is an unbounded supergraph ofG and, in practice, is often expensive to

construct. P is called an elimination order ofG and a “perfect” elimination order ofH.

Our distributed tree construction algorithm requires a special observation about the elimination

game. The proof is simple but is delegated to the appendix for brevity:

Theorem 1. Let G[V <P z] be the subgraph induced on G by verticॸ less than z. Then, z ॹ the parent

in T of exactly the P-maximum verticॸ in the disjoint components of G[V <P z] that z joins together

in G[V ≤P z].

This gives an elegant characterization of the trees constructed by the elimination game as prod-

ucts of a union-find algorithm. Because union-find algorithms are easy to distribute, this leads to a

distributed tree construction.

3.4.2 Distributed Reduction

LetU = (V,P) be a union-find data structure over a set V that chooses as each subset’s representa-

tive the maximum element in that subset according to a total order P = (V,≤).

In each outer iteration vertex z adopts the P-maximum vertex y in each disjoint component of

G[V <P z] that z joins inG[V ≤P z]. By Theorem 1, these are the same children of z as in the

elimination game, so T is an elimination tree. Afterwards z is the new P-maximum representative for

this set of components, which are now one and joined through z. We call this a “persistent” union-

find because T captures the development of the union-find data structure.

This algorithm uses less space and time than an algorithm that creates an explicit chordal super-

graph. Supergraphs are at best o(n + m) but usually much worse; conversely, the union-findU and
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Require: G is an undirected graph (V,GE)
Require: P is a total order (V,≤)

function Persistent Union Find(G,P)
U← (V,P)
T← (V, ∅)
for all z ∈ V in order P do

for all (x, z) ∈ GE, x <p z do
y← U.find(x)
if y ̸= z then

U.union(y, z)
TE ← TE ∪ (y, z)

return T
Algorithm 2: The persistent union-find algorithm

tree T useO(n) space andO(n + a(n)m) time, where a() is the near-constant inverse Ackermann

function40. However, many elimination algorithms dynamically order themselves by inspecting the

chordal graph, so this method is not clearly practical without a good order a priori.

The observation that this union-find algorithm can be efficiently distributed is at the core of

Sheep. We prove that:

Theorem 2. Let G1 and G2 be two subgraphs of G such that G1 ∪ G2 = G. Let t(G,P) be the

elimination tree produced by union-find on G in order P. Then,

t(t(G1,P) ∪ t(G2,P),P) = t(G,P)

Note that though t(G1,P) ∪ t(G2,P) is a directed graph, it is interpreted as undirected when

input to the union-find algorithm. This proof is given in the appendix.

We emphasize this creates the same exact tree as t(G,P). By this theorem we can splitG into any

number of subgraphs, construct trees independently for each, and then union and reduce the inter-

mediate trees in parallel to create a final tree forG. The result is insensitive to how the graph is split

35



function Reduce To Tree(G, P)
G1,G2...Gw ← Split(G)
T1,T2...Tw ← {Mapper(G′,P) : G′ ∈ G1,G2...Gw}
T← Reducer() over T1,T2...Tw and fixed P

function Mapper(G′, P)
return PersistentUnionFind(G′,P)

function Reducer(TL, TR, P)
U← Undirected(TL ∪ TR)
return PersistentUnionFind(U,P)

Algorithm 3: Distributed reducধon using persistent union-find.

and the space-time requirements remain nearly linear for each subgraph. This lets us reduce large

graphs quickly. An implementation using the map-reduce idiom might look like:

LetG1,G2...Gw be a set of subgraphs ofG such thatG1 ∪ G2 ∪ ...Gw = G. Let n′ andm′ be the

maximum numbers of vertices and edges respectively in any suchGw. Then, the parallel runtime of

this distributed tree construction is:

O(n′ + a(n′)m′ + log(w)(n+ a(n)n))

where the log expression is the reduce operation over intermediate trees. Because the log expression

is essentiallyO(n) for fixed w, and becausem typically dominates n, it is more important to balance

m′ = (m/w) than n′. This is achieved by evenly splitting an edge list ofGE. If we also want to

balance n′ we may do so by randomizing the list. In either case, this avoids the partitioning chicken

and egg problem.

3.4.3 Ordering Vertices

Trees created by elimination algorithms are the result of a graphG in an order P. So far we have held

P constant, but in real applications the graph is constant and the order can vary. Thus, the tree and
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the vertex separators it expresses are entirely determined by P, hence our earlier statement that Sheep

embraces the relationship between ordering and partitioning: Sheep’s partitions result from the

separators expressed by an elimination order. Formally, if S is a minimal separator of components C1

and C2 inG, then any P such that ∀x ∈ C1 ∪ C2, ∀y ∈ S, x <P ywill express S in T.

Order sensitivity is a challenge faced by all streaming graph partitioners. Tsourakakis et al. proved

that not only must every streaming partitioner have adversarial orders, but also that random input

orders are approximately adversarial 120. Therefore, for arbitrary input orders one cannot make guar-

antees as to the quality of streaming partitioning results. Sheep is subject to this if P is arbitrary.

However, Sheep accommodates its input order in its underlying theory, so we can define what

is meant by a good order. As discussed in Section 3.3, tree-depth upper bounds the separators ex-

pressed by the elimination tree; therefore, a minimum tree-depth order will produce smaller bounds

and better communication volumes. Unsurprisingly, tree-depth minimization is NP-complete.

There are many depth heuristics in the literature, but, in general, these inspect the graph or chordal

graph. We need a compatible heuristic for our distributed construction, since it cannot easily inspect

the total graph and does not create a chordal graph.

We found a valuable resource in the complex networks community. Albert et al. pioneered the

empirical use of attack plots that, for a given vertex order on the x-axis, plot the size of the largest

remaining connected component when one deletes vertices in that attack order 5. The purpose of

these plots is to show how different networks dissassemble under different attack orders and to find

orders that fully dissassemble networks in a minimum number of attacks. Figure 3.2 is an attack plot

of several metrics by Iyer et al. 57

Consider a walk on T from root to leaves. At each vertex z in the walk, the subtrees of the chil-

dren of z ∈ T represent components in the “remaining graph”G[V <p z]: it is like we delete supr(z)

and examine the remaining components. The subtree with the most depth is the component that

requires the most steps to fully disassemble. So, disassembling the graph in a minimum number of
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Figure 3.2: Aħack plot on a High Energy Physics co-authorship graph, reproduced from Iyer et al.57 Each line depicts
the decaying size of the largest connected component as verধces are removed in a specific rank order.

attacks is exactly the same goal as minimizing its elimination tree-depth. Attack orders and elimina-

tion orders are simply opposite orders.

Complex network research repeatedly observes 5 57 that many natural networks, and, in particular,

networks with skew degree distributions, are vulnerable to degree-ordered attacks. More sophisti-

cated attack orders use centrality measures such as betweenness 57. Intuitively, one can characterize

degree order as a “greedy edge attack” and betweenness as a “greedy shortest path attack.”

Elimination algorithms sometimes use a similar degree heuristic43 , although this is usually ap-

plied online to the chordal graph to optimize related parameters called tree-width and matrix fill-in

for matrix factorization. Tree-width is a strictly tighter separator bound than tree-depth 52, but be-

cause the chordal graph is a supergraph of the input graph, these parameters do not lead to graph
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size reductions. For matrix factorization this is not a concern, because factorization requires instanti-

ation of the chordal graph (or “fill-in graph”). This research area arises from the application of graph

theory to graphical models of matrices; Sheep reapplies some of these theories to the partitioning

problems faced by large scale graph analysis frameworks.

It is well known that degree orders are sometimes “good” for elimination trees. However, so far as

we know, it is a novel observation that complex networks research gives empirical characterizations

of both the classes of graphs on which degree orders are tree-depth minimizing, and the orders that

outperform degree orders on these graphs. By default, Sheep assumes a degree elimination order for

input graphs; even in distributed graphs this is easy to compute by broadcasting local degree vectors.

Note that Sheep need not physically sort the graph in degree order; it merely uses the order logically

in its tree construction algorithm.

Our results show that degree orders on skew networks produce low cost partitions that are com-

petitive with other partitioners; this method works extremely well for bipartitioning and often out-

performs METIS. We also show that Sheep is improved when better rankings are available, e.g.,

across repeated analytics runs. This ability to improve the graph’s data organization with purely

analytic results may be an interesting technique for graph database cracking 56.

3.4.4 Intuition

Degree sorting is also a classic heuristic optimization for triangle counting algorithms, in part be-

cause it improves reference locality in networks with skew degree distributions. The many low-

degree vertices tend to reference the few high-degree vertices, so clustering the high-degree vertices

improves reference locality. However, this heuristic is topologically naive. In particular, many low-

degree vertices are not clustered with their adjacencies. For example, if a 2-degree vertex is adjacent to

another 2-degree vertex, they may not be clustered in the sort order even though this constraint may

be easily fulfilled.
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Intuitively, Sheep exploits a partially ordered tree that is more informative than its linear input

order. Unlike a total order, the tree expresses antichains: sets of independent elements in the under-

lying graph. Independence is notably present in sparse topologies such as the low-degree vertices of

a skew network. Shallow trees generally exhibit more antichains and a tighter bound on the set of

vertices that other vertices may reference. Sheep clusters related elements better than a naive sorting

heuristic, because it does not cluster unrelated elements in common cases where a sorting heuristic

would. In dense graphs, Sheep devolves to a sort.

One consequence of the above is that for edge partitions, Sheep usually divides the edges of high-

degree vertices and keeps the edges of low-degree vertices together. This is because Sheep maps

(x, y) ∈ GE to the lower vertex x ∈ subt(y) in T, which is also the lower-degree vertex if P is a

degree order. Therefore, the edges of the high degree vertices are spread across T, whereas the edges

of the low degree vertices are concentrated in the periphery and leaves of T. Due to the clustering

property described above the peripherals are usually independent and well-localized. This result is

intuitively similar to the high-degree vertex partitioning methods used by GPS 107 and PowerLyra29.

3.5 Evaluation

We evaluate Sheep to demonstrate the following claims:

• Sheep scales in the following ways:

– parallel processing on one machine (Section 3.5.2),

– out-of-memory processing on one machine (Section 3.5.2), and

– parallel processing in a distributed environment (Section 3.5.3).

• Sheep is faster than other partitioners on large graphs (Section 3.5.4).

• Sheep’s partitions are competitive and are improved by better vertex orders (Section 3.5.5).

We compare Sheep to results published in KDD’14 22, which evaluated METIS, PowerGraph,
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and both vertex and edge streaming Fennel on the edge balanced minimium communication vol-

ume partitioning problem. Fennel 120 is a good representative for streaming partitioners, because it

is a simple per-vertex or per-edge loop that considers each partition for each element and chooses

the partition that minimizes a special cost function. This design is typical of streaming partition-

ers 100 115. We contacted the authors to ensure that our results can be accurately compared. Fennel is

called “IC” in Bourse’s results, but we have confirmed this is a modification of Fennel to optimize

communication volumes instead of edge cuts.

In addition to these graphs, we added a few others to cover interesting cases. The Twitter and UK

Web graphs are popular billion-edge networks for graph systems evaluations, and the High Energy

Physics coauthorship network is a well known complex networks dataset. We obtained most graphs

through the Stanford Large Network Dataset Collection77. Table 3.1 summarizes these graphs.

3.5.1 Implementation and Setup

We implemented Sheep in C++ using LLAMA 83, an open-source graph storage library. LLAMA

is based on the venerable compressed sparse row (CSR) representation, but allows mutability, and,

for read-only algorithms like Sheep, it adds little overhead relative to conventional CSR implementa-

tions. It is not distributed, so for distributed tasks we simply open LLAMA subgraphs in different

name n = |V| m = |E| file size reason
HEphysics95 7,610 15,751 189KB fig. 3.13
com-youtube 1,135k 2,988k 36MB bourse
cit-patents 3,775k 16,519k 198MB bourse
com-liveJ 3,998k 34,681k 416MB bourse
soc-liveJ 4,848k 68,735k 828MB fig. 3.3
com-orkut 3,072k 117m 1.4GB bourse
twitter_rv 42m 1,468m 17.6GB scale
uk_2007_05 20 106m 3,739m 44.9GB scale

Table 3.1: Graph datasets used in this evaluaধon.
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processes. Sheep uses the MPI map-reduce library both for distributed sorting and for the tree re-

duction operation described in Section 3.4.2. However, Sheep can fall back on a parallel filesystem

for inter-process communication if MPI is not available.

Sheep uses CSR for most variable-length data structures to reduce allocator overhead. However,

a tree can be serialized as an array of parent pointers, so this representation is preferred for inter-

process communication. As with many iterative graph algorithms, the inner loop of Sheep is perfor-

mance sensitive, so it was important to optimize our union-find implementation and to use vertex

isomorphisms between data structures for fast comparison in the order P.

Typically algorithms that process an out-of-memory graph in a given order should first sort and

serialize the graph in that order. However, for Sheep it is more efficient to divide the graph into

in-memory working sets and then process each subgraph as-is. Because each intermediate tree is a

partial suborder of the total order P, and because these trees are merged and reduced in order P, in a

sense Sheep implicitly conducts its own external merge sort.

For single machine experiments, we use a 6-core Intel i7-970 at 3.20GHz with 12GB of RAM

and a Samsung 840 Pro SSD. For distributed processing, we use a cluster of Dell PowerEdge M915

servers; each has 64 AMD Abu Dhabi cores at 2.30GHZ with 256GB of RAMand 41.25GBps In-

finiband. The local disk is not measured, because all our cluster benchmarks are hot cached. Graph

input files are binary 96-bit edge lists, as in the Graph500 benchmark92, but none of the graphs in

this study exceed four billion (32-bit) vertices. LLAMA itself is a 64-bit CSR system. In distributed

experiments we first copy the graph to local storage on each node, but we do not include the copy

time because it is not a feature of the algorithms and may vary greatly between data center archi-

tectures. We do however include graph file ingest times, because distributed ingest is an important

feature of distributed algorithms and is measured in Graph500.

Bourse et al. did not evaluate runtime, so we measured timings for several competing partition-

ers. There is no public Fennel implementation, but it is a simple algorithm, so we implemented the
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versions in Bourse’s study. We implemented both edge streaming Fennel and vertex streaming Fen-

nel with an initial CSR ingest. Despite the ingest time, Fennel’s vertex streaming is an order of mag-

nitude faster than its edge streaming, because the critical partitioning work isO(kn+m) rather than

O(n + km), where k is the partition count. Because Bourse gives quality results for both versions

of Fennel, we evaluated vertex Fennel to privilege Fennel’s timing results. Vertex-streaming Fennel

would be even faster with a pre-sorted vertex adjacency list, but so would Sheep, and we want to use

the Graph500 standard input format.

We ran METIS with default settings. By default METIS is an edge cut partitioner, but it accepts a

communication volume minimizing goal with some time overhead. Whether this actually improves

the volume varies with the graph60. We timed METIS without this option because it slows down

METIS and does not always improve its quality, and our quality results come from Bourse. METIS

requires that adjacency lists have dense vertex IDs (i.e., n = max(id)), so we privileged METIS

further by providing it this format.

The PowerGraph partitioner is deeply integrated with the PowerGraph bootstrap process, so it

would not be fair to take timing results directly from PowerGraph. We do, however, include quality

results for PowerGraph from Bourse.

3.5.2 Single-machine Scaling

Figure 3.3 plots the runtime of Sheep on our commodity machine for a variety of input graphs for

one and six parallel workers. As expected, single-worker Sheep’s runtime is linear in the size of the

graph and additional workers speed it up. The speed up is relatively poor for small graphs, but it

improves with larger graphs. We will see this trend in the cluster setting as well. This is a common

pattern in parallel algorithms, but the cause here is especially interesting.

Figure 3.4 shows a detailed breakdown of runtime versus the number of workers for Orkut, the

largest of the graphs shown in Figure 3.3. The load time represents the time to ingest into the in-
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memory CSR, the sort time measures computing the global degree order, the “map” time measures

construction of the intermediate tree from the initial subgraphs, and the reduce time measures the

distributed reduce that combines the intermediate trees into a final tree. The actual tree partitioning

step takes less than 200ms and is not distributed, so we ellide it for visibility. We observe that, while

the sort and reduce costs are not insignificant, scaling is limited because the load and reduce times do

not scale linearly in the number of workers. This is surprising, because each worker processesm/k

edges, and the algorithm is near-linear.

The cause of this limitation is imbalance in the underlying graph structure. If we divide a graph

edge list into w random parts, then in expectation, each part containsm/w edges but some n′ ver-

tices, where n′ is a function of the degree distribution and is generally greater than n/w. This is not

an implementation detail but rather a fundamental property of distributed graph algorithms that

divide the graph into subgraphs. Additionally, there is no guarantee that the input edge list is ran-

domly distributed, and in fact, processes that produce edge lists typically exhibit locality. Therefore,

there is some skew in the number of vertices represented in each subgraph, although this effect is less

significant. This is not an instance of the partitioning chicken and egg problem – random hashing

solves this. However, because this problem is specific to certain graphs and diminishes with scale, it

is generally not worth randomizing the input.

When graphs exceed the memory of a single machine, Sheep scales by dividing the graph into

memory-sized working sets. For example, the undirected Twitter graph is approximately 23GB in

CSR, and therefore 1.9x the memory of our commodity machine. If we break the graph into 10 parts

we can run 2 tree constructions simultaneously in memory and partition Twitter in just 7.5 minutes.

Compare this result to our in-memory Orkut results. The Twitter graph is approximately 12.5 times

the size of the Orkut graph, and 7.5 minutes is approximately 25x the runtime of Orkut with 2 work-

ers, producing a factor of 2x overhead. Since Twitter is out of memory and Orkut is hot cached, this

overhead is entirely expected and seems reasonable.
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Twitter fits in memory on our 256GB cluster machines. Figure 3.5 plots the runtime of Sheep on

Twitter versus the number of parallel workers on a single cluster machine. Twitter is large enough

that we see serious parallel scaling in both our load and map times, such that the distributed reduc-

tion becomes the limiting factor, as predicted by the complexity equation in Section 3.4.2. In fact,

for graphs as large as Twitter our ingest scales better than 1/k, because CSR ingest requires a partial

edge sort. Using 18 cores we load and partition this graph in just 2.8 minutes. In comparison, Fennel

takes over 20 minutes, and METIS takes hours.

3.5.3 Distributed Scaling

Of course, for out of core graphs we are inevitably interested in distributed scaling. Figure 3.6 plots

time versus increasing workers and nodes for Sheep on the 3.7 billion edge UK Web dataset 20. While

our single node time is quite reasonable (less than 8 minutes), adding more cores does not produce

linear scaling. The ingest step does not reliably improve, and the reduction step is surprisingly ex-

pensive. The underlying cause of this is that we are badly thrashing the various caches of the 256GB

NUMA node; the reduce, in particular, involves many inter-process buffer copies.

As Sheep is distributed, it can scale to more machines to relieve memory pressure. The addition

of just one machine improves the runtime even when the total core count is held constant. The x-

axis labels of CxM signify C cores onMmachines. 3x2 cores is significantly faster than 6x1 cores

because, unsurprisingly, the data ingest is faster. With 12x2 cores we get almost twice the perfor-

mance of 24x1 cores, not only because ingest is faster, but also because we relieve the memory burden

of buffer copying in the reduce step. Note also that 6x4 cores introduces no overhead over 12x2, so

in our data center it is practical to simply ignore single-machine scaling and instead launch Sheep

horizontally across available machines.

Sheep, like any distributed algorithm, has counter-scaling costs that eventually cause its perfor-

mance to approach an asymptote. The eventual indivisibility of the graph and the growing cost of
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the reduce tree must eventually prevent Sheep from leveraging additional resources. It is also clear

that optimal performance requires some parameter tweaking with respect to the graph size and fea-

tures of the data center architecture. However, even with suboptimal parameters Sheep is extremely

fast relative to other partitioners.

3.5.4 Comparative Time

Next we compare Sheep to other partitioning algorithms. Figure 3.7 returns to Orkut on our com-

modity machine and plots runtimes for the various partitioning algorithms as a function of different

numbers of partitions. First, note that Sheep is invariant to the number of partitions; not only is

our tree partitioning step invariant to the partition count, but the partitioning is a trivial fraction

of the runtime. Other partitioners evaluate multiple partitions for each element, so their times scale

with the number of partitions. Nevertheless, at the scale of the Orkut graph, Fennel is a reasonable

competitor for Sheep, while METIS is comparatively slow.

We now reexamine Figure 3.5, which plots time for Sheep on Twitter versus the number of par-

allel workers on a single cluster machine. Compare to Figure 3.8, which plots time for Fennel on

Twitter versus the partition count on a single cluster machine. Sheep is invariant to the partition

count, and Fennel is not a distributed algorithm. We measure our own implementation of Fennel,

but Tsourakakis et al. report a similar Twitter time of 40 minutes 120. We were unable to get METIS

to partition in-memory on our 256GB machines, but using 1TB, Tsourakakis reports 8.5 hours.

We observe that Sheep is many times faster than Fennel, primarily, but by no means entirely, be-

cause of rapid data ingest. But even if we exclude the ingest, Sheep is 2.4x faster than Fennel at 30

partitions, because Sheep is insensitive to the partition count. This ingest-free comparison is quite

unfair to Sheep, because rapid ingest is a major advantage of a fully distributed partitioner. Note

that our Fennel implementation’s ingest supports multithreading, so this advantage is not simply

due to parallelism. Fundamentally, it is cheaper to build several small CSRs than one large one.
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Figure 3.9 plots the runtimes of various 2-partitioning algorithms at different input scales; this is

the least favorable comparison for Sheep. For smaller graphs Sheep and Fennel run in essentially

the same time, suggesting that both algorithms are data-bound. We see the same result when 2-

partitioning Twitter if we discount ingest times, but at no point does Fennel significantly outper-

form Sheep. However, Fennel is harmed by growing partition counts, and on larger graphs, Sheep

benefits from rapid parallel ingest.

On small graphs, where METIS is a viable option, the partition quality of METIS and similar

multi-level techniques are on average much better than other methods. Since METIS is almost two

decades old, we think that small-graph partitioning is not currently an interesting problem. We cre-

ated Sheep to target larger graphs, and on these graphs, Sheep is much faster than other partitioners.
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Figure 3.10: Edge-parধধoned communicaধon volumes (ECV) versus # parধধons on com-LiveJournal.
ECV may be thought of as a count of duplicate verধces.
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Figure 3.11: Edge-parধধoned communicaধon volumes (ECV) versus # parধধons on Orkut.
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3.5.5 Partition Quality

Figures 3.10 and 3.11 add Sheep results to partition quality results obtained from Bourse et al. The

y-axes are edge partitioned communication volumes as defined in Section 3.3.4. In Bourse’s plots

the y-axes are normalized bym, but this compresses the curves and makes it difficult to compare

partitioners within each plot. We do not reproduce balance factors from Bourse, because Sheep

and every other partitioner except PowerGraph achieve balance factors of less than 3%, which is the

default in METIS. PowerGraph’s balance is unbounded, and Bourse reports factors as high as 50%

on Orkut and over 200% on a Youtube dataset.

Sheep is clearly competitive with other partitioners. It is slightly better than even METIS on

bipartitioning problems, competitive with METIS up to 5 partitions, significantly better than other

streaming partitioners up to 10, and slightly worse than some partitioners at more than 20. Taken

together with our timing results, this shows that Sheep achieves its goal of producing competitive

partitions with significantly improved runtimes and scalability.

Fennel and Powergraph are both sensitive to the vertex input order, and the ideal orders for the

two are not necessarily the same. Bourse et al. address this issue by using a randomized input order.

However, this penalizes Fennel, as Tsourakakis et al. showed that a random order is approximately

pessimal for Fennel 120. To provide a more meaningful comparison, we include results from our

own Fennel implementation in the graph’s “natural” vertex ID order. While this may not be an

optimal input order for Fennel (the optimal order is unknown), natural vertex orders are often cor-

related with some stochastic process such as a walk, and Tsourakakis argues that this often makes

them appropriate for streaming. We tested Fennel with degree and reverse degree orders, but these

gave worse results. Our Fennel implementation performs similarly to implementations reported

elsewhere. It produces vertex partitions that are then transformed to edge partitions by Bourse’s de-

gree weight and random assignment method 22. It may be possible to derive better partitions from

52



 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 0  5  10  15  20  25  30

E
d
g
e
 p

a
rt

it
io

n
 C

V

#-Partitions

Twitter partition costs

ordered fennel-VP
sheep

Figure 3.12: Edge-parধধoned communicaধon volumes versus # parধধons on Twiħer.

a well-ordered edge partitioned Fennel, but this is an order of magnitude slower than our vertex

implementation.

Figure 3.12 plots Sheep against our Fennel implementation on Twitter; these results are not from

Bourse. In this case the natural order of Twitter is unkind to Fennel, as Sheep outperforms it signif-

icantly. Nevertheless, this plot is similar to the Bourse plots if we assume that the natural order of

Twitter is “random” for Fennel, and that our implementation should behave like Bourse’s random-

ized fennel-VP. A well defined ideal vertex order is one of Sheep’s key advantages.

Sheep’s partition quality improves when it is provided with a lower tree-depth elimination or-

der. Our observations regarding complex networks predict “sequential” betweenness centrality

should improve over degree order (Section 3.4.3). Figure 3.13 shows how Sheep improves when us-

ing sequential betweenness order 57. The input graph is a small complex networks dataset observed

to disassemble more rapidly under betweenness attack than degree attack. As predicted, the tree-

depth improves from 754 in degree order to 459 using sequential betweenness. The partition quality
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improvement is significant and roughly proportional to both the depth and the attack quality im-

provement reported by Iyer 57. In fact, our results are comparable to METIS.

Unfortunately, sequential betweenness centrality is expensive to compute, so this exact method

is impractical. However, there are methods to approximate and parallelize betweenness, and there

are other efficiently-obtained centralities such as the k-core decomposition 35. Conversely, it may be

possible to derive useful centralities “in reverse” from low-depth elimination trees produced by e.g.,

METIS. While the importance of degree order is widely recognized in elimination trees, as far as we

know the observation that non-local analytic centralities may reduce tree-depth is novel. This is an

interesting line of research that we hope to address in future work.

3.6 Conclusion

Sheep is a graph partitioning algorithm that is many times faster than competing algorithms on

large graphs without sacrificing partition quality. Sheep scales to effectively partition multi-billion

edge graphs in as little as 4 minutes. Sheep’s partition quality is comparable to, or even better than,

METIS for small partition counts and competitive with streaming partitioners for larger partition

counts. However, we see Sheep’s most exciting contribution as the relationship it establishes be-

tween partition quality, tree decomposition theories, and analytic centralities. This is a rich space for

innovative theories and system designs.

Sheep is free and open source software and is available at https://github.com/dmargo/

sheep.

3.6.1 Limitations and Future Research

Sheep is an undirected communication volume partitioner, because its underlying theory works

with vertex separators. There is a similar body of theory for edge-cut tree decompositions, called
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carving decompositions, so it may be possible to derive an edge-cut Sheep algorithm. The edge cut

costs of our algorithm are unbounded and can be quite bad in practice, even though the communi-

cation volumes are consistently good. For edge-partitioned systems such as PowerGraph, an “edge

cut” is not meaningfully defined, so this is not obviously a problem. However, the fact that high cut

and low volume partitionings exist at all is interesting and a worthy topic for future research.

Sheep requires a good order to produce good partitions, but cannot easily create an order by in-

trospection of the graph, because it splits the graph. Sheep works best for natural graphs with a skew

degree distribution, such as “power law” graphs, because complex networks research shows that de-

gree orders attack these graphs. Skew graphs are common in contemporary large graph analysis. For

graphs with other distributions, such as finite element meshes, it may be possible to find an ordering

heuristic by reviewing complex networks research, but we reserve this for future work. However,

many of these graphs already have a rich history of successful partitioning methods such as planar

bisection, whereas interest in skew networks is more recent.

Sheep creates a small partitioned tree that identifies the partition assignment of any graph ele-

ment. This design is different from streaming partitioners, which place elements as they arrive, and

affects best practices to integrate Sheep with existing systems. For example, an analysis system might

ingest the graph, construct the tree, share it among nodes, and then direct each node’s ingested data

to the appropriate partition. If a placement step is necessary it should be trivially parallel, since the

elements can be placed independently in consultation with the partitioned tree.
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4
Graph Systems: Review

In the previous chapter we presented Sheep, a graph partitioning algorithm and implementation

that solves the partitioning “chicken and egg” problem. We motivated this problem with specific

references to contemporary graph analysis engines, including Giraph, PowerGraph, and GraphChi.

As it happens, these three systems are all examples of vertex-centric programming frameworks, a class

of graph analysis systems that have enjoyed recent research interest. In this chapter, we discuss the

research contributions and design principles of contemporary graph analysis systems. We review

vertex-centric programming systems, dataflow systems, sparse matrix-vector (SpMV) systems, and

graph databases in that order. The purpose of this review is to prepare for the systems metastudy in

the following chapter.

Most graph processing systems are broadly derived from Leslie Valiant’s Bulk Synchronous Paral-
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lel model 123. BSP divides a parallel computation into supersteps. In each superstep, tasks compute in

parallel, communicate with one another, and then arrive at a global synchronization barrier before

the next superstep. In a typical graph processing system, the tasks are vertex updates, the communi-

cations are messages passed along edges, and the barrier is one iteration of a converging process. For

example, one might implement a single-source shortest path algorithm by updating each vertex with

the shortest path broadcast from its neighbors until convergence.

However, modern graph processing systems have diverged from and contributed to the BSP

model in many significant ways, which we present throughout the chapter. Vertex programs (Sec-

tion 4.1) are the most common task decomposition, but we will also see edge programs, subgraph

programs, and systems that compose these tasks. Task decompositions imply data partitions and

graph partitioning is not trivial, so we will see different partitioning idioms coupled with novel

partition solvers. Because these inter-task data dependencies are not trivial, we will see new asyn-

chronoॺ scheduling idioms that relax the synchronous BSP barrier step. This “amorphous paral-

lelism” explains why general-purpose parallel dataflow systems (Section 4.2) are also efficient graph

analysis systems when fitted with an appropriate interface. Conversely, SpMV systems (Section 4.3)

leverage the deep history of high-performance linear algebra via a logical interface from graphs and

vertex programs to matrices and semirings. We summarize and discuss these themes in Section 4.5.

4.1 Vertex Programming Systems

Pregel 85 is a programming and computational model designed to be implemented on a distributed

cluster. It introduced the concept of vertex-centric programming, in which a graph algorithm is ex-

pressed as a computation that runs iteratively on every vertex. In each iteration a vertex receives

messages, computes a result, and then can send messages to its neighbors. The authors show that

this model is sufficient to express many graph algorithms in clear, terse language. For example, a ran-
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dom walk algorithm receives messages containing the incoming walk probability from its neighbors,

updates its own probability, and then sends messages that divide its probability among its neigh-

bors. The path to a distributed implementation of Pregel seems straightforward, because the model

is built up from BSP and message passing; however, the authors did not publish a reference imple-

mentation. In this respect, Pregel and Giraph (below) are analogous to MapReduce and Hadoop, in

that Giraph/Hadoop are production systems built using Pregel/MapReduce as a guideline.

Giraph 11 is Apache’s open-source implementation of Pregel. Giraph is a production system and

not a research project, so it is fairly faithful to Pregel’s specifications. One noteworthy caveat is that

Giraph is implemented on Hadoop MapReduce, but Pregel’s authors claim that MapReduce is an

unsuitable backend for graph algorithms, citing performance concerns. Consequently Giraph is

slow and, like Hadoop, served as a punching bag for early comparative evaluations. However, its

reputation was rehabilitated when Facebook announced that their internal modifications to Giraph

support computations over trillions of edges, an enormous scale by most standards. Most of these

modifications are practical, such as multithreading support and efficient object serialization. How-

ever, a few address the same research issues as the systems described below, such as an edge-centric

processing model and “splitting” vertices with many incoming messages.

GraphLab is a framework that was originally authored 82 for scalable parallel machine learning,

because Hadoop was not sufficiently expressive for complex ML tasks, which often use graphical

models. With the explosion of interest in Pregel, GraphLab’s authors generalized their system to

vertex-centric programming 81, and in time became an important competitor to Giraph. GraphLab

is not strictly faithful to the Pregel model and explored different conventions as to how data is trans-

ferred between vertices, how vertex programs are scheduled, etc. In particular Graphlab supports

asynchronoॺ execution, in which vertex programs are not scheduled in iterative supersteps, but are

instead scheduled whenever new messages are available. This scheduling policy introduces indeter-

minacy but, in practice, quickly converges to the correct result. Scheduling flexiblity is achieved by
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associating an RW lock with each vertex and then simply adopting different lock protocols. The

authors use techniques such as vertex coloring to help produce schedules with less lock contention.

PowerGraph45 is the second version of GraphLab, introducing several key research concepts that

made it one of the first major alternatives to Giraph and a mainstay of comparative evaluations for

several years. Prior vertex-centric systems distributed their work by assigning vertices to workers and

then unicasting messages across cut edges between workers. In contrast, PowerGraph distributes

itself by assigning disjoint sets of edges to workers and then duplicating and synchronizing state

across cut vertices. The authors argue extensively that this model is better suited to social networks,

which invariably feature some high-degree vertices that create imbalance if they are assigned to any

one worker. This argument influenced the design of later systems, many of which adopt this model

or some further extension thereof. PowerGraph also introduced Gather-Apply-Scatter (GAS), a

new formal model for vertex-centric programs intended to aid program decomposition into discrete

tasks for the benefit of the framework. However, the GAS model was more difficult to program and

for that reason was not widely adopted in production systems.

Graph programming frameworks need to support the safe deployment of correct application-

specific graph programs. Alternative scheduling idioms that violate well-understood BSP conven-

tions can complicate this goal for both the system and the programmer, who has to learn new con-

ventions. GRACE 125 is a vertex-centric programming framework that eases the transition between a

synchronous prototype and a high-performance asynchronous deployment. GRACE’s vertex pro-

grams are marked up with explicit isolation and consistency guarantees that impose restrictions on

the schedule. The programmer can relax these guarantees to gain access to additional programming

tools such as priority scheduling. GRACE then chooses a scheduler that is appropriate for the pro-

gram’s synchrony guarantees.

Ligra 112 is a parallel shared-memory graph processing framework with an unusual programming

interface. It is based on simple map operations with support for vertex subsets and by extension in-
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duced edge subsets. This idiom is well-suited to traversal algorithms in which only a small subset of

vertices are active in each step. Ligra is intentionally simple and not distributed, because its authors

argue that modern servers will have enough memory for the foreseeable future. Ligra+ 113 is a logical

extension of this design that adds standard compression schemes, such as byte codes, to Ligra.

Giraph++ 119 is a research fork of Giraph that introduces a more flexible subgraph-centric pro-

gramming model. This model allows vertices in the same partition to bypass the message passing

and scheduling subsystem by communicating through programs that operate over partitioned ver-

tex sets. Giraph++ distinguishes between “boundary” vertices that communicate between partitions

and “internal” vertices whose entire communication can be handled by subgraph programs. An im-

portant result for practical system building is that this model’s performance strongly depends on a

cut-minimizing partitioning. Giraph++’s runtime performance varies by as much as 25x between

traditional hash partitions and cut-minimizing partitions; however, Giraph++’s distributed imple-

mentation of the METIS partitioner is itself a significant preprocesser overhead. This is a textbook

example of the partitioning “chicken and egg” from Chapter 3.

Giraph++ is still “vertex-centric” in that subgraph programs operate over sets of vertices. Blo-

gel 127 is a system that promotes subgraphs to first-class citizens of its programming model: sub-

graphs can store their own state, and address and communicate with each other. This model allows

authors to express graph algorithms at a higher level of abstraction and still retain the advantages

of a framework, such as distribution and fault tolerance. The flagship application for this model is

Djikstra’s shortest path algorithm, whose priority queue structure is difficult to express as a vertex

program, but as a subgraph program is straightforward. Blogel is also sensitive to partition quality

and implements several application-specific partitioners based on Voronoi diagrams and 2D spatial

coordinates. These heuristic partitioners do not minimize cuts as well as METIS, but they introduce

much less preprocessor overhead.

The disadvantage of PowerGraph-style edge partitioning is that a cut vertex spans several ma-
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chines and is therefore a multicast synchronization, whereas a cut edge is merely a unicast. There-

fore, cutting vertices amortizes traffic only for vertices with many edges. PowerLyra 29 is a system

that hybridizes edge cut and vertex cut designs by explicitly distinguishing between low-degree and

high-degree vertices according to a user-defined threshold. High-degree vertices are replicated as

in PowerGraph and use the same GAS computation engine. However, low-degree vertices pass

through a streaming partitioner to reduce replication, and their computation engine tries to aggre-

gate GAS steps that are co-located on the same machine.

GraphTwist 128 further pushes the distinction between different kinds of vertices into the com-

putation model. In an asynchronous scheduling model where vertices are run whenever new data is

available, high-degree vertices are more likely to receive updates, and are therefore scheduled more

frequently and emit more updates. GraphTwist formalizes this by quantifing the utility of each

computation and pruning low-utility computations from the schedule. This affects the approxi-

mate result but, as with asynchronous scheduling, the result correctly converges in practice. In addi-

tion, GraphTwist aggressively indexes and partitions the graph along multiple dimensions, such as

edge weight, and then exposes all of these partitions as potential subgraph program targets.

Asychronous vertex programs still encounter the occasional global synchronization point, such

as when they test a stop condition that aggregates every vertex. Giraph Unchained 50 is a research

fork of Giraph that tries to push asynchronous execution by removing as many global barriers as

possible. This is achieved by simply replacing most global barriers with machine-local barriers that

test the “logical superstep.” Such a barrier can aggregate the local vertices and test whether a global

barrier is necessary.

4.1.1 Streaming Systems

WebGraph 21 is an early but impressive system in which streaming is used to support efficiently com-

putable graph compression techniques. The authors’ key insight is that graph algorithms are fre-
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quently bound by data bandwidth, so compression improves performance by leveraging unused

CPU cycles to speed up the data transfer rate. WebGraph adapts standard sparse compression tech-

niques to graphs, such as universal integer codes whose statistics are fit to the input graph’s power

law constants. It also exploits community structure by coding vertex neighborhoods as differences

relative to similar vertices within a streaming “window.” These techniques work best when the

graph’s vertices are sorted such that connected and topologically similar vertices are near one an-

other. This requirement is similar to partitioning, and WebGraph uses a label propagation sorting

algorithm that is similar to a label propagation partitioner.

GraphChi72 is a spin-off from the GraphLab group that emphasizes efficient single-machine

streaming in place of distributed computing. It uses a “window” model like WebGraph, but its win-

dows are instead discrete partitions that it manages as explicit working sets. GraphChi naively parti-

tions the vertex range and assigns edges to the partition of their target vertex such that each working

set fits in memory. Each partition is loaded in order, and a full pass over the partitions is equivalent

to one iteration of a vertex-centric program. Conceptually GraphChi performs the role of every ma-

chine in a distributed vertex programming system, one machine at a time. The vertex programming

model gives formalism and structure as to how data passes between working sets.

A major weakness of GraphChi is that the input graph requires substantial ingest processing

to fit into the window model. X-Stream 106 is a GraphChi competitor that focuses specifically on

arbitrarily-ordered edge streams without imposing any kind of vertex partition structure. This is

made feasible by an edge-centric programming model that expresses graph algorithms in terms of

how to pipe data between vertices. This model cannot express some operations such as per-iteration

vertex initialization or finalization, so X-Stream supports mixed edge and vertex-programming id-

ioms. In implementation both GraphChi and X-Stream are most concerned with how to parallelize

intra-partition computation and how to prefetch the next working set.
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4.2 General Dataflow Systems

GraphX 126 46 is a spin-off from the GraphLab group that implements vertex programming on top

of Apache Spark. Because GraphX exports a substantially different interface than its underlying

system, it must exploit the vertex programming model to bring performance in line with specialized

graph systems. The authors of GraphX reason about vertex programming in terms of optimizations

to recursive joins and view maintenance. Recursive joins occur because, in each iteration, vertex

programs pull and push values from and to their neighbors by joining the edge table to itself from

targets to sources. View maintenance occurs because updates to vertex and edge value tables are only

partial if some vertices are not activated or updated in every iteration. For many other problems

GraphX adopts solutions from PowerGraph, such as edge partitioning with cut vertices.

The recursive join described above makes graph algorithms difficult to author and run efficiently

in dataflow systems that do not support and optimize looping flow constructs. Naiad93 is a general-

purpose distributed dataflow system that supports efficient streaming through looping flows. Na-

iad’s authors identify that their primary bottleneck for streaming loops is the time spent coordinat-

ing the end of a loop iteration across machines; this is analogous to the global barrier at the end of

an iteration in synchronous graph engines. Naiad solves this problem by modeling dependencies

between iterations and using virtual timestamps to synchronize dataflows between iterations.

Galois68 96 is a general dataflow system that, like Naiad, uses a dataflow graph programming

model. Unlike Naiad, Galois was originally designed for large shared-memory machines and is fo-

cused on efficient parallelization instead of distribution. Galois is an “optimistic” paralllelization

system that tries to speculatively extract parallelism from “amorphous” programs in which paral-

lelism is not obvious. This model is unsurprisingly well-suited to graph-structured input data be-

cause parallelization opportunities vary with the input graph’s structure. Galois performs well and

has become a popular comparative evaluation target even for specialized graph systems.
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4.3 Abstract Algebraic Systems

There are many useful equivalences between graphs and sparse matrices, as previously discussed in

Chapter 2, Section 2.4 and throughout Chapter 3. Unsurprisingly, there are many similar equiv-

alences between graph algorithms and abstract algebraic algorithms. For example, a shortest path

algorithm is equivalent to matrix-vector multiplication in the semiring where+ ismin, and ∗ is+.

Pegasus 59 is a graph mining system for Hadoop based on generalized matrix-vector multiplication.

The key component of Pegasus is an efficient Hadoop implementation of blockwise multiplication;

the graph’s edges are grouped by, mapped, and reduced in terms of blockwise submatrices. This

brings a staple high-performance computing technique to Hadoop that would be difficult for a non-

expert to realize in a hand-rolled implementation.

GBASE 58 pushes this block model further by explicitly partitioning the graph into dense and

sparse blocks (e.g., by reordering and diagonalizing the adjacency matrix). Both the dense and sparse

case are favorable for standard compression tools. Compression significantly reduces the data band-

width of block transfers and thereby improves performance. GBASE also associates metadata in-

dices with each compressed block so that targeted queries, such as neighborhood lookup, can search

through a limited subset of blocks.

GraphMat 116 (now rebranded as Intel GraphPad) is a compiler that transforms vertex-centric pro-

grams into abstract algebraic operators that run on a dedicated sparse matrix-vector multiplication

(SpMV) backend. This is made feasible by decomposing the vertex programming model into rigid

send, process, reduce, and apply steps, in which the algebraic structure of the program is obvious.

Unsurprisingly, a mature SpMV backend dramatically outperforms Hadoop and is competitive

with some of the best systems, such as Galois, and even hand-optimized code. GraphMat was an

important demonstration of the value that high-performance computing research into generalized

SpMV has to offer to the graph analysis community.
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Historically, the Basic Linear Algebra Subprograms (BLAS)73 specification has been critical to the

development of interoperable numerical linear algebra systems. In contrast, graph system interfaces

vary greatly; even “vertex-centric programming” refers to a wide range of models whose frameworks

impose different restrictions and guarantees. The Graph BLAS 87 is an evolving interface specifica-

tion whose model is greatly influenced by generalized SPMV. Numerous projects implement and

contribute to the GraphBLAS, such as GraphMat, CombBLAS 26, D4M64, Graphulo41, and GPI 36.

4.4 Graph Databases and Languages

Graph databases are distinguished from analysis engines in that they focus on the online point query

and storage of dynamic graphs, typically with associated data properties, a query language, and some

transaction support. These features come with high performance costs that must be optimized for

point query workloads, often at the expense of big data analyses. For example, graph database par-

titioning schemes typically favor load balance at the expense of overall cut minimization, because

load balance affects query throughput, and the cut cost of a point query is bounded. The traditional

analysis workflow is to export a static database dump into some other framework. However, many

recent analysis frameworks have tried to improve this workflow by supporting streaming or other-

wise dynamic graph data. Insofar as this brings online query and dynamic storage support to graph

analysis systems, the difference between analysis and database systems seems to be diminishing.

TAO24 is a database caching layer that imposes graph semantics and graph-aware caching over

Facebook’s RDBMS backend. In operation, Facebook is prone to hotspot phenomena that follow

from its social and temporal network structure, such as when a “celebrity” posts an update that

is then read by their many friends. Therefore, TAO uses simple hash-based partitioning to equi-

tably distribute this load across cache servers. Hash partitioning necessarily causes data to span many

cache servers, so TAO implements a consistency model for those servers in terms of graph semantics.
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The substitution of graph semantics for relational semantics allows programmers to reason about

view consistency from the perspective of the social network.

GreenMarl 54 is a language for expressing graph algorithms coupled with its own compiler and

implementation. It is distinct from GraphMat in that it compiles to its own graph primitives instead

of generalized algebra. In particular, GreenMarl has efficient primitives for generalized BFS and DFS

traversals, which are a typical weakness of algebraic systems.

LLAMA 83 is a dynamic graph storage layer, whose author’s key insight is that the friction be-

tween dynamic graph storage and high-performance analysis is caused by the immutability of CSR

representations. Therefore, LLAMA provides a mutable CSR by using mutable arrays that are sim-

ilar to log-structured merge trees. An important observation is that deleting a vertex is particularly

pernicious and requires special handling on merge operations to keep the whole graph represen-

tation in a valid state. Even though LLAMA is mutable and persistent, its analysis performance

is competitive with in-memory streaming analysis frameworks such as GraphChi and XStream.

Sheep’s reference implementation is built on top of LLAMA (Chapter 3), and we also provided help

with LLAMA’s evaluation83.

Gremlin 105 is a graph traversal language backed by a JDBC-esque interface called TinkerPop. Tin-

kerPop generalizes graph databases that support a “property graph” model that assigns key-value

properties to vertices and edges. These properties allow the interface to read and write generalized

data such as vertex labels or edge weights. Gremlin is a functional language that programs a graph

traversal virtual machine that operates on the property graph model. In principle Gremlin can pro-

gram vertex-centric frameworks that export the property graph model, but only Giraph does so.

Some databases that implement the property graph model include Neo4j , DEX/SparkSee , Hy-

perGraphDB , InfiniteGraph , OrientDB , and Titan . Neo4j is the most commercially successful

of these, so it sometimes appears in the research literature as a comparative punching bag. Neo4j

and its competitors are typically characterized as “NoSQL” databases whose traversal models solve
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the recursive join problem that is inherent to relational graph representations. Most of these are

commercial production systems, and a review of their specific features is outside the scope of this

dissertation.

The Resource Description Framework (RDF) was originally a metadata standard, but has since

evolved into a more general model for conceptual knowledge management and data exchange. RDF

records are subject-predicate-object triples, and it is conventional to depict subjects and objects as ver-

tices, and predicates as edge labels, in a directed graph model. Thus, RDF storage and query engines

can be thought of as graph databases, although the full field of RDF research is not generally graph-

related 8. Similarly SPARQL, the standard RDF query language, contains pattern and traversal syn-

tax that can express e.g., subgraph isomorphism problems, although most SPARQL syntax operates

on relational attributes. RDF engines began as adapters to relational systems, but over time have

adopted more graph-aware query optimizations 111. The RDF community is particularly noteworthy

for creating many large publicly available datasets, and a few of these turn up as graph datasets in the

metastudy in the following chapter.

4.5 Common Themes

Vertex-centric programming is more of an idiom than a proper model, and the actual programming

models of graph analysis systems vary greatly. Researchers actively experiment with these models,

because their restrictions and guarantees substantially influence the performance, parallelization,

and distribution of the backing system. Vertex-centric models decompose a graph algorithm into

many small task units with modest restrictions that are well-suited to fine-grained scheduling and

message passing systems. If the model is more restrictive, as in PowerGraph and GraphMat, then

the system can exploit more knowledge about the program and, in particular, can exploit high-

performance computing techniques such as generalized SpMV. However, a coarser and less restric-
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tive model such as subgraph programming lets the programmer author efficient algorithms that are

difficult in the language of abstract algebra, such as Djikstra’s algorithm.

Most importantly, the programming model’s guarantees determine how tasks can be scheduled.

Scheduling in graph analysis systems has trended strongly towards asynchronous execution, and

consequently, models have relaxed their guarantees. Global barriers create stalls, and asynchronous

execution relaxes the need for global barriers; systems such as Giraph Unchained and Naiad mini-

mize these stalls by other means.

However, asynchrony is also an algorithmic technique that reduces the “real” work done by the

analysis system. Asynchronous systems converge more quickly because they compute on fresh data

and do not restrict themselves to stale data from the previous superstep. Systems such as Graph-

Twist try to generalize and formalize this, but Djikstra’s algorithm can also help us understand the

importance of using the “best” data available. Djikstra’s algorithm uses priority to prune path com-

putations that would be explored and later discarded by overly generic algebra methods. Exten-

sions such as the A* algorithm improve this pruning by exploiting constraints on the graph’s topol-

ogy 51. Insofar as asychronous scheduling is driven by edge messages and therefore topology, it may

be viewed as topo-statistical prioritization and deprioritization of fresh and stale data.

At the other extreme, recursive joins on edge tables produce far too many intermediate values

for scalable graph analysis. Insofar as such a join corresponds to one synchronous iteration, they are

one of the best examples of an overly generic method that explores too much and prunes too little.

Systems that use joins, such as GraphX and most RDF systems, must use graph-specific specializa-

tions to realize joins at scale. Graph exploration and traversal concepts, such as the programmable

“traversers” seen in Gremlin and Neo4j, are a common method to surpass joins.

All graph analysis systems suffer from data bandwidth bottlenecks as a direct result of the “ran-

dom” topology access patterns of unsorted graph data. Superficially the bottleneck’s location and

its solution may seem to vary with the system, but fundamentally it always reduces to a partitioning
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or equivalently a sorting problem. Systems such as PowerGraph, PowerLyra, Giraph++, and Blogel

explicitly invoke a partitioner as part of their ingest phase. Other systems such as Ligra++, GBASE,

and WebGraph improve data bandwidth by using compression, but in each case their compression

ratio depends on a partitioning or sorting step. Some systems, such as GraphChi and Galois, view

sorting as a wholly independent preprocessing step. However, it is crucial to understand that all

graphs are “sorted” in the order they are naturally produced and distributed throughout the research

community. Insofar as natural orders may be optimal or pessimal, it is not experimentally sound to

disregard them; this observation is discussed in-depth in the following Chapter.

Differentation between vertices is a common cause of bandwidth problems and a common so-

lution to them. High-degree vertices create hotspots that may imbalance workers or create obstruc-

tions for traditional cut-minimizing partitions. Low-degree vertices are often numerous relative to

their computational importance and can overwhelm a fine-grained system that does not batch or

prune them. If the graph follows a power law, then both kind of vertices will occur as a significant

fraction of edge endpoints. Systems such as PowerGraph, PowerLyra, and GraphTwist explicitly

differentiate vertices, but every partitioning or sorting system “differentiates” vertices insofar as a

feasible cut-minimizing solution must do so.

With so many diverse systems, it is naive but also edifying to ask: which ideas are winning? In

terms of performance, the best systems are algebraic systems such as GraphMat and dataflow sys-

tems such as Galois. Consequently, commentators have cast doubt on the success of vertex-centric

programming systems, because they are outperformed by systems from more mature research fields.

However, the original Pregel paper specifically introduced an attractive programming model and not

a reference system. Systems researchers are not using vertex programs to pursue performance: they

are pursuing performance so they can write vertex programs. Thus, the fact that other mature fields

are now exploring the model is a testament to its success.

70



For better or worse, benchmarks shape a field.

David Patterson

5
Graph Systems: Metastudy

We will now study how researchers evaluate contemporary graph systems in published research.

The review of systems in the previous chapter presents hypotheses, conclusions, and other claims

as to the functions and roles of these systems in the research field. Ostensibly, these statements are

supported by evaluations that affirm, e.g., whether a novel feature “is a performance improvement.”

We will formally investigate the contents of these evaluations, identify weaknesses, and then evaluate

whether or not these weaknesses are real problems in practice.

First, we conduct a metastudy of benchmarks and datasets used by contemporary graph systems

evaluations. We compile a corpus of evaluations, we disambiguate and enumerate references to

benchmarks and datasets, and we determine which are most referenced. Then, we identify features

of the most referenced benchmarks and datasets that present challenges for evaluations, and we also
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identify several recurring problems in evaluations throughout the corpus. We then evaluate whether

or not these issues are significant enough to meaningfully affect published results. We show that, in

a representative case, seemingly innocuous features, such as a graph’s vertex IDs, can affect runtime

up to a factor of two. We finish with a set of recommendations for future systems evaluations.

5.1 Introduction

The large number of contemporary graph systems (Chapter 4) is naturally accompanied by a large

volume of comparative analysis; indeed, a “performance improvement” is the driving hypothesis

behind many research systems. Performance can be quantitatively defined as runtime, scalability,

power efficiency 39, or even user effort (e.g., lines of code). Improvement, however, is a more nebu-

lous concept that entangles baselines, benchmarks, generalizability, and experiment design.

McSherry et al. prompted a great deal of conversation about “improvement” with their 2015 in-

troduction of the COST metric 89. COST, or Configuration that Outperforms a Single Thread,

quantifies the relationship between the performance improvement and overhead of a parallel or dis-

tributed implementation relative to a single-threaded implementation. If a scalable system improves

performance faster than it introduces overhead, then it must have a finite COST at which the paral-

lel implementation outperforms the single-threaded one. However, the primary result of McSherry’s

study is that many published graph systems have infinite COST: there ॹ no configuration for which

these systems outperform a single thread!

COST is not presented as a robust benchmark survey so much as a disturbing demonstration of

how evaluation practices can affect our perception, understanding, and the conclusions we draw

from results. The issues raised by COST are simple and are widely known in principle, but in prac-

tice are not captured by a typical intra-comparative plot of runtime versus thread count. The de-

mand for scalable systems drives a demand for comparable, positive scaling results and ultimately
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biases our evaluations in ways that may mislead us. This observation has been a major inspiration

for the work we present in this chapter.

McSherry et al. addressed parallel scaling baselines and benchmarks, but said comparatively little

about data and evaluated only two datasets. However, Sebastiano Vigna discussed dataset issues in

an underappreciated opinion piece from 2007 titled “Stanford Matrix Considered Harmful.” 124.

The target of Vigna’s ire is a crawl of 300, 000 Stanford web pages that was used as a benchmark and

testbed by “a considerable set of papers in the literature.” Vigna presages McSherry when he notes

that his laptop can easily compute PageRank on such a graph, but he also identifies numerous ways

in which the Stanford graph differs radically from other web graphs.

Vigna argues that “the problem of computing PageRank is interesting...only if the size of the

matrix is large and if the type of the matrix is a web graph.” The graph’s “type” is significant because

it implicitly defines the graph’s structure (e.g., in terms of a statistical power law). Algorithms may

exploit these structures, and may be hindered by the absence of useful structures or the presence

of obstructing structures; however, if nothing else, graph structure always affects cache hit rates.

Vigna’s own WebGraph system exploits cache-efficient compression of redundant power law graph

structures, so with respect to his own research, the importance of graph structure is quite obvious.

In the following section we investigate how benchmarks and datasets are used in practice by

graph systems research papers. Unlike Sherry and Vigna we quantify our claims about the field over

a well-defined corpus, so we identify some “dark horse” issues that might otherwise go unnoticed.

Though we found no instances of the Stanford graph in modern research, many of the same issues

are present in popular datasets. Previous authors made no attempt to quantify the potential impact

these parameters may have had on published results, but we show that the impact is significant and

systematically biased.

We analyzed 65 papers describing graph systems, culled from a much larger corpus of thousands

of papers published in seven major conferences from 2011 to 2015. We show the de facto benchmarks
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and datasets that have emerged in this area, and we show systematic errors that are regularly com-

mitted in evaluations. In particular there is widespread disregard for the performance relationship

between popular benchmarks and the statistical properties of popular datasets, such as the cache

effects induced in different benchmarks by non-random vertex IDs. We hope this review will aid

future authors in devising more useful evaluations and better systems.

5.2 Systematic Paper Review

Any systematic review must begin with a research corpus. However, the volume of graph processing

research and its generality (i.e., pertaining to the class of “graph problems” rather than a specific

application) raises questions as to what criteria define a graph systems paper. For example, is an RDF

query engine that effectively solves a subset of subgraph isomorphism problems a “graph processing

system”? Our choice of venues in which we search for papers is similarly ambiguous.

We resolve that ambiguity by clearly stating our ideal corpus, which we methodically construct

as best we can. We want to review every paper that describॸ a graph processing system and wॷ pub-

lished after 2010’s Pregel, which ॹ generally regarded ॷ the first “vertex programming” system 85 and

a major motivator for recent research. A “graph processing” system is an implementation that explic-

itly operates on graph-structured data and produces analysis or query results, and therefore graphs

should be explicitly discussed in some associated paper. We impose no generality requirement on

such a system, and therefore, an implementation of a single-purpose graph algorithm is a graph pro-

cessing system. Conversely, a general-purpose processing framework that “can” implement graph

algorithms is not within our scope unless some paper explicitly discusses those graph algorithms.

We have tried to adopt a consistent method in our paper search, but ultimately our judgement

and expertise must play important roles in the search process. Inevitably, some distance will exist

between our limited experience and the diverse experiences of our readers. Though this could be
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Venue Years Total Graph Related Refers to System Presents System
GRADES 2013-15 38 35 28 12
KDD 2011-15 1051 386 103 6
OSDI 2012,14 67 28 13 3
PODS 2011-15 143 77 13 1
SIGMOD 2011-15 730 330 102 16
SOSP 2011,13,15 89 40 17 5
VLDB 2011-15 1118 482 162 33

Figure 5.1: Venues used in this study. A paper is “graph related” if it menধons graph or networks and nodes, verধces
or edges. A paper “refers to a system” if if contains a term from Figure 5.2.

construed as a sampling error or noise, the nature of such “error” changes with the expectations of

the reader. Rather, we encourage you to read this paper as an autopsy and diagnosis of some limited

subset of the graph processing community. The extent to which this diagnosis applies to the your

own research community is left to your best judgement.

5.2.1 Method

We began with the complete proceedings of the venues described in Figure 5.1 (3236 papers). We

chose those venues for their diversity, the availibility of their proceedings, and because we are famil-

iar with all of them and therefore reasonably qualified to assess them. We filtered these proceedings

for all papers that contained the terms “graph” or “network”, and any one of “node”, “vertex”, or

“edge” (1380 papers). This fits our requirement that the papers be explicitly about graph data.

We then created a list of popular graph processing systems (Figure 5.2) and searched for papers

that mentioned those systems. We looked through these results manually and retained any paper

that, in our personal assessment, met our definition of a graph processing system. Any additional

systems we discovered were then added to our search terms, and we repeated the process until it re-

turned no new results. Note that many papers discuss the same system, many papers name systems

outside our corpus, and many systems go unnamed; therefore there is not a one-to-one mapping be-
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APOLO Giraph++ MADlib Pregelix Symple
Arabesque GiraphUC MapGraph PSgL SystemG
Aster GPS Medusa RASP SystemML
Asterix GRACE Mizan REX Titan
BIDMat Graft MOCGraph Ringo TriAD
Blogel GraphBuilder Myria SAE TriAL
CANDS GraphChi Naiad SCAN++ TrinityRDF
Chaos GraphGen Neo4j SEDGE TurboGraph
CounterStrike GraphLab NOMAD Shark TwinTwigJoin
Dandelion GraphMat NSCALE SimSQL UDA-GIST
DEX GraphTwist OceanRT SociaLite UniAD
EAGr GraphX OptIQ SOCRATES UniQL
epiC GreenMarl PEGASUS SparkSee Vertexica
Galois HelP Petuum SPARTex Virtuoso
GBase Horton+ PowerGraph SpatialHadoop WOO
GEMINI KDT PREDIcT Stratosphere XStream
Giraph Ligra Pregel STwig YZStack

Figure 5.2: Terms used in this study. The italicized terms are the iniধal “seed” terms. Other terms were found by
recursive search (Figure 5.3).

tween papers and search terms. This process discovered 440 papers, of which we decided 77 are ex-

amples of graph systems. All of the raw data is available on request and will be published promptly.

This method is, ironically, a graph analysis that tries to find a connected reference component

seeded by our initial search terms, and will wrongly exclude any graph systems paper that has no

reference path to the initial terms. This method is necessary to practically reduce the number of

papers we must personally review. There is some danger that our judgement imposes a subjective

shape on the reference component by including or excluding certain references, but this error should

be compared against the immense error that would be introduced by an impractical, shallow review

of the full corpus.

For each of the 77 papers, we manually determined all of the benchmarks and datasets used in

its evaluation. Some papers do not have a quantitative evaluation, so this further narrows us to 65
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(1380 papers)
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Figure 5.3: Our procedure to idenধfy contemporary graph system papers. 1.) Our corpus consists of 7 conferences
over 5 years pruned using common-sense graph terms. 2.) We filter our corpus with major graph system names to
obtain candidate papers. 3.) We read the papers and extract more graph system terms from them. 4.) We update the
filter with the new terms and repeat the process.

papers. This process must be manual because there are significant entity linkage concerns regarding

benchmarks and datasets. For example, a paper might reference a “KONECT Wikipedia dataset”,

but in fact there are numerous Wikipedia datasets on KONECT, and the specific dataset can be

identified only by its vertex and edge counts. This is further complicated by variations in the re-

ported vertex and edge counts of identical datasets! So we encounter both names that refer to non-

specific datasets and specific datasets with varying features.

5.2.2 Benchmarks

In total, 74 distinct benchmarks appear in our corpus. The distribution is long-tailed, with only 36

benchmarks that appear in more than one paper; however, there is substantial reference mass spread

among these 36 benchmarks (Figure 5.4), which suggests that the top benchmarks are widely agreed

on and used in practice. The top 11 benchmarks are used 141 times out of 242 total benchmarks and

are listed in Figure 5.5.

It will surprise no one that PageRank is by far the most widely used benchmark in graph pro-
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Figure 5.4: Distribuধon of benchmark reference mass.

cessing, followed in order by connected component detection, single-source shortest paths (SSSP),

and triangle counting. Breadth-search first (BFS) is also popular and, if treated as a specific instance

of SSSP (uniformly weighted), would boost SSSP to the second most popular benchmark. Simi-

larly, subgraph matching is popular, and triangle counting may be viewed as an instance of 3-clique

matching. We should note, however, that the specific features of BFS and triangle counting lead to

improved algorithms, such as the “forward” triangle algorithm 109.

PageRank is most commonly implemented by using iterative methods until convergence, but

is commonly benchmarked by the runtime of a fixed number of iterations. In each iteration each

vertex is updated exactly once. However, some modern implementations exploit “asynchronous”

methods that run every vertex as often as new data is available or prioritize vertices that are far from

convergence. These techniques are deeply coupled to the vertex scheduler and its parallelism model,

so they are compelling for systems research. However, the fixed iteration benchmark does not triv-
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Benchmark References
Pagerank 37
Connected Components 21
Single Source SP 14
Triangle Counting 13
Partitioning 11
Breadth-First Search 9
LUBM (SPARQL) 9
Subgraph Matching 8
Ingestion 7
Collab. Filters (ALS) 7
Get Neighbors 5

Figure 5.5: The top 11 benchmarks by reference.

ially apply to them. Instead, asynchronous implementations must be measured to within a target

tolerance of convergence, or more generally, by plotting convergence over time.

The convergence rate of PageRank is not directly related to the input graph size but is instead a

function of the random walk’s mixing time, which may vary considerably between graphs with simi-

lar size and different structure. It is therefore difficult to compare convergence time between graphs,

even if their sizes are controlled as in, e.g., a scale plot. In contrast, a fixed iteration count is in princi-

ple O(|V|+|E|) operations, which may explain the preference for fixed iteration benchmarks. But we

must note that the PageRank problem is to find the converged distribution, whereas iterations are a

feature of a particular implementation; see Section 5.3.2 for further discussion.

Connected component detection is often implemented using label propagation methods to con-

vergence. Each vertex emits its label and then adopts the smallest label it has seen until no labels

change. This naive algorithm was long ago supplanted by algorithms based on disjoint-set data

structures. However, label propagation algorithms extend to more complex problems, such as

community detection 102, so it may be that connected components via label propagation serves as

a “simple label propagation” benchmark. Label propagation is also run to convergence, but unlike
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asynchronous PageRank, it deterministically converges with a bound given by the graph’s diameter.

In vertex programming frameworks, single-source shortest path is commonly implemented by

broadcasting the path length from the source vertex. Each vertex adopts the minimum path length

it has seen and then broadcasts the new path only when the length changes. Compared to Djikstra’s

venerable algorithm, this method does more work due to the lack of prioritization but is easier to

parallelize. Later “block-structured” graph systems, which organize the graph into subgraph parti-

tions, run a local Djikstra’s algorithm within each subgraph to try to get the best of both methods. 127

This method is one of several batch processing techniques commonly seen in parallel SSSP imple-

mentations, the most important of which is probably delta-stepping90.

Since sorting the search queue in priority order is a central concern of Djikstra’s algorithm, one

might assume that breadth-first search is comparatively trivial, because it is the unit-weight case

of shortest path. This is true for a single thread, because the breadth-first search queue implicitly

sorts itself in the correct order. However, parallel BFS is non-trivial for essentially the same reason

as SSSP – it is expensive to coordinate parallel searches – and it relies on similar techniques, such

as batching and delta-stepping. Thus, parallel BFS is still an active research area 27. Furthermore,

BFS is a benchmark kernel in the Graph 500 supercomputing benchmark92, whose synthetic data

generator is the most popular in graph systems research.

In principle, triangle counting is simply a 3-way self join on the edge list. In practice however this

produces a huge volume of intermediate data that different systems handle in different ways. Many

systems adapt one of several algorithms by Thomas Schank 109 that count all of one vertex’s triangles

before moving to the next vertex. Another solution seen in GraphChi72 is to stream over the graph,

buffer incomplete triangles, and then search for missing edges in the remaining stream; this method

takes multiple streaming passes in proportion to the buffer size. Both of these methods are especially

sensitive to the vertex order, so frameworks sometimes preprocess and reorder the graph. Triangle

counting algorithms are almost always run to completion, although some approximation algorithms
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offer parameterized error tolerance (such as EigenTriangle 121).

Many practical subgraph isomorphism frameworks operate similarly to triangle counting. Their

increased join complexity is typically offset by the pruning potential of vertex and edge proper-

ties, such as in RDF semantic web applications. In particular, the Lehigh University Benchmark48

(LUBM) is a widely-used SPARQL benchmark in the RDF community. It is noteworthy that

LUBM’s query set contains several queries that are essentially analogues of other popular bench-

marks; for example, Q2 and Q9 are labeled triangle counting queries. In general, LUBM’s queries

are subgraph matching queries, although some path queries are also represented. Unlike the major-

ity of graph benchmarks, LUBM is tightly coupled with a synthetic RDF graph generator that we

discuss in the next Section.

Among the remaining benchmarks, we note a few instances of popular knowledge discovery

algorithms such as ALS collaborative filtering and belief propagation. These algorithms might be

said to apply to “graphical models” rather than graph datasets, although of course that distinction is

unclear. ALS, for example, is only applicable to k-partite graphical models, which are tremendously

constrained compared to a social network. Nevertheless, these constrained algorithms and datasets

co-occur alongside more general graph metrics in the literature.

5.2.3 Datasets

113 datasets appear across our corpus, but only 35 appear in more than one paper; the distribution

is shown in Figure 5.6. It may seem surprising that the degree of de facto standardization in graph

datasets is comparable to benchmarks, because unlike the benchmarks most of these datasets are

not of general research or business interest. Rather, the standardization results from efforts towards

comparability, and the limited availability of datasets with particular characteristics, such as large

social networks. The top 11 datasets are used 106 times out of 239 total uses and are identified in

Figure 5.7.
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Figure 5.6: Distribuধon of dataset reference mass.

Compared to the benchmark distribution, the dataset distribution has less mass among the top

datasets and more mass in its long tail. This difference reflects an important underlying difference in

their reference structures – and who could resist the opportunity to draw a graph of graph datasets?

Figures 5.8 and 5.9 visualize the co-citation networks of benchmarks and datasets respectively. Two

benchmarks or datasets are connected if they appear together in a paper; therefore papers form

cliques in this representation. If two groups of benchmarks or datasets are not joined by edges, this

implies that there exists no paper that bridges the two groups.

Group structure is easily visible in the dataset visualization simply because it is sparse. There

are many groups of datasets that occur in only a few papers and do not mix with other groups of

datasets. Conversely, the benchmarks are largely mixed with the exception of the distinct RDF com-

munity. If we drop every dataset that has only one reference, then the dataset graph reveals a similar

structure (Figure 5.10).
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Dataset References Edges Vertices Max Vertex
twitter-2010 22 1.47b 41.7m 61.6m
soc-livejournal 17 69.0m 4.85m 4.85m
graph500 13 varies varies varies
LUBM 9 varies varies varies
cit-patents 8 16.5m 3.77m 6.01m
yahoo 8 6.64b 700m 1.41b
uk-2007-05 7 3.7b 106m 106m
com-friendster 7 1.81b 65.6m 125m
usa-roads 5 58m 23m 23m
netflix 5 99m 0.5m 2.67m
uk-2002 5 298m 18.5m 18.5m

Figure 5.7: The top 11 datasets by reference.

The well-known “What is Twitter?” dataset by Kwak et al. is a network of Twitter accounts and

follower relationships. Its popularity may be attributed to its unusually large size for a publicly avail-

able social network dataset, the fortunate timing of its release (2010), and its use as a benchmark in

Kyrola et al’s GraphChi paper (2012), which is a frequent competitor for later systems. The authors

of Naiad noted in 2013 that “several systems for iterative graph computation have adopted the com-

putation of PageRank on a Twitter follower graph as a standard benchmark.”93 However, it is note-

worthy that the dataset’s authors concluded its topology is substantially different from other “social

networks” in terms of its non power-law degree distribution, small diameter (maximum shortest

path), and lack of reciprocity (correlation between edges X->Y and Y->X).

The remaining top ten datasets are an interesting mix of old friends and surprises. The Graph500

(Kronecker/RMAT) and LUBM synthetic generators, and the Yahoo and UK-200X web crawls, are

well-known to domain experts. Conversely, the 2006 LiveJournal crawl by Backstrom et al. takes a

surprising second place, perhaps owing to its availability as the largest social network in the popular

Stanford Network Repository until 2012 (now superseded by Friendster, also in the top ten). Other

surprises include the NBER patent citation network (from 2001!), the USA road network from the
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Figure 5.8: Benchmark co-citaধon network
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2006 DIMACS shortest path implementation challenge, and the Netflix Prize bipartite recommen-

dation graph. These three graphs are tiny datasets by contemporary standards.

The Netflix prize is uniquely disturbing, because it is illegal to distribute and arguably uneth-

ical to experiment with. This dataset contains recommendations made by users who were later

deanonymized by researchers Arvind Naranyanan and Vitaly Shmatikov in 200794. This research

was cited in both an FTC inquiry and a class action lawsuit that Netflix settled in 2010. Netflix can-

celled further competitions and withdrew the Prize dataset, whose license clearly states that it cannot

be redistributed without permission. Nevertheless, in 2015, three papers in our corpus used this

dataset to benchmark recommendation algorithms! We strongly recommend against any further use

of thॹ dataset.

It is also unfortunate that the Yahoo web crawl is still in use, because it suffers from serious statis-

tical issues described by the WebGraph Project 2. About half of the graph’s “vertices” have no edges,

and unlike other web crawls the graph does not have a “giant” strongly connected component (less

than%4 of the vertices are in the largest SCC). The combined effect of these issues is that many

benchmarks run more quickly on this web crawl than its size would imply. This is a serious issue

because the motivation for using this graph is almost certainly its perceived size, which is the largest

among the top ten. WebGraph recommends UK-Union and ClueWeb-A as statistically sound web

crawls of similar size, but unfortunately these datasets enjoy much fewer references in practice.

Researchers who obtain datasets such as UK-200X from WebGraph need to be aware of a few

issues. WebGraph distributes graphs in a compressed format that benefits from a vertex reordering

preprocess called Layered Label Propagation 19. This process discards the natural order of the orig-

inal dataset; therefore, WebGraph offers separate normal and “natural” datasets on their resource

pages. Researchers who use WebGraph datasets specifically for benchmarking should arguably use

the natural order, because LLP is a bandwidth-minimizing preprocess that can improve end-to-end

performance (see Section 5.3 and Figure 5.12). Using LLP-sorted data lets systems benefit from re-
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ordering without including the preprocessing time, and discourages work on reordering, because it

provides no further improvement. At minimum, researchers should clearly cite which dataset they

used. If a use is undocumented, then it is likely that the LLP graph is being used, because LLP ap-

pears first on the Web page.

To be clear, WebGraph is an excellent resource with good data publishing standards; the issue is

how graphs are handled and cited across the community. For example, the 10th DIMACS Imple-

mentation Challenge made both UK-2007-05 and UK-2002 graphs available as testbeds for graph

partitioning and clustering algorithms. The DIMACS repository directs the reader to cite Web-

Graph for these datasets; however, the DIMACS datasets are not the same as those on WebGraph!

They have been transformed into undirected graphs by adding their transpositions. Because DI-

MACS distributes these datasets in a standard compression format, whereas WebGraph distributes

in a unique format that requires special tools, it is quite reasonable for researchers to choose the

DIMACs dataset under the mistaken assumption that it is the same as WebGraph’s, and to cite Web-

Graph as they are instructed to do.

This is one example of broad citation issues that plague the corpus. Undirecting UK-2007-05

nearly doubles its file size, but DIMACs claims the same edge count as WebGraph, because the re-

ported edge count may be directed or undirected. Papers in our corpus do not always clarify this

distinction, and there are several instances of datasets with varying reported edge counts. For exam-

ple, Hong et al. claim Twitter contains 1.8 billion edges 55, but most sources claim 1.4 billion directed

or 1.2 billion undirected. Bu et al. claim Yahoo contains 8 billion edges 25, but most sources claim 6.7

billion.

Similarly, in a graph distributed as an edge list where the maximum vertex ID differs from the

unique vertex ID count, “vertex count” is ambiguous because it is not clear whether zero-degree

vertices are counted. Twitter-2010 is often reported with 41.7 million vertices although its maxi-

mum vertex ID is 61.6 million; conversely, Yahoo is often reported with 1.41 billion vertices although
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its non-zero vertex count is 700 million.2 This is most likely because these are the vertex counts as

stated by their respective primary sources. The community should obtain DOIs for its datasets and

augment them with unambiguoॺ metadata, including the edge count and whether the edges are di-

rected or undirected, the total number of vertices and non-zero-degree vertices, and, if possible, the

procedure by which the vertices are numbered.

Synthetic graph models are dominated in practice by the Graph500 and LUBM generators,

which is interesting because the concepts behind these two generators are strikingly different. The

Graph500 generator is a straight-forward implementation of the popular Kronecker/R-MAT net-

work model and produces unlabeled topology that is meant to statistically resemble a real-world

network. In contrast, the LUBM generator produces labeled topology such that its semantic con-

straints, e.g., students per class, resemble a real-world RDF dataset. Unsurprisingly, LUBM is tightly

bound to a particular benchmark query set (see end of Section 5.2.2), whereas the Graph500 genera-

tor, although bound to a connected component and BFS benchmark, is in practice used with many

other numerical benchmarks such as PageRank.

5.2.4 Weaknesses

Benchmarks and datasets are in part the product of a citation process, so it is unsurprising that their

reference counts follow long-tailed models. However, this natural process can have consequences

for scientific and statistical reasoning. We would like some assurance that our benchmarks represent

something other than the preferential attachments of our community. More importantly, if our test

data is not randomly drawn, this has serious implications for the strength of inductive conclusions

from empirical results. A hidden feature among the top 10 datasets could dramatically shape the

plots of our research field.

For example, the default Graph500 Kronecker generates graphs whose edge density is strongly

correlated with their vertex identities. If the edges are serialized in a vertex-sorted order, then the
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most commonly referenced edges and vertices will appear near the start of the serialization. This re-

sults in optimistic caching and prefetching behaviors relative to an unknown (e.g., random) vertex

ID space; so, the Graph500 randomizes the vertex ID space to improve its generalizability. Equiv-

alently, the Graph500 controls vertex identities by randomly sampling from all isomorphic vertex-

labeled graphs; this may not be realistic, but it is controlled. Because vertex identities, vertex sort

orders, and isomorphisms are so closely related, we will refer to these concepts interchangeably.

The overwhelming majority of evaluations in our corpus make no attempt to control the vertex

identities of real datasets using randomization or otherwise. This would be fine, if enough datasets

were sampled from some underlying distribution in which the vertex identities vary randomly or

“realistically.” However, our metastudy shows that so few datasets are used in practice that this can-

not possibly be the case. The popular datasets may be labeled optimistically, pessimistically, or in

some “average” way, but in any case there are not enough of them to be realistically sampled. Conse-

quently, vertex identity is an uncontrolled variable with some unquantified influence over published

evaluations, which we demonstrate in the following Section, e.g., in Figure 5.12.

Roughly the same argument could be made of any graph parameter, and there are infinitely many

graph parameters; this parade of horribles could be dismissed as an unrewarding game of statistical

whack-a-mole. From an evaluation perspective, such parameters are interesting only if they have a

substantial impact on measured performance, and in principle, a synthetic generator that controlled

every substantial parameter would resolve these issues. The question is whether such parameters

exist and, if so, whether synthetic generators such as the Graph500 control these parameters. In par-

ticular, we ought to test the impact of vertex identities, because the Graph500 openly acknowledges

these as important.

The Graph500’s Kronecker model is the subject of much statistical inquiry, which can motivate

our parameter search. For example, Seshadhri et al. have shown that in a Kronecker model of |V|

vertices, some fraction of vertices have no edges in expectation 110. These zero-degree or isolated
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vertices manifest as gaps in the vertex identity space, as sparsity in vertex-keyed dense arrays, and

therefore as potential prefetcher misses. The isolated vertex count is a complex function of |V|, |E|,

and the Kronecker model’s probability distribution (see Chapter 6, Section 6.2). As we discussed in

the previous section, large zero-degree vertex counts are also common in real datasets. Do isolated

vertices substantially affect benchmark results, and do evaluations account for this when using Kro-

necker graphs, or natural graphs such as the Twitter network?

Depending on the answers to these questions, the plots and conclusions of our field may be dis-

torted. If expected behavior varies in a complex and substantial way across real graph datasets, or

with the tunable parameters of synthetic models, then experimenters who are unaware of these ef-

fects will find alternative explanations as to why their observed performance varies with the input.

A sub-linear distortion in a scale plot may be welcomed as a sign of desirable scaling properties and

evidence of good system design.

Most pernicious is that these distortions motivate or discriminate against different system de-

signs. For example, the choice between dense and sparse vertex arrays partially depends on how

many isolated vertices are in common test graphs and synthetic models. Two systems with different

array implementations might exhibit cache and performance differences according to the isolated

vertex model embedded in the test data. But more likely, because system builders are fully aware of

the standard test data and profile with it regularly, the “inferior” choice will never pass the prototype

stage. Similarly, if popular test data ships with optimistic vertex identities, then optimizing vertex

identities to improve caching and prefetching will seem unrewarding, when in reality it may be an

important contributor to good performance.
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5.3 Evaluation

In this Section we show that some of these graph parameters substantially impact the performance

of the most popular benchmark algorithms, and that they are not adequately controlled in the most

popular test graphs or the Graph500 Kronecker implementation. Furthermore, different algorithm

implementations, and consequently systems, respond to these parameters in different ways. Given

so many dimensions, the scope of such an analysis is potentially massive, so we will limit ourselves

to a small subset of systems, algorithms, datasets, and parameters. This is sound, because we want to

show that problems occur in popular and plausible cases and not necessarily in every possible case.

5.3.1 Setup

We investigated the performance impact of vertex identities and isolated vertices in popular datasets

and Kronecker graphs on PageRank, breadth-first search, and triangle counting using the Galois

system. We use Galois because a recent high-quality study by Satish et al. 108 found that it performs

most closely to hand-optimized native code. Giraph and GraphLab are more popular, but both

underperform Galois by orders of magnitude on most benchmarks. Galois is nevertheless a compar-

ative target in several evaluations, so an impact on Galois should have broader implications than one

publication. Furthermore, Galois is an older system, so its library of algorithms and implementa-

tions is extensive and includes “best performance” implementations specifically indicated for bench-

marking67. This helps guarantee that comparisons between implementations are “fair” and include

systemic best practices.

PageRank, breadth-first search, and triangle counting are all popular benchmarks that are worth

evaluating. We prefer breadth-first search to shortest paths, because the most popular datasets do

not have natural edge weights, and because BFS is the Graph500’s flagship benchmark. We omit

connected components, because common benchmark implementations have already faced heavy
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criticism from McSherry’s COST study 89. In the following Sections we first discuss each bench-

mark individually, and defer discussion of datasets, vertex identities and isolated vertices, etc., to

the Conclusions. This is because each benchmark has unique concerns, whereas datasets and vertex

parameters are best understood as overarching themes.

For datasets, our primary constraint is that Galois is not distributed. Fortunately, the five most

referenced datasets either fit in the memory of a commodity server or are synthetic generators. We

omit the LUBM generator, because in principle and in practice it is tightly coupled with the LUBM

queries and not normally used for other benchmarks. Four datasets is the mean average in our cor-

pus, but as we have noted, this is not enough samples to properly generalize. We reiterate that the

purpose of our evaluation is not to generalize, but instead to show that problems can occur in plau-

sible cases.

Default order and random order are the most important vertex identities to consider. Both occur

frequently in published work; the former as the de facto standard for real graphs, and the latter as

a correction for the Kronecker model’s “optimistic” default order. Correspondingly, we also look

at random orders of real graphs to test whether their defaults are optimistic. A random order is cer-

tainly “pessimistic” from the cache prefetcher’s perspective and from a theoretical bandwidth and

cut-minimizing perspective, although it can do a good job balancing implicit parallel loads.

Optimistic orders are, in general, the product of a correlation between the graph’s structure and

the order in which the graph is generated; this is obviously the case in the Kronecker model (see

Chapter 6, Section 6.2). Web crawls and similar processes also exhibit this correlation if the crawler

assigns identities as vertices are discovered, because discovery in a walk is correlated with graph struc-

ture. The WebGraph project specifically exploits this by using LLP order and distributes com-

pressed datasets in this order, so we will also look at LLP order for datasets hosted on WebGraph,

such as Kwak’s Twitter. We also include degree orders, because these are common pre-processor op-

timizations in e.g., triangle counting implementations (including Galois) and have an interesting
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history (see Section 5.3.4). We favor ascending degree order because it is more common than de-

scending in practice, but we also include descending in triangle counting for reasons delinated in

that section. Our degree sorts are stable with respect to each graph’s default order and are therefore

not wholly independent of it; this is consistent with degree sorts in the wild.

Many graph datasets are distributed with isolated vertices, so our most important test cases are

the default distribution and the “packed” case where we ellide every isolated vertex. We ensure a sta-

ble packing, i.e., we preserve the order between non-isolated vertices. Isolated vertices are not strictly

separable from vertex order because their position affects their impact; for example, randomly dis-

tributed isolated vertices have a greater prefetcher impact than if they were all located at the end of

an array. Our random order is intended to be pessimistic, so it randomly distributes isolated vertices.

Conversely, our optimistic orders (LLP and degree orders) identify and ellide isolated vertices at no

additional cost, so they are effectively packed orders. For real datasets in default order, the isolated

vertices’ positions are unique to that dataset and may be optimistic or pessimistic depending on that

particular dataset.

For natural graphs, “missing” vertices may arise from anonymized, redacted, or otherwise hid-

den data such as an incomplete Web crawl process. The isolated vertex counts of the top 11 datasets

are implicitly shown in Figure 5.7 by the difference between the vertex count and maximum vertex

identity. In the case of Kronecker model graphs, the edge distribution simply gives some zero-degree

vertices in expectation. Using Graph500 settings, from 51 to 74% of a Kronecker graph’s vertices are

isolated as the scale parameter increases from 26 to 42 110.

The combination of three benchmarks, four datasets, five orders, and packed variants produces

many data points, which are further complicated by benchmark-specific parameters and metrics.

Many of these combinations are uninteresting, redundant, or impossible (e.g., packed variants

of datasets without zero-degree vertices), so we are highly selective as to which data we choose to

present. The data presented in the following experiments are summarized in Figure 5.11.
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Problem Datasets Varies Measures

PageRank twitter-2010,
soc-livejournal

algorithms,
isomorphisms runtime

Breadth-First
Search twitter-2010 isomorphisms,

0-degree vertices
runtime, l2 and l3
cache miss ratios

Triangle Counting
soc-livejournal,
cit-patents,

kronecker models

isomorphisms,
0-degree vertices

runtime, work,
load balance

Figure 5.11: Summary of data presented in the following experiments.

Our benchmark machine is the same 6-core Intel i7-970 at 3.20GHz that we used to evaluate

Sheep in Chapter 3, Section 3.5. However, we upgraded to 24GB of RAM, to support the Twitter

graph in-memory, and to a Samsung 850 Pro SSD. All graphs were converted beforehand to Galois’

binary input format, and all benchmarks were run with a hot disk cache, so, in principle, the SSD

should have no significant impact. We used the most recent Galois 2.3.0-beta release, because it has

the most algorithm implementations, and we did not encounter any correctness or obvious perfor-

mance issues. We used 12 threads, because it gave the best end-to-end runtime, and otherwise we

used default settings wherever they are not explicitly specified.

5.3.2 PageRank

Figure 5.12 depicts PageRank running on Galois to within 0.01 tolerance for four different vertex

orders (or equivalently, labeled isomorphisms) of the Twitter-2010 dataset. The y-axis is runtime and

the x-tics are various PageRank implementations that differ primarily by their scheduling idioms.

In particular, “synchronous” schedules update each vertex once between barriers (as in the Bulk

Synchronous Parallel model), whereas “asynchronous” schedules update any vertex when new data

is available. We use tolerance instead of fixed iterations, because it gives a definition of end-to-end

runtime that is comparable between synchronous and asynchronous implementations.
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Figure 5.12: Performance of PageRank on Twiħer using Galois with different implementaধons and isomorphisms.
Synchronous implementaধons (leđ) wait on a global barrier between each PageRank iteraধon. Asynchronous imple-
mentaধons (right) update vertex ranks as soon as new data is available.

Many critical facts about graph systems benchmarking are visible in this figure. First, the schedul-

ing idiom has an enormous performance impact, so researchers’ interest in this is justified. Second,

the isomorphisms’ impact ranges with the implementation between a factor of 2.03 and 1.18, worst

isomorphism over best. This is a wide range, but even on the low end it is a substantial impact. Fi-

nally, the relative performance of the isomorphisms differs between synchronous and asynchronous

implementations.

Synchronous PageRank implementations (the leftmost two x-tics) are so common in contempo-

rary graph systems evaluations that the majority of evaluations in our metastudy define and measure

PageRank in terms of a fixed synchronoॺ iteration count, even though this is an implementation-

specific detail. 21 out of 37 PageRank evaluations in our metastudy explicitly measure a fixed count

of at most twenty iterations. This discourages comparison with systems that research asynchronous
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execution models (the rightmost six x-tics), even though they may converge more quickly.

For example, PowerGraph (2012) was one of the first vertex programming systems to support

asynchronous execution, and its authors discuss and evaluate asynchronous PageRank45. However,

in their comparative evaluation they only benchmark synchronous PageRank, because prior works

measured and published “per-iteration” runtimes that are defined only for synchronous implemen-

tations. Similarly, the authors of Galois discuss and evaluate “data-driven” asynchronous execution,

and even reimplement PowerGraph’s asynchronous engine (2013)96. However, they compare only

synchronous per-iteration PageRank results.

The authors of GraphMat (2015), an iterative SpMV system, compare against PowerGraph

and Galois-2.2.0 using synchronous PageRank and conclude GraphMat is 2.6 faster per-iteration

than Galois 116. This factor is comparable to the difference between the best synchronous and asyn-

chronous implementations in the more recent Galois-2.3.0-beta *. Galois outperforms GraphMat on

every end-to-end runtime measure but underperforms on every per-iteration measure, from which

GraphMat’s authors conclude that, on average, they outperform Galois; this claim is almost entirely

due to synchronous PageRank results. To be absolutely clear, GraphMat’s evaluation followed con-

ventional best practices and was consistent with prior work. Our concern is that consistency with

prior evaluations hॷ brought the field to a state where the most popular comparative benchmark dis-

criminatॸ against alternative and arguably superior solutions.

It takes 71 iterations for the synchronous PageRank implementations to converge within 0.01 tol-

erance in Figure 5.12. However, as previously mentioned, the majority of PageRank evaluations in

our metastudy benchmark a constant iteration count that is never more than twenty. PowerGraph’s

authors note that their system needs at least twenty iterations of PageRank on Twitter before their

most sophisticated partitioner produces any end-to-end runtime improvement. So the field-wide

* Galois did not include a native asynchronous PageRank in version 2.2.0, but it did support Power-
Graph’s asynchronous implementation. The authors of GraphMat similarly evaluate against synchronous
PowerGraph results.
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perception of PageRank as a per-iteration benchmark, rather than an end-to-end benchmark, also

misrepresents preprocessing steps (such as vertex sorting) that in practice give real speed-ups (as

shown here). For these reasons, we strongly recommend that future work should, at minimum, mea-

sure end-to-end PageRank runtime for a target tolerance, instead of per-iteration runtime or a fixed

iteration count. It would be even better to measure tolerance over runtime and error against a canon-

ical solution.

When we consider vertex orders, the situation becomes even more complicated. Varying the order

also varies the performance by as much as 2.03x for Galois’ synchronous PageRank implementa-

tions, whereas its asynchronous implementations vary by up to 1.18x. For synchronous implementa-

tions, the “default” isomorphism runs up to 1.69x slower than the ”LLP’ isomorphism, and both are

publicly available from online sources. The default isomorphism comes from the primary source70,

whereas LLP is the default isomorphism of the LAW repository 3 (which also offers the primary

source isomorphism as another download). LLP is a bandwidth-minimizing sort algorithm, so one

could argue that Twitter’s primary source isomorphism is pessimal for PageRank relative to LLP’s

optimistic baseline.

Most importantly, for the synchronous implementations, randomizing vertices looks like an opti-

mization and ascending degree sort looks pessimal, whereas for asynchronous implementations the

reverse is true. In fact, for asynchronous implementations, ascending degree sort is almost as good

as LLP’s much more complicated topology-aware sort. Depending on the PageRank implementa-

tion, either randomization or degree sorting might look like a clever preprocessing step. However,

for different graphs, this result differs considerably; Figure 5.13 depicts the same measurements on

soc-LiveJournal, the second-most popular benchmark graph. On soc-LiveJournal, randomization

is consistently bad, and degree sorting interpolates between random in the synchronous cases and

no better than the default in the asynchronous cases. In this scenario, LiveJournal’s default isomor-

phism is “good enough” such that simple degree sorting never give an improvement.
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Figure 5.13: Performance of PageRank on LiveJournal using Galois with different implementaধons and isomor-
phisms.

Whatever the scenario, it’s clear that isomorphisms control PageRank performance in a compli-

cated but substantial way. It is not difficult to imagine how this might affect system design in prac-

tice. Consider the case of a system designer who must decide whether or not to hash vertex identities

to e.g., improve load balance. At present, if her benchmark is PageRank and her test graph is Twit-

ter in its default order, then hashing looks like a performance improvement for the most common

algorithms, and no great loss in any case. But in an alternate reality where Kwak et al. published

their Twitter dataset using WebGraph’s tools and therefore LLP order, hashing looks like a major

performance regression for every implementation! And in another reality where Kwak et al. stored

and enumerated their crawl in a degree-sorted data structure, the costs and benefits of hashing are

highly variable and implementation dependent. All three cases are misleading, because the vertex

isomorphisms are not explicitly controlled in the experiment. We will see more examples of this in
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isomorphism l2 miss ratio l3 miss ratio fall-through ratio runtime
LLP 0.860 0.613 0.527 6.328
degree 0.924 0.605 0.559 6.704
random-pack 0.949 0.636 0.604 6.882
packed 0.933 0.646 0.603 7.003
default 0.916 0.639 0.585 7.211
random 0.925 0.667 0.617 7.643

Figure 5.14: Performance of Breadth-First Search on Twiħer using Galois. The “fall-through” raধo is the combined
raধo of L2 and L3 misses.

the following experiments.

5.3.3 Breadth-First Search

Figure 5.14 depicts single-source breadth-first search (BFS) running on Galois and averaged over 100

random sources for six different isomorphisms of the Twitter-2010 dataset. BFS runtimes are usually

benchmarked end-to-end, so unlike PageRank we focus exclusively on Galois’ best BFS implemen-

tation. As was the case with PageRank, Twitter’s primary source isomorphism is hardly better than

random, but simple degree sorting gives an isomorphism that performs almost as well as LAW’s LLP

algorithm. The two new isomorphisms, “stablepack” and “random-stablepack,” ellide zero-degree

vertices from the default and random isomorphisms respectively; for Twitter these are 32% of the

vertices. Zero-degree verticॸ account for about half of the performance difference between the best

and worst isomorphisms.

Since these workloads ought to be nearly identical, their performance differences are best ex-

plained by data bandwidth effects. However, if we look at cache metrics we find that the details are

complicated. In general, cache miss ratios are high, because graph topology is not trivially serializ-

able, so the cache is the bottleneck and small differences in the end-to-end miss ratio are roughly

proportional to end-to-end runtimes. However, for any given specific level there are inversions be-
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tween its miss ratio and the end-to-end runtime of different isomorphisms. For example, the packed

default isomorphim has a lower L2 miss ratio than packed random, but it has a higher miss ratio in

L3 and is slower end-to-end. Conversely, degree sort has a slightly lower L3 miss ratio than LLP, but

it has a higher miss ratio in L2 and is slower end-to-end. One plausible explanation is that degree

sort “fits” in L3 but not in L2 (specifically, that vertex neighborhoods fit in the prefetcher’s implicit

window), whereas because LLP “fits” in L2, a miss in L2 is likely to also miss in L3.

Zero-degree vertices have a significant performance impact and also distort our perception of

cache measurements. One might hypothesize (like all of our office mates) that zero-degree ver-

tices would fragment data structures and disrupt the cache’s prefetcher, but for the default order

removing zero-degree vertices actually increases the miss ratio. This is because zero-degree ver-

tices are accessed on routine serial scans of vertex arrays, such as initialization, where they inflate

the prefetcher’s hit ratio with trivial work (e.g., in BFS these values are initialized to zero, but are

never encountered in the search). So the miss ratio goes down, but only because we are successfully

prefetching meaningless work. If you want to meaningfully measure the cache hit ratio of a graph

algorithm, it ॹ important to remove zero-degree verticॸ, or else busywork will poison the cache mea-

surements. RMAT/Kronecker generators such as the Graph500 generator produce graphs with a

large number of zero-degree vertices (as much as 74%), so RMAT users need to be particularly aware

of this effect.

5.3.4 Triangle Counting

Triangle counting is unique among graph benchmarks in that largely by accident it sometimes has

an isomorphic control standard. The most popular triangle counting algorithms implement fast

edge set intersection by pre-sorting the graph’s edges in some vertex order. Chiba and Nishizeki 30,

and later Thomas Schank 109, both describe algorithms that use degree order. Schank also gives a

complexity bound for degree order, and his “forward” algorithm is implemented and cited by many
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Figure 5.15: Triangle counধng on soc-LiveJournal using Galois. The “real” ধme is end-to-end, whereas the “user”
ধme is the sum of all unhalted thread runধmes (i.e. a measure of total work).

systems such as PowerGraph, GraphChi, Galois, GraphX, and LLAMA. Oddly, Schank’s proof

relies on descending degree order, but in practice this convention is reversed and systems sort by

ascending degree. PowerGraph and GraphX notably reuse the graph’s input isomorphism instead of

degree sorting.

We must emphasize that descending degree sorting gives a loose upper bound and is not an “opti-

mization.” If a graph’s natural order is well-suited to triangle counting then degree sorting is a waste

of time, producing a performance regression. In this sense, triangle counting and degree sorting are

no different than any other algorithm and isomorphism in this study, except that Shank’s proof es-

tablishes an explicit relationship between the two in the standard cache-oblivious complexity model.

This explains why some real-world frameworks abandon the degree sorting step.

Figure 5.15 shows triangle counting running on Galois for four different isomorphisms of the
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soc-LiveJournal dataset; packed isomorphisms are not included because soc-LiveJournal is already

packed. In addition to previous isomorphisms, we included descending (reverse) degree for consis-

tency with Schank’s dissertation. In this context it seems that ascending degree sort is the wiser con-

vention, as it outperforms descending sort by 1.26x. However, these results also invert our prior ex-

perience with soc-LiveJournal: the default isomorphism is poor and random performs well, whereas

the opposite is true for PageRank and BFS.

An explanation emerges if we look at the sum of individual threads’ unhalted runtimes, i.e., time

spent executing in user mode. This is a simple measure of the total amount of work done by the

thread group. Descending degree order substantially reduces this work compared to ascending, and

the default isomorphism is substantially better than random. Random order uses 1.5xmore thread

time than the default isomorphism even though it is 1.13x faster end-to-end. Ascending degree order

just happens upon a sweet spot that balances efficiency and parallelism in practice. Schank’s order

may be best for his serial algorithm, but the parallel framework introduces new concerns, and in

this implementation they are partially controlled by the isomorphism. This is a concrete example of

system builders gravitating towards an algorithmically sub-optimal sort order because of the isomor-

phism’s practical system effects.

Triangle counting is essentially a read-only workload, so load balance is the main factor that con-

trols parallelism. Each thread inspects the 2-hop neighborhood of some disjoint vertex set, and this

induces per-thread subgraphs of varying size. If the vertex array is partitioned in blocks (as is the case

in most loop-parallelizing systems), then the induced subgraphs are strongly determined by the iso-

morphism. Reverse degree order places the vertices with the most neighbors in the first block and

consequently induces a large subgraph for the first thread. Conversely, ascending degree order places

these vertices last and minimizes their associated subgraph. Unsurprisingly, random partitions also

improve the load balance.

Note that if one’s goal is to ”maximize parallel work” then the random isomorphism is consid-
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Figure 5.16: Triangle counধng on cit-Patents using Galois.

erably better, but only because it does considerably more work to solve the same problem in the

same end-to-end time. These kinds of consequences and pitfalls are normally associated with sys-

tem and algorithm designs, yet we are only considering different input vertex numbers! In the field

we see explicitly optimistic isomorphisms (LLP), unknown-but-not-random isomorphisms (e.g.

“natural” IDs, which may be optimistic or pessimistic), genuinely random isomorphisms (synthetic

graphs and anonymized datasets), and in the case of triangle counting, degree sorted isomorphisms

for some implementations (but not all, e.g. GraphX). If your evaluation doesn’t control these many

variations, then you will have to find some other explanation for the variation in your results.

For example, GraphMat’s authors claim that Galois outperforms them at triangle counting on

soc-LiveJournal by about 20%; but GraphMat uses the default isomorphism, Galois uses ascending

degree, and the difference between these two isomorphisms running on Galois is also about 20%.

GraphMat and Galois are very different systems running necessarily different triangle counting im-
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Figure 5.17: Triangle counধng on a Kronecker model using Galois, where s = 22, e = 16,A = 0.45,B = C = 0.15

plementations, but it’s unclear whether we can attribute their performance difference to the system,

the implementation, or soc-LiveJournal’s isomorphisms. We want to emphasize that this compari-

son is only possible because GraphMat and Galois are neck-and-neck as two of the fastest systems in

this field; if their performance differed by an order of magnitude, then the isomorphic impact would

also differ. The impact might be buried, or it might balloon, as was the case with synchronous vs.

asynchronous PageRank.

Ascending degree sort is not strictly a triangle counting “optimization.” As was the case with

PageRank, different graphs vary these results. Figure 5.16 depicts triangle counting on the cit-Patents

dataset; this plot includes packed isomorphisms because cit-Patents is not packed by default. Here

we see that degree sorting is a waste of time; the same overall work reduction is achieved by simply

elliding the zero-degree vertices. That is, excepting the zero-degree vertices, the natural isomorphism

is better in every way than ascending degree.
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Figure 5.18: Triangle counধng on Kronecker model using Galois, with Graph500 default parameters (s = 22, e =
16,A = 0.57,B = C = 0.19.

Random can also outperform ascending degree in common scenarios; Figure 5.17 depicts triangle

counting on a Kronecker graph with parameters s = 22, e = 16,A = 0.45,B = C = 0.15.These pa-

rameters are used by Sundaram et al., because the default Graph500 parameters generate graphs with

enormous triangle counts. Here we see that ascending and reverse degree are both performance re-

gressions compared to the synthetic graph’s default random order. This is not true for all Kronecker

graphs; if we use the Graph500’s default parameters, then both degree sorts give a tremendous per-

formance improvement (Figure 5.18). Note also that 50% of the vertices in this graph are isolated,

but packing them has no performance impact at all; because the isolated vertices are randomly dis-

tributed by the isomorphism, they do not imbalance the induced thread partitions, which are the

dominant factor in parallel triangle counting performance.

Given that the isomorphism induces partitions, we must accept that partitioning is hard and de-
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scalable system cores twitter uk-2007-05
GraphLab 127 242s 714s
GraphX 128 251s 800s
Single thread (SSD) 1 153s 417s
Union-Find (SSD) 1 15s 30s

Figure 5.19: Performance of connected component algorithms: label propagaধon (GraphLab, GraphX, and single-
threaded) versus union-find. Reproduced from “Scalability! But at what COST?”89

gree sorting is a naive heuristic. Without an isomorphic standard, what we’re measuring in triangle

counting is, to a large extent, the quality of an unspecified partitioning. Therefore, if you want to

measure any other effect, it is important to control the isomorphism. Systems that degree sort are

partially controlled for their own intra-comparison, but there is no inter-comparative standard for

published results. However, this control is only partial because degree order is not a strict order.

5.3.5 Connected Components

In our corpus, the connected components benchmark is frequently implemented using label propa-

gation. The problems with this benchmark are discussed extensively by McSherry 89, so we will only

summarize his findings. Union-find algorithms are over 40 years old and dramatically outperform

label propagation both in theory and in practice (see Figure 5.19, reproduced from McSherry’s pa-

per). In particular, this is a major reason that the Sheep partitioner, which is based on a modified

union-find, is faster than other partitioners that are based on explicit partition labels (Chapter 3).

However, label propagation is more intuitive than union-find when written as a vertex program.

McSherry’s proposal is that distributed systems should compare end-to-end with a single-threaded

hand-optimized baseline implementation, which they should obviously outperform. This call for an

objective end-to-end standard is similar to our own proposal for PageRank.
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5.4 Conclusions and Advice

The previous Section covers a small sample of many different cases in which the underlying prin-

ciples are complex. This is, in fact, what we want to show: evaluations that do not control these

factors are chaotic, and all we’ve done is expose that fact. Nevertheless there are some common prin-

ciples that can guide us towards better practices for the field.

5.4.1 Vertex Isomorphisms

As we have shown, uncontrolled vertex isomorphisms have a performance impact of up to 2x on the

most popular benchmark (synchronous PageRank) on the most popular dataset (Kwak’s Twitter)

using a popular high-performance comparative target (Galois). In other cases about 1.2x is common,

which is well within the range of reported differences between targets in comparative evaluations.

Papers in our corpus use less than four datasets on average, and those datasets are not randomly

chosen. Given these numbers it is hard to imagine that uncontrolled vertex isomorphisms have not

shaped reported results.

It is tempting to dismiss vertex order as a “feature” of the dataset and sorting as an “optimiza-

tion” conditioned on that feature. Certainly, graphs have other features (such as their mixing rate in

a random walk) that are difficult to control but may be optimized by graph systems (e.g. by priori-

tized vertex scheduling). One key difference is that prioritized scheduling is a novel and interesting

optimization to measure, whereas vertex sorting is decades old. But more importantly, the existence

of countless uncontrolled variables is not an excuse for failing to control for isomorphism, which is

easy to do and has a quantifiable impact.

When a hidden variable is uncontrolled, its effects may appear linked to explicit variables such as

the competing systems. In the case of triangle counting this effect is obvious: different implemen-

tations adopt different input sort orders and some of their performance differences are caused by
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this. However, conceptually and quantitatively the exact same thing is true of every algorithm in

this study, even though the mechanisms are less obvious. Different implementations adopt practices

that favor some isomorphisms over others and ultimately cause some of their performance differ-

ences.

The field needs standard isomorphisms. Ideally one would draw a significant number of sam-

ples from “realistic” isomorphisms, but as present we have no model to define this. The Graph500

adopts random as its standard, but insofar as random is pessimal this may exagerate the impact of

sorting as a preprocessing step. Conversely, optimistic standards such as LLP discourage preproces-

sor research by delivering an a priori preprocessed graph.

In our opinion random and ascending degree are the best isomorphisms for comparative bench-

marks. Our study shows some cases where random is not strictly pessimal, and absent this pessimal-

optimal distinction, random is close to an ideal control. Degree sort, precisely because it is an estab-

lished trick, is simple enough that any system can do it but naive enough that it can be improved

upon. Most importantly, two different standards would create an opportunity for systems to mea-

sure and show how they respond to different isomorphisms. But in practice studies may not want

to benchmark multiple isomorphisms; in this case we recommend random for studies that use

Kronecker/R-MAT data and ascending degree sort for studies with a triangle counting benchmark.

At minimum, studiॸ should declare their isomorphisms when they describe their experiments.

This proposal discriminates against systems that use the “natural” isomorphism under the as-

sumption that it is optimistic. This seems to be true of e.g., PageRank on soc-LiveJournal, and in

specific applications it may be a good practice. However, as previously mentioned the pessimal-

optimal framework breaks down across different cases, e.g., soc-LiveJournal’s default is poor for

triangle counting. This assumption also does not hold for other datasets, such as Twitter. There-

fore, for benchmarks using the default isomorphism would only be reasonable if the field had a large

sample of realistic benchmark datasets.
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5.4.2 Isolated Vertices

In terms of performance, isolated vertices are not as dramatic as vertex isomorphims, although in

some cases such as breadth-first search they have a meaningful impact. A 10% difference is not ut-

terly trivial and will become large, e.g., if we sample many BFS trees to approximate betweenness

centrality. The more important consequence of isolated vertices is that the reported vertex counts

of graphs are unreliable. Because isolated vertices impose little work relative to non-isolated vertices,

they mask the “real” vertex count and therefore the scale and edge density of the graph.

For example, soc-LiveJournal’s vertex and edge counts are closely approximated by Graph500

graphs with a scale parameter of 22. However, soc-LiveJournal has no isolated vertices, whereas Kro-

necker graphs have isolated vertices determined by a complex formula of their parameters. With the

Graph500’s default parameters, 43% of the vertices are isolated and the average degree is roughly

doubled at a scale of 22. A more appropriate scale for comparison with soc-LiveJournal would be

23 with half the edge factor. Therefore, even when papers follow a consistent standard for vertex

counts, if it includes isolated vertices it leads to incomparable counts between datasets. In practice,

though, it is not difficult to find inconsistent vertex counts. For example, Sundaram reports Twitter

including its isolated vertices, but reports Friendster without 116.

“Scale” parameters, such as the vertex and edge count, do not wholly determine performance and,

like isomorphisms, are only one of an infinite number of graph parameters. However, like isomor-

phisms they can and should be controlled, and this is particularly important because “scalability” is

such a popular idiom. Isolated vertices in the Kronecker model are particularly tricky because they

are nonlinear with respect to the model’s “scale” parameter; therefore, a plot of Kronecker graphs

with scale on the x-axis is nonlinear with respect to functions of the vertex count, such as the average

degree. We ourselves made this error in our own published research 83, and we discuss it further in

the next Chapter.
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5.4.3 Datasets

The field does not use enough datasets. If there exist other graph parameters that are as substantial

as isomorphism, but more subtle to express or difficult to control, then we have no obvious remedy.

A healthy sample of graphs from a robust population should be the panacea for any such hidden

variables, but in practice we are far from achieving that standard. This is a social problem, because

datasets are obtained through social processes. The social nature of this problem is reflected in the

structure of the dataset citation graph (Figure 5.9).

It is conspicious that many of the top datasets are over a decade old. To some extent this is due

to citation pressures, but we would argue that this also predates the modern “Big Data” movement

and the widespread perception that such data is valuable. It also predates the Netflix Prize lawsuit

and other indicators that releasing such data entails risks. Mitigating these concerns is not obviously

possible and is certainly outside the scope of this dissertation.

In the absence of a robust data corpus we must rely on synthetic data generators such as the Kro-

necker model. Such results generalize only to the model itself, so we in turn depend on the model

to generalize across “realistic” graphs. However, the most popular generators and also their parame-

ters are subject to the same citation pressures as real data. The Kronecker model has seen numerous

extensions (e.g., to arbitrary k × k seeds75 and mixtures of different seeds66), but the field still uses

the same 2 × 2 model that Chakrabarti pioneered in 2004 28. Similarly, the parameter space is dom-

inated by the Graph500’s settings and a few alternatives when these settings are intolerable, such

as in triangle counting. As we’ve shown, these parameters can vary performance characteristics (of

e.g., isomorphisms) in the same manner as varying real datasets. So at present, our synthetic data

situation seems almost as dire as our real data. Nevertheless we think this is the best route forward,

so in the next Chapter we discuss improvements to the Kronecker model with a specific focus on

generating benchmark graphs.
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6
Smooth Kronecker Models

As shown in the previous chapter, graph systems evaluations are concentrated on a handful of pub-

licly available datasets. This causes generalization problems, because “hidden” graph parameters,

such as the vertex isomorphism, are badly undersampled. These variations would wash out as noise

if significantly more benchmark data were available and in use. However, stakeholders are unlikely

to publish data due to its business value and the significant liability risks. Fortunately, we have one

inexhaustible source from which to draw benchmark datasets: synthetic graph generators.

The Graph500 and LUBM graph generators are by far the most popular generators for research

evaluations, as revealed by our metastudy. Of these, the Graph500’s Kronecker generator is more

popular and more widely used by a variety of research fields, in contrast with LUBM which is tightly

bound to the RDF query model. This prompts a critical question: ॹ the Kronecker generator a suffi-

111



cient source of benchmark datasets for research evaluations? Unfortunately, the answer is no: we will

show in Section 6.2 that there are several features of the Kronecker generator that inhibit its correct

use as a benchmark.

Seshadhri et al. identified some of these problems in 2011 110, proposing a fix that was never inte-

grated into the Graph500 specification and was implemented incorrectly in the generator’s reference

code. This is inconvenient for benchmarks, because it adds noise on a per-graph basis, so bench-

marks must run on a series of graphs to reach statistical convergence. We show that this noise para-

doxically improves the graph’s partitions and therefore reshapes the relative value of partitioning

schemes.

We present Smooth Kronecker, a Kronecker generator that fixes the problems identified by Se-

shadhri et al. without adding per-graph noise. Smooth Kronecker works by resampling the gen-

erator’s discrete distribution parameters into several distributions whose dimensions are relatively

prime to one another. By randomly substituting one relative prime distribution for another, we

smooth the generator function in the same manner that adding noise would blur it. However, our

distributions are deterministic samples from the same underlying distribution, so unlike noise, they

do not vary the graph model and preserve its properties.

6.1 Background

Generative graph models occupy prestigious roles in the history of graph theory, but in practice

these roles have changed over time. As mentioned in Chapter 2, Erdos’ random graph model was

enormously productive both in theory and in practice; for example, Erdos’ proved a random graph

is almost certainly connected if its edge probability is greater than ln|V|/|V| 38, and because this is the

mean-field case for bond percolation theory 23 it has implications for e.g., materials science. In con-

trast, although later models such as Barabasi’s preferential attachment model successfully describe
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select properties of contemporary datasets, such as centralization and fault tolerance 5, they have

failed to produce a holistic “complex network” theory with widely-applicable conclusions.

This is in part a consequence of opposing research directions. Erdos defined a powerful but gen-

eral mathematical model that logically must have real-world consequences, whereas Barabasi et al.

observed empirical features of contemporary networks and then quantified those features in a for-

mal model. Though both models are statistical in the sense that they describe a class of graphs using

random variables, in Erdos’ model these variables are random constructions, whereas in Barabasi’s

model they’re parameters that fit real observations.

Chakrabarti et al.’s seminal “R-MAT: A Recursive Model for Graph Mining” 28 takes the same

approach as Barbasi et al. The purpose of this work is clearly stated in its title: R-MAT extracts

knowledge from real graphs by fitting them to a stastical model’s parameters. R-MAT models the

graph’s square adjacency matrix as a probability distribution over its four square quadrants. To gen-

erate an edge, R-MAT chooses a quadrant from this distribution and then recursively reapplies the

distribution to that quadrant. Naturally, k such recursions model a graph with 2k vertices, and each

recursion generates one bit of the source and target vertices. Intuitively, the diagonal quadrants

model two independent vertex partitions, and the anti-diagonal quadrants model the edge cut be-

tween those partitions. When the diagonal has more mass than the anti-diagonal, then R-MAT is a

“planted partition” or community model.

R-MAT is a simple example of a stochastic block model, a broad field of logical extensions to Er-

dos’ model that have enjoyed much attention in recent years. In practice R-MAT is widely used

precisely because it is simple: the distribution is intuitively meaningful and its parameters are eas-

ily published, exchanged, and reproduced. Furthermore, when the distribution is derived from real

graph data (as its authors intended and demonstrated), then researchers can claim that synthetic

graphs drawn from the distribution are “like” the real graph and therefore valid experimental data.

In particular, this gives a credible method to vary the size of graphs in an experiment and maintain
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their inter-comparability. R-MAT can generate very large graphs because its large adjacency matrix

is not explicitly materialized, and each edge may be independently generated in parallel. Given these

features, it is unsurprising that DARPA’S HPCS supercomputing group chose R-MAT as the input

generator for its SSCA#2 scalable graph analysis benchmark specification in 2005 12. This specifica-

tion evolved into the “HPC Scalable Graph Analysis Benchmark” in 2009 34 and then the Graph500

supercomputing benchmark from 2010 onwards92.

A prestigious group including Leskovec, Chakrabarti, and Kleinberg refined R-MAT in several

publications between 2005 and 201074 76 75. Their newKronecker model characterized R-MAT’s

recursive step as the Kronecker product of the distribution matrix with itself, and the recursive se-

ries as a Kronecker exponentiation process; the distribution of graphs generated by this process

are the Kronecker graphs. These extensions provide for the use of distributions with dimensions

other than 2 × 2, and also give a more rigorous procedure to fit the model’s parameters to real

graph data. Most importantly, the Kronecker model is a strict superset of R-MAT and so existing

R-MAT applications could adopt the Kronecker model without changing their behavior. Hence,

the Graph500 now uses a “Kronecker” model even though its implementation is fundamentally

similar to SSCA#2’s original R-MAT model. Figure 6.1 depicts a 2 × 2 Kronecker model, which is

equivalent to the R-MAT model.
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Figure 6.1: A Kronecker model using a 2 × 2 seed with 3 recursions. To generate an edge, we draw from the 2 × 2
distribuধon 3 ধmes to uniquely determine a source and target in the range [0 : 23− 1]. Each iteraধon of a d× d seed
generates one d-ary bit of the source and target.
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Source A B C D k |E|
Graph50092 0.57 0.19 0.19 0.05 varies 16 ∗ 2k
CAHepPh co-authors75 0.42 *0.19 *0.19 0.20 14 237010
WEBNotreDame web graph75 0.48 0.20 0.21 0.11 18 1497134
Triangle benchmark 108 0.45 0.15 0.15 0.25 20 16 ∗ 2k
SSSP benchmark96 0.50 0.10 0.10 0.30 24 16 ∗ 2k

Figure 6.2: A sample of Kronecker parameters from various evaluaধons. In general benchmark Kronecker graphs
are characterized by a strongly connected upper-leđ vertex parধধon (A) and a weak anধ-diagonal (B and C). There-
fore, depending on the strength of the lower-right parধধon (D) they are either planted parধধon (strong) or planted
community (weak) models.

Notably, Leskovec also maintains the Stanford Large Network Dataset Collection, which is de

facto among the most popular sources of real graph data used in research evaluations77. Much of

Leskovec’s research mines knowledge from these graphs, and R-MAT was originally advertised

as a graph mining model; but Leskovec’s graphs are also widely used as benchmarks, and the R-

MAT/Kronecker models are widely used as benchmark generators. In practice graph mining and

graph construction are quite close because “realistic” graph construction depends on a definition of

what is “real,” which graph mining provides.

In particular, graph mining provides parameters for the Kronecker model’s distribution. When

reseachers use the Kronecker model to generate experimental data, they must control its parameters.

It is reasonable to vary and plot size parameters, such as vertex and edge counts, but the distribu-

tion’s parameters are more challenging. It’s not clear whether every choice of parameters is “valid” in

the sense that they produce graphs “like some real graph,” or that the parameters vary in a principled

manner that one could feasibly map to a plot axis. In practice, researchers choose fixed parameters

from published results, which provides legitimacy and enhances comparability. The most popular

parameters are overwhelmingly the Graph500’s defaults, but several other parameters are also in cir-

culation (see Figure 6.2). Notably these are all 2 × 2 distributions, so the original R-MAT model is

very much alive in 2017.
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6.2 Benchmarking Issues

Unfortunately, the Kronecker graphs exhibit several features that affect their validity as benchmark

datasets. In the previous Chapter we identified two features – isomorphisms and isolated vertices –

that are commonly mishandled in graph systems evaluations. With regards to both these features,

the Kronecker model presents unique experimental challenges. The model’s default isomorphism is

highly optimistic, and for that reason the Graph500 generator explicitly outputs a random isomor-

phism, which is instead highly pessimistic relative to the default isomorphisms of real datasets. The

model also generates isolated vertices in proportion to a complex function of its parameters, which

means the real vertex count is poorly represented when those parameters are e.g., a plot axis. Most

importantly, the model produces a degree distribution that is dramatically unlike any real dataset,

with implications for benchmarks that depend on the degree such as triangle counting (Figure 6.3).
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Figure 6.3: Degree-frequency of a Kronecker graph using Graph500 parameters (s = 16, e = 16,A = 0.57,B =
C = 0.19). Observe the exaggerated combing, which is the product of a few normal distribuধons around expected
degree (see Figures 6.4, 6.5, and 6.6).
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It is readily apparent that a Kronecker graph’s default isomorphism is totally correlated with

its edge structure. Indeed, this defines the model: the first iteration of the distribution gives the

most significant bit of the source and target vertices, the second iteration gives the next-most sig-

nificant bit, and so on such that the vertices necessarily sort according to the edge distribution. As

mentioned previously, the Kronecker model is a planted partition model when the distribution’s

diagonal (which corresponds with vertex partitions) has more mass than its anti-diagonal (which

corresponds with edge cuts). Such a Kronecker graph is essentially pre-partitioned in its default iso-

morphism.

The Graph500 specification requires that a random isomorphism be applied to the graph’s ver-

tices and edge list. This decision is correct and reasonable within the context of the benchmark, but

when the Kronecker generator is used in other evaluations it creates serious comparability issues. As

discussed in the previous Chapter, the default isomorphisms of real datasets are often optimistic, so

it is not common practice to randomize them. Therefore, “out of the box” Graph500 graphs and

real graphs measure differently in dimensions determined by their isomorphisms, such as cache hit

rates. For example, the evaluation of “Graph Prefetching using Data Structure Knowledge” by Ain-

wsworth and Jones4 measures less than a 40% L1 cache hit rate on Graph500 graphs and more than

80% on real graphs, which the authors attribute to register spills. But since this evaluation does not

explicitly control for isomorphism, the difference could be due to the Graph500’s randomization.

The problem is that the field has not defined any standard control isomorphism to impose on any

graph, synthetic or otherwise; but this problem is felt accutely when benchmarking with Kronecker

graphs.

In principle, a 2 × 2 Kronecker seed produces a graph with |V| = 2scale vertices and |E| edges

where |E| = O(|V|) for very large sparse graphs. For example, the Graph500 specifies that the scale

varies and the edge count covaries by a constant factor 2scale ∗ edgefactor. Naively, one might think

that this would plot a log-scale vertex axis with a proportional edge count and a constant average
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degree. However, we must account for isolated (i.e., zero-degree) vertices, just as in real datasets.

Seshadhri et al 110 show that in Kronecker graphs a large fraction of verticॸ are isolated in expec-

tation. Furthermore, the fraction of isolated vertices grows with increasing scale and a fixed edge

factor. This means that in a plot of Graph500 graphs with the scale parameters on the x-axis, the real

vertex count ॹ sublinear with respect to the x-axॹ, the edge count ॹ linear, and the average degree ॹ

superlinear!

The approximate isolated vertex count is given by Seshadhri et al. as:

d = |E|/|V|

o = (A+ B)− 1/2

t = (1 + 2o)/(1− 2o)

g = d(1− 4o2)k/2

isolated_vertex_count =
r=k/2∑
r=−k/2

(
k

k/2+ r

)
exp(−2gtr)

This is obviously a complicated relationship between the scale axis and the non-isolated vertex

count. For Graph500 parameters, to obtain the “expected” vertex count of 2k, one must usually

request two to four times as many vertices (i.e., increase scale by one to two) and decrease the edge

factor proportionally.

This is not an error in the Kronecker model so much as a misunderstanding between the graph

modeling and benchmarking communities. The graph modeling community regards densification

“with growth” as a key feature of power law models, and Leskovec et al. present it as one of the their

model’s strengths75. However, this definition of scale gives a complex x-axis with a non-trivial re-

lationship to simple benchmark parameters, such as the vertex count. If a benchmark algorithm

depends on the vertex count then its relationship with this x-axis is similarly complicated.
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In a typical Kronecker benchmark plot the x-axis is scale and the y-axis is a quanity of interest

such as time. If the quantity of interest is controlled by the graph’s edge count |E|, then the plot

preserves the shape of that relationship. However, if the quantity is controlled by the graph’s vertex

count or density then the relationship is reshaped by Equation 6.2. For most system and algorithms

the true relationship may not be precisely known, which is a major reason we want to quantify it

with respect to a known axis.

For example, the inner loop of a simple PageRank implementation iterates the edge list, but its

cache behavior depends on a vertex-rank map, and its convergence rate is partially a function of the

graph’s density. A novel PageRank implementation, such as the one in GraphTwist 128 that exploits

values near convergence to ellide insignificant work, has a novel and possibly unknown relation-

ship with these parameters. The consequence of this is that it’s extremely difficult to use a plot with

Kronecker scale on the x-axis to correctly explain the behavior of a system or algorithm, particularly

if you are not aware of the isolated vertex problem. We have committed this error in our own re-

search by generating a Kronecker scale plot and incorrectly referring to the x-axis as a log-scale vertex

count 83.

However, isolated vertices in the Kronecker model are only a symptom of a more serious prob-

lem. Figure 6.3 plots the frequency distribution of vertex degrees in a Kronecker graph drawn from

the Graph500’s default parameters. The graph’s distribution is “combed” at regular geometric in-

tervals, between which vertices with a given degree are highly improbable. Again, this will clearly

affect an algorithm whose expected runtime depends on the degree distribution, such as triangle

counting. Moreover, the same combing appears in other fundamental parameters, such as the k-core

distribution (Figures 6.13). This combing problem is so pervasive that it calls into question whether

Kronecker ought be treated as representative datasets for benchmarking.

Combing and isolated vertices share the same basic cause. The cause is most easily understood

in the one dimensional case, and then generalized to two dimensional matrices. Consider the one
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Figure 6.4: A one-dimensional Kronecker series with two
distribuধon parameters. At iteraধon k the number of sam-
ples is 2k but the number of unique sample probabiliধes is
only k+ 1.
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Figure 6.5: Because probability corresponds to expected
degree, and degree ranges over the number of samples,
the frequency of degrees is always logarithmically under-
sampled.
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Figure 6.6: Note also that several of the samples have
an expected degree of zero (i.e. are isolated) when a =
0.75, b = .25, |E| = 16 ∗ 2k as in the Graph500.
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dimensional Kronecker seed with two distribution parameters a and b, depicted in Figure 6.4. The

first Kronecker product of this seed with itself is [aa|ab|ab|bb], the second is

[aaa|aab|aab|abb|aab|abb|abb|bbb]

And so on. Observe that each sample’s probability corresponds to the sum of its binary represen-

tation. Therefore, each iteration produces 2k samples that share only k + 1 distinct probabilities,

corresponding to apbk−p for p from 0 to k (see Figures 6.5 and 6.6). If we draw from this distribu-

tion and plot the sample frequency, we’ll see k + 1 normal distributions at geometric intervals of

a/b.

Fundamentally, there are exponentially more vertices in a Kronecker model than there are ex-

pected degrees. The out-degree distribution of a two dimensional 2 × 2 Kronecker seed is just the

one dimensional distribution with parametersA + B and C + D. Similarly, the in-degree distri-

bution is the one dimensional distribution with parametersA + C and B + D. Each Kronecker

iteration produces 2k vertices but only k + 1 expected out-degrees and in-degrees, which correspond

to the sum of each vertex’s binary representation. When we draw edges from the model and plot

the out-degree or in-degree frequency, we see k + 1 normal distributions at geometric intervals, as

in the one dimensional case. Furthermore, when B = C as in the most popular Kronecker seeds

(Table 6.2), the source and target distributions are symmetric and therefore fully aligned, so the total

degree distribution also has k+ 1 combs (as in Figure 6.3).

The vertex frequencies under each degree distribution follow a binomial distribution, because

they correspond to the count of binary vertex representations with a fixed sum. Therefore, in a sim-

plified sense the holistic Kronecker model follows a log-normal out and in-degree distribution,

which is a key reason that it produces networks with skew degree distributions. However, this re-

lationship is always logarithmically undersampled, and as a result, it is badly combed. Leskovec75,
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Groer47, and Seshadhri et al. 110 fully formalize this relationship.

Isolated vertices exist because, in a sparse graph, many of the normal distributions correspond

to an expected degree approaching zero. In the one dimensional case, if we assume without loss

of generality that a > b, then since 0.5 > b clearly bk shrinks faster than 2k grows. Therefore,

as k goes to infinity the expected frequency of a sample with probability bk approaches zero if the

number of edge draws from the distribution isO(|V| = 2k). Similarly, for a sufficiently large graph

ifA + B > C + D then the expected out-degree of a vertex with associated probability (C + D)k

is less than one if the graph is sparse, and likewise in-degree. Totally isolated vertices must exist in

expectation whenA+ B > C+ D andA+ C < B+ D or vice-versa, which in particular is true if

B = C, as in the Graph500 and many other Kronecker seeds.

Seshadhri proposes to smooth the distribution by independently blurring each Kronecker itera-

tion with uniform random noise. This breaks up the normal peaks to fill the surrounding valleys by

adding variation that depends on each vertex’s binary permutation, rather than its sum. For example,

in the one dimensional case two samples with coincident probabilities ab and ba become distinct

probabilities (a + n1)(b − n2) and (b − n1)(a + n2). Consequently there are as many expected de-

grees as there are vertices, and the degree distribution is less obviously clustered, although in princi-

ple the distribution still varies around the same combs. This implies that the noise parameters must

be chosen once per graph and not per edge draw, or else the model converges back to the combed

distribution. Essentially the graph model is drawn from around the combed model as defined by the

noise parameters.

This is one of several problems with Seshadhri’s solution. A 2 × 2 Kronecker graph consists of

o(2k) edge draws, so we do not expect much variation in graphs drawn from the same Kronecker

model due to the law of large numbers; this is why combing always occurs. But “noisy” Kronecker

models depend on only k additional random variables, and in fact it is crucial that this is not large

or else the noisy model converges to the same combs as the original. Benchmarks that use noisy
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Kronecker should control these random variables by running on a sufficiently large series of ran-

dom graph models. The Graph500 reference implementation simply fixes the “noise” parameters

at uniform intervals along their range (and slightly alters the noise equation); it ॹ not obvioॺ that

Seshadhri’s proofs hold in thॹ fixed case.

This decision exposes another problem with the noisy model. In a series of k random draws from

the uniform noise range [−n : n], the minimum draw in expectation is−n + 2n/k; the Graph500’s

method guarantees the minimum is always−n. Let p be the Kronecker iteration with minimum

noise; this iteration generates the pthmost significant bit of each vertex. If we sort the vertices by

this bit, this gives a bi-partitioning of the graph in which the anti-diagonal is weakened by the mini-

mum noise. If the noise magnitude is significant, this will substantially reduce the expected edge cut

cost of the planted bi-partition. More generally, noise reduces the planted edge cut of any 2k/2-way

partitioning in expectation, which realistically covers all practical partitionings for any large graph.

So adding noise has topological and spectral ramifications in proportion to the size of the noise.

This inevitably leads to the question: how much noise do we need to add? Unfortunately, the an-

swer is “a lot” in practice. The correct noise depends on the Kronecker model’s parameters and how

one defines a “smooth enough” distribution; Seshadhri declares that 0.05−0.1 is reasonable, and the

Graph500 reference uses 0.1. The anti-diagonals B and C in Seshadhri’s study and the Graph500 are

approximately 0.2, so 0.1 is a relatively large variation; at one extreme, it halves the expected edge cut

of the graph’s planted bi-partition! All these problems are complimentary: a large noise magnitude

more substantially alters the graph’s planed bipartition and makes proper control of the random

noise variables an important evaluation concern. This may explain why noisy Kronecker has not

been adopted by the Graph500 specification (and is compiled out of the reference code) despite being

implemented in the reference code for 5 years. The Graph500 and research evaluations that use the

default graph generator are still based on the original combed Kronecker model.
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6.3 Proposed Solution

Several key ideas from the previous Section will help us fix combing in the Kronecker model.

1. The model generally follows a reasonable degree distribution; it is just undersampled.

2. The distribution is undersampled because each vertex’s expected degree is determined by the

non-unique sum of its binary representation.

3. Noisy Kronecker substitutes a “Kronecker-like” graph model in which each vertex’s expected

degree varies according to its unique binary representation.

4. The problem with noisy Kronecker is that the vertex degrees vary normally around the un-

dersampled model, instead of sampling the correct underlying model.

Our goal is to get each vertex’s expected degree to sample the correct underlying model in a manner

uniquely determined by its binary representation.

The “correct underlying model” is the log-normal distribution that the Kronecker model’s bi-

nomial distribution follows as it approaches infinity. So naively, we could try to find the result of

an infinite series of Kronecker products and then downsample a |V|x|V|matrix from it. But if our

seed is d × d and |V| = d k, then this sample is just the kthKronecker product, so we are right back

where we started. However, this prompts another key idea: what if the vertex count is not an integer

power of the seed size?

A non-integer Kronecker exponent may seem strange, but for small cases the solution is straight-

forward. Once again, the one dimensional case is illustrative, because the two dimensional case is

just its bilinear extension. Consider the two parameter seed, [a|b], from whose infinite series we

want to downsample a 3-parameter distribution [x|y|z]. Figure 6.7 shows that x is just the geo-

metric series whose initial term is aa and ratio is ab; this corresponds to the geometric series 1/3 =
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a2 ab ab b2

ab⋅a2 ab⋅ab ab⋅ab ab⋅b2

Figure 6.7: Sampling the leđmost third of the one-dimensional, two-parameter Kronecker series as it approaches
infinity. The sample is clearly aa + ab ∗ aa + (ab)2 ∗ aa..., i.e. the geometric series with iniধal aa and raধo ab. To
sample the rightmost third swap a and b, and to sample the middle subtract the leđ and right from the unit.

1/4 + 1/16 + 1/64 + .... y and z are similarly trivial, as is the 5-parameter distribution; in general

any downsampled distribution can be explicitly solved as a geometric series of d-ary fractions. The

extension to the two dimensional case is straightforward and is demonstrated in Figure 6.8

This explicit method clearly cannot scale to the septillion samples of a large Graph500 adjacency

matrix. To realistically generate large Kronecker models, we need to express them as the Kronecker

product of a series of small distributions. Logically, the 6-parameter distribution should be the Kro-

necker product of the 2 and 3-parameter distributions. However, this poses an interesting prob-

lem: the Kronecker product is not commutative. Depending on the operand order we can generate

[ax|ay|az|bx|by|bz] or [xa|xb|ya|yb|za|zb].

Both solutions are isomorphic in that they contain the same probabilities, but the probabilities

are associated with different samples. The first distribution is in “binary and then ternary” bit order,

the second is in “ternary and then binary” order, and the isomorphism reorders these bits. In the

two dimensional graph case, the Kronecker product of a 2 × 2 and a 3 × 3 seed is a 6 × 6 Kronecker

model. The seeds uniquely determine the unlabeled graph model, but the operand order determines

its vertex isomorphism. This distinction is unimportant in the original Kronecker model because all

of the operands are equal, and because when generating Kronecker graphs the default isomorphism

is usually destroyed afterwards by randomization.

However, these isomorphisms are useful to us because samples with equal probabilities are not
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Figure 6.8: 1.) Sampling the top-leđ ninth of the two-dimensional, 4-parameter Kronecker series as it approaches
infinity. 2.) The sample consists ofAA, the leđmost third ofAB, the topmost third ofAC, and the top-leđ ninth of
AD. 3.) The leđ and top (4) thirds are just instances of the one-dimensional case from Figure 6.7. 5.) The remaining
ninth is recursive and impliesAD is the raধo of a geometric series around the whole expression. Four corners, four
thirds, and the unit sum give us a solvable system of 9 equaধons for the 3× 3 downsampled seed.

necessarily preserved across different operand orders. Equivalently, vertices with equal expected

degrees are not necessarily preserved across different isomorphisms. So varying the operand or-

der/isomorphism lets us differentiate between vertices while we hold constant the actual operands

of the Kronecker model. The only catch is that to meaningfully permute the operand order we need

at least one alternative operand. Fortunately, geometric downsampling lets us generate alternative

seeds that are consistent with the original Kronecker seed as it goes to infinity (see Figure 6.8).

6.4 Smooth Kronecker Algorithm

Our simplest algorithm works as follows:

1. Given any d× dKronecker seed, scale k and edge count e...

2. Using geometric downsampling, generate an alternative d1 × d1 seed such that d1 is not a
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function One-Dimensional Third(A,B)
returnA ∗A/(0−A ∗ B)

function Two-Dimensional Ninth(A,B,C,D)
Right← A ∗ B ∗ 1D Third(A+ C,B+D)
Bottom← A ∗ C ∗ 1D Third(A+ B,C+D)
Initial← A ∗A+ Right+ Bottom
return Initial/(0−A ∗D)

function 3x3 Resample(A,B,C,D)
a← 2D Ninth(A,B,C,D)
b← 2D Ninth(B,A,D,C)
c← 2D Ninth(C,A,D,B)
d← 2D Ninth(D,B,C,A)

ab← 1D Third(A+ B,C+D)− a− b
ac← 1D Third(A+ C,B+D)− a− c
bd← 1D Third(B+D,A+ C)− b− d
cd← 1D Third(C+D,A+ B)− c− d

x← 0− a− b− c− d− ab− ac− bd− cd
return [a, ab, b, ac, x, bd, c, cd, d]

Algorithm 4: Explicit funcধon to resample a 2x3 seed distribuধon from a 2 × 2 seed using the method shown in
Figure 6.8.

power of d.

3. For each edge, choose an operand order r uniformly at random from [0 : k).

4. Iterate k− 1 draws from the initial seed as normal, but on draw r use the alternative seed.

5. Repeat from Step 3 for e edges to generate a graph with dk−1 ∗ d1 vertices.

An intuitive explanation for this algorithm is readily apparent. The alternative d1 × d1 seed is a

smoothing filter that pushes the finite Kronecker product towards a better approximation of the

infinite Kronecker product. At any point in a given series there is a 1/k probability that the distribu-

tion is locally blurred by an alternative but faithful downsample from the infinite series. The finite
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function Smooth Kronecker Generator(A,B,C,D, k, e)
2× 2Seed← [A,B,C,D]
3× 3Seed← 3x3 Resample(A,B,C,D)
for e edges do

source← 0
target← 0
base← 1

r← Random Int(0, k)
for all i ∈ Range(0, k) do

if ̸ i = r then
cell← Random Choice(2× 2Seed)
source← source+ (cell/2) ∗ base
target← target+ (cell%2) ∗ base
base← base ∗ 2

else
cell← Random Choice(3× 3Seed)
source← source+ (cell/3) ∗ base
target← target+ (cell%3) ∗ base
base← base ∗ 3

Yield source, target

Algorithm 5: Smooth Kronecker Algorithm with a 2 × 2 input seed. Essenধally, when we subsধtute the 3 × 3 seed
we generate a trinary bit. This method generalizes to arbitrary mixtures of d-ary seeds.

Kronecker product gives an undersampled binomial degree distribution, but the infinite Kronecker

product gives a correct log normal degree distribution, so improving this approximation improves

the distribution. Geometric downsampling and permuting the operand order are just clever tools to

efficiently approximate the infinite series without explicitly materializing a large distribution. Fig-

ure 5 gives more explicit code for 2 × 2 input with an alternative 3 × 3 seed, which is the case that

covers all the popular Kronecker benchmark parameters.

The most critical distinction between our algorithm and noisy Kronecker is that we draw a new

isomorphism for every edge and therefore converge over many edge draws. In contrast, noisy Kro-

necker draws a new graph model only once per graph, because it converges to the very same combed
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distribution that it tries to avoid. Another key distinction is that our algorithm is smoothed by a

d1xd1 filter that we sample from the Kronecker model as it approaches infinity, because the infinite

Kronecker model gives a correct log-normal degree distribution. In contrast, noisy Kronecker ap-

plies a strong uniform blur that alters the model’s properties.

The single d1 × d1 seed increases the model’s vertex count, so graphs drawn from this model

are not directly comparable to graphs drawn from a pure d × dmodel because the explicit scale is

different. Fortunately it is trivial to extend this algorithm to arbitrary mixtures of d1 × d1 and d × d

seeds. For example, 35 and 28 are approximately equal, so one can substitute five 3 × 3 seeds for eight

2× 2 seeds and preserve the approximate scale. In fact this gives our scale parameters more degrees of

freedom than the pure d× dmodel, because we are no longer restricted to purely logarithmic scales.

This algorithm and its sampling method are our own research, but Daniel Alabi and Dimitris

Kalimeris have independently pursued a formula for the degree distribution of the Smooth Kro-

necker model and a proof that it follows a log-normal distribution. The proof is not fully complete,

but a proof sketch is available as a preprint. This is par for the course: six years passed between the

initial publication of the Kronecker model74 and a full characterization of its degree distribution 110.

6.5 Empirical Demonstration

Figure 6.9 compares the degree-frequency of a traditional Kronecker graph, previously shown in

Figure 6.3, to an equivalent graph that substitutes five resampled 3 × 3 seeds for eight of the origi-

nal 2 × 2 seeds. The combing is almost entirely corrected by the addition of the alternative seeds.

In comparison, noisy Kronecker exhibits much of the original combing even with a relatively large

noise parameter. Figure 6.10 reproduces a plot from Seshadhri et al. that compares noisy Kronecker

to the original Kronecker model using the same Graph500 parameters. Even+ − 0.1 noise leaves a

considerable amount of combing towards the end of the degree distribution; and note that the noise
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Figure 6.9: Degree-frequency plot of a Smooth Kronecker graph superimposed over the
tradiধonal Kronecker graph from Figure 6.3.

Figure 6.10: Average degree-frequency plot of 25 noisy Kronecker graphs for each of two
noise parameters, superimposed over tradiধonal Kronecker.
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is added directly to each of the anti-diagonals B and C, which in the Graph500 are 0.19, so to achieve

this result the anti-diagonal varies by more than a factor of two. Consequently, the reproduced plot

is averaged over 25 graphs because in any one graph the realized noise parameters may vary consider-

ably. Like the original Kronecker model, our algorithm is not random per-graph but only per-edge;

so individual graphs converge over their many edge draws. This makes our algorithm more suitable

for generating canonical benchmark graphs.

Note that combing is only plottable when the graph’s scale is relatively small. Because the comb

count is equal to the scale plus one, increasing the scale visually pushes the combs closer together in

a fixed-width log-scale plot. Thus, at large scales the combs appear to blend together and vanish, but

this is strictly a visual illusion because the plot width does not increase in proportion to the scale. In

reality combing ismore exaggerated at large scales, because each new comb is separated by a geomet-

ric factor from previous combs.
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Figure 6.11: CCDF of a smoothed Kronecker graph superimposed over the tradiধonal Kronecker graph from Fig-
ure 6.3.
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It is much easier to see details in the degree’s complementary cumulative distribution (CCDF); in

this representation the combs appear as “steps.” Figure 6.11 compares the CCDF of the same tradi-

tional and smoothed Kronecker graphs. Here we see that the smoothed graph actually follows the

same combing pattern as the traditional graph, but it is dampened by orders of magnitude (note

that the y-axis is log scale). This is evidence of our intuition that the 3 × 3 resampled seed acts as a

smoothing filter over the pure 2× 2 series.
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Figure 6.12: A smoothed Kronecker graph with seventeen 2× 2 seeds and only one resampled 3× 3 seed.

One seed is enough to produce a smooth degree-frequency curve. Figure 6.12 plots the degree-

frequency and CCDF of a graph with only one resampled 3 × 3 seed. Broadly this means that many

more vertex scales are possible in the mixed-seed model; in principle one could realize any vertex

scale by factoring the desired scale and generating appropriate seeds. However, recall that one moti-

vation for the seed-based Kronecker model is to avoid materializing very large distributions. There-

fore it is not efficient to realize vertex scales that are not the products of small factors. And of course,

one must avoid powers of primes, or else the model degenerates to the original Kronecker model.
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Like noisy Kronecker, smooth Kronecker does not significantly change the isolated vertex count

because it intentionally follows the degree distribution of the original Kroncker model, in which

many vertices have zero degree in expectation. The appropriate correction for isolated vertices is to

always report the true vertex count and, if necessary, to invert Equation 6.2 and/or bisect the model’s

parameters to reach the desired count.

(a) Sixteen 2× 2 seeds. (b) Eight 2× 2 and five 3× 3 seeds.

Figure 6.13: K-core CCDFs of an original and smoothed Kronecker graph.

The combing effect in Kronecker models is not limited to degree frequency, but is also present

in other parameters that broadly measure “centrality,” such as k-cores. Figure 6.13 depicts the k-core

CCDF of an original Kronecker graph and an equivalent smoothed Kronecker graph.

6.6 Conclusions

In this Chapter we present a “fix” to the Kronecker model that strongly dampens its unnatural

combing behavior and thereby makes the model a more appropriate source of synthetic benchmark

data. Our smoothing fix significantly improves over a previous fix proposed by Seshadhri et. al, and

in particular, addresses the statistical requirements of their fix that inhibit benchmarking.
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To be absolutely clear, the intent of our work is different from the authors of the original R-

MAT and Kronecker models. As originally proposed, R-MAT and Kronecker are data mining

models whose “parameters” are really metrics given by a best-fit of the model to a given graph. In

this context, combing, isolated vertices, and even the model’s optimistic default isomorphism are

not really flaws, but rather features of the model that one must account for in the fitting process.

Leskovec’s original KronFit algorithm specifically explores the isomorphism space75, and a later

algorithm by Kim and Leskovec does a better job of accounting for isolated vertices65. Kim and

Leskovec’s later MAG model mixes different seed matrices that, to some extent, dampen combing66,

although it is still visible in their degree-frequency plots. To the best of our knowledge, our resam-

pling method and our method of permuting the Kronecker operand order are new.

The use of the Kronecker model as a synthetic benchmark model is a de facto practice that has

gradually become standardized and is now widespread, as shown in the previous chapter. In this

context the model is not merely a mining abstraction, but instead takes on a life of its own; real sys-

tems are evaluated and presented on the basis of Kronecker graphs. The Kronecker model enjoys

this use not simply because of its “realism,” but also because of practical features such as its trivial

operations, trivial parallelism, small data structures and small parameters that are easy to publish and

therefore easy to reproduce and compare. Our “fix” is intended for this ecosystem, and in particu-

lar, it maintains the trivial parallelism and backwards compatibility with published parameters via

resampling.

In principle, future work could expand on our model and take advantage of its new parameters,

e.g., arbitrary mixes of different seed distributions targeting graphs with nearly arbitrary scale (rather

than log scale). However, we think it is time that the graph benchmarking community recognize

that they have distinct needs from the data mining community. “Scale” is a great example of a con-

cept whose meaning is significantly different between benchmarking and mining contexts. If we

want to claim that our systems improve scalability, then we need to be pushing for a benchmarking
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practice where we can plot with scale and have well-defined expectations. Similarly, smoothing the

degree distribution brings the model more in line with our expectations. Our expectations are im-

portant because they determine our hypotheses and therefore what conclusions we can draw from

our experiments. Though our fix is pragmatic, it directly addresses what we see as an urgent epis-

temic problem in the graph systems field and in “big data” systems in general.
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7
Conclusion

This dissertation presents several projects that logically follow from one another within the com-

mon topic of high-performance graph data processing. In Chapter 3 I introduced SHEEP, a dis-

tributed graph partitioner and vertex sorter that reduces communication volumes and runs ex-

tremely fast on large graphs (Chapter 3). SHEEP is so fast that it is ultimately bound by data band-

width at scale, which is arguably the best case for a partitioner without a priori partitioning assump-

tions. SHEEP abandons the streaming and label propagation idioms that are common in contem-

porary high-performance partitioners, in favor of traditional idioms such as elimination trees and

distributed union-find data structures. In this regard SHEEP is one of several papers published in

2015 that bridged contemporary graph systems and traditional HPC linear algebra systems, such as

GraphMat 116.
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I developed SHEEP because I strongly believe that graph data shapॸ have a large performance

impact but are criminally neglected by contemporary research. Partitioning, vertex sorting, and

elimination trees are simply my preferred way of thinking about graph data shapes. While evaluat-

ing SHEEP I was often advised to benchmark end-to-end on “10 iterations of PageRank on Twit-

ter,” and “the Graph500 benchmark,” which were de facto community standards at that time. I was

skeptical of these practices precisely because my familiarity with public graph data suggested many

potential errors and unanswered questions. What is a meaningful baseline for an arbitrary 20 it-

erations of a naive algorithm implementation on a highly specific graph? This question serves as a

proxy for a more general investigation, but on some level it strikes me as simply absurd as it sounds.

Around this time I co-authored several papers with Peter Macko, in which we followed many of

these best/worst practices, such as scalability plots with Kronecker scale on the x-axis 83. We even

co-authored a benchmark suite 84, thereby contributing to the plurality of standards.

I presented a metastudy of graph systems publications (Chapter 5), because I wanted to commit

these thoughts to a formal framework and support them with data. I collected papers from what

I regarded as the most important conferences within a critical time period following the publica-

tion of Giraph. This was far too many papers for me to meaningfully engage with, so I committed

to a principled method to reduce the paper count to an essential core. This method intentionally

featured myself as an agent in the process, because search cannot currently match the nuanced judge-

ment of domain-specific expertise. I presented data on 65 graph systems evaluations from top-tier

conferences in the period from 2011 to 2015. I confirmed a skew long-tailed distribution among

benchmark algorithms and benchmark datasets. For algorithms I feel that this result was expected,

but I was surprised by the concentration among popular datasets, in particular, because I recognized

and documented flaws in many of those datasets.

I supported these criticisms with an evaluation of someone else’s system, Galois68 96, which I

regard as high quality research. My evaluation originally consisted of a potpourri of systems, bench-

137



marks and datasets totalling something like 1500 cases. Frankly, this was a poor method to produce

knowledge, because it lacked direction and included many absurd cases that were not best practices

for each scenario. By limiting my focus to a mature high-performance system, I was able to show

that graph data shapes have a real performance impact on results that could realistically be published

and compared. In particular I showed that 20 iterations of PageRank are in fact as problematic as

my intuition had long suggested.

At the time I conducted my metastudy the graph systems field was also facing criticism from a

well-known article by Frank McSherry et al. 89 However, a key distinction between my metastudy

and McSherry’s article is that his method is a comparative evaluation reductio ad absurdum. Mc-

Sherry’s demonstration of a preposterous result is striking and effective, but it does not expose the

complex history by which the preposterous became publishable. My conclusion from my metastudy

was that many evaluation errors were a natural consequence of citation and comparison processes

applied to a limited corpus of public graph datasets. The citation of and comparison to prior work

are best practices for good reasons, but the limitations of public graph datasets are considerably

more thorny. If I may be opinionated: the foundation myth of the “big data” movement is that data

has value, but when that value is regarded as capital goods, then “big data” is not compatible with

open data science. It is extremely difficult to show our work has general impact when we do not

possess diverse, substantial datasets.

Finally, in Chapter 6 I presented a pragmatic contribution to the this dataset problem in the

form of a synthetic graph generator. This generator reuses the existing parameters of the popular

R-MAT/Kronecker generator, but applies a novel method based on isomorphisms of the Kronecker

product to smooth problematic structures out of the synthetic graph. From my prior evaluations,

I was familiar with the Graph500 Kronecker generator, and my metastudy confirmed that it was

a de facto standard even for evaluations outside the scope of the Graph500 specification. In graph

data mining the Kronecker model is somewhat outdated, but as a synthetic benchmark it remains
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popular due to distinct benchmark requirements, such as easily shared parameters and extreme scal-

ability. I think it’s obvious that the “Kronecker” model was adapted to benchmarks only because of

its complete backwards compatibility with the previously popular R-MAT model. Thus, backwards

compatibility from my own model to the Kronecker model was an important requirement.

7.1 Future Work and Thoughts

The performance effects of graph data shapes are one instance of much more general data path ef-

fects in systems. In all my research I have regularly encountered results that are best explained by

data paths, yet I find that our language for discussing and designing around data paths is primitive

compared to execution. For example, I believe that data paths are the critical bottleneck in most

“big” graph data applications, yet the majority of graph analysis systems in the past five years re-

search sophisticated execution idioms such as scheduling, task distribution, etc. Only a handful

of systems bother with simple data path idioms, such as integer list compression 21 or space-filling

curves 88, even though these idioms have proven performance impact. I think there are several rea-

sons for this, one of which is that execution is clearly important, and I don’t mean to imply other-

wise. But I also think that the sophisticated language with which we discuss and design execution

paths is a major source of inspiration for future research: one can bring up “amorphous parallelism”

at a conference dinner and quickly solicit a lot of interesting ideas. And, to some extent, I think that

we romanticize computational parallelism in a way that we do not romanticize the memory bus.

I would like to contribute to a language of data path idioms in system design. My experience is

with graph systems, and fortunately graphs are sufficiently general to describe large parts of com-

puter science. Abstract data models and metrics, such as partitions and communication volumes,

need not apply only to graphs as input data; they are potentially methods to reason about the data

paths embodied in the system itself. Systems consist of components that communicate through
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paths with varying latency and throughput, and this creates bottlenecks and opportunities that are

precisely analogous to input data shaping. At scale, these paths are computer networks, and graph-

ical analysis methods such as partitioning have produced important results on networked systems.

I see no reason why these results couldn’t extend to data paths at every scale, such as cache commu-

nications. In such a future, our historic obsession with trivially serial data access patterns will not

suffice, so I have enjoyed recent research papers on non-serial data prefetching and caching4.

However, computer systems are ultimately empirical in that they are judged by quantitative mea-

surements. It is tempting to think that systems are exempt from the abstruse issues of the philos-

ophy of science, if only because end-to-end runtime feels like such an object quantity. Of course

we all acknowledge “experimental error,” but in my metastudy I try to show that this error is best

understood in terms of contextual and qualitative impacts, instead of error bars. In different fields

and even conferences I’ve encountered strikingly different conventions for what constitutes a well-

supported, and therefore publishable, result. I think these conventions are largely emergent and, in

general, are in need of testing.

I don’t think another benchmark suite or metric is necessarily a good direction for future work.

Graph analysis systems have at this point measured every conceivable quantity of benchmark ab-

stractions such as PageRank or triangle counting. Rather, it’s time for mature graph systems to apply

themselves to concrete problems in need of solutions. I think it’s noteworthy that the Netflix Prize

challenge is fondly remembered and regularly used as a benchmark despite its legal and ethical is-

sues94, and the fact that the winning algorithm was never implemented in practice because the gains

“did not seem to justify the engineering effort.” 1. Similarly, the most influential graph benchmark of

the past decade is arguably Kwak et. al’s Twitter dataset71, which was almost certainly not intended

as a systems benchmark. So if you want to make a positive contribution to graph systems bench-

marks, I think you should create new datasets coupled with interesting challenges and then publish

them with high quality meta-data.
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One might regard synthetic graph generators as mere substitutes for real data, but I don’t think

this is accurate. Real data is most interesting when coupled with a real problem of interest; PageR-

ank on Twitter is a synthetic problem that’s interest is to quantify aspects of the system. Real data

is full of eccentric features, such as optimistic default orders, that are interesting in reality but can

inhibit our understanding of the system, because their effects are complex or uncontrolled. In prin-

ciple synthetic generators with the right parameters grant us fine-grained experimental controls that

should deepen our understanding of our systems. However, synthetic systems benchmarks have

distinct needs that are not shared by realistic graph models from the data mining community.
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A
Proofs

In Section 3.4.1 we made the following claim about the elimination game. RecallG is an undirected

graph, P is a total order, and T is a tree produced by the elimination game.

Theorem 1. Let G[V <P z] be the subgraph induced on G by verticॸ less than z. Then, z ॹ the parent

in T of exactly the P-maximum verticॸ in the disjoint components of G[V <P z] that z joins together

in G[V ≤P z].

Proof. By lemmas:

Lemma 1. For all (x, y) ∈ TE, x <T y in the partial order defined by T. Because (x, y) ∈ TE

iff x <P y, it follows that T definॸ a suborder of P. Therefore, for all x ∈ TV, x must be the P-

maximum vertex in subt(x).
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Lemma 2. Let G[V <P z] be the subgraph induced on G by verticॸ less than z. By Corollary 1.1,

subt(x) and subt(y) are disconnected in G[V <P z]. But, there must exist an edge (x′, z) in G[V ≤P

z] such that x′ in subt(x):

If x ॹ a child of z, then in iteration x of the elimination game, (x, z) ∈ HE. If (x, z) ∈ HE, either

(x, z) ∈ GE or there exists a prior iteration x′ where (x′, z) ∈ HE. Again, either (x′, z) ∈ GE or

there exists a prior iteration. Because initially H = G thॹ must terminate in an edge in GE. There

must also exist (y′, z) such that y′ in subt(y).

Lemma 3. If we apply Lemma 2 to G[V <P x] it follows that for each child of x there must be an edge

in G[V ≤P x] that connects x to that child’s subtree. The same ॹ recursively true of the children of x’s

children, etc. It follows inductively that subt(x) must be a connected component in G[V <P z]. The

same ॹ true of subt(y). By Lemma 2, subt(x) and subt(y) are disjoint components in G[V <P z], but

z connects these components in G[V ≤P z].

Therefore, by Lemmas 1 and 3 vertex z is the parent of exactly the P-maximum vertices in the

disjoint components ofG[V <P z] that z joins inG[V ≤P z].

In Section 3.4.2 we made the following claim:

Theorem 2. Let G1 and G2 be two subgraphs of G such that G1 ∪ G2 = G. Let t(G,P) be the

elimination tree produced by union-find on G in order P. Then,

t(t(G1,P) ∪ t(G2,P),P) = t(G,P)

Proof. LetG1 andG2 be subgraphs ofG such thatG1 ∪ G2 = G. For clarity, let t(G) = t(G,P) for

constant P. LetG′ = t(G1) ∪ t(G2). We must show that t(G′) = t(G).

By induction we will show that in iteration z of the union-find t(G′) gains exactly the same chil-

dren of z as would t(G). Clearly this is true in the first iteration where no children are gained: as-
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sume this is true of every iteration before z.

In iteration z let the predecessors of z in t(G) be all (x, z) ∈ GE, x <p z. The predecessors of z

in t(G′) are all (x, z) ∈ G′
E, x <p z. SinceG′ = t(G1) ∪ t(G2), and t(G1) and t(G2) both define

suborders of P, the predecessors of z in t(G′) are exactly the children of z in t(G1) and t(G2).

The predecessors of z in t(G1) are all (x, z) ∈ GE, x <p z, and similarlyG2. But sinceG1E and

G2E are subsets ofGE andG1E ∪ G2E = GE, every predecessor of z in t(G)must be a predecessor of z

in t(G1) or t(G2). So, every predecessor inG is seen by the algorithm in either t(G1) or t(G2). By the

definition of the algorithm, for every such predecessor the maximum vertex y in its component in

G1[V <P z] orG2[V <P z] is a child of Z in t(G1) or t(G2). In either case, y is then a predecessor of z

in t(G′).

Therefore, for any predecessor (x, z) of z in t(G), there exists a corresponding predecessor (y, z)

in t(G′) such that y is a vertex in a component that contains x in eitherG1[V <P z] orG2[V <P z].

Since both are subgraphs ofG[V <P z], it must be the case that y is contained in the same compo-

nent as x inG[V <P z]. Therefore, by inductive assumption x and y are contained in the same set

of the union-findU at iteration z of t(G′), and thereforeU.find(x) = U.find(y). Therefore, t(G′)

finds the same children as t(G), though the predecessors by which it finds them may differ.
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