
Learning Certifiably Optimal Rule Lists
Elaine Angelino

EECS, UC Berkeley

Berkeley, CA 94720

elaine@eecs.berkeley.edu

Nicholas Larus-Stone

Daniel Alabi, Margo Seltzer

SEAS, Harvard University

Cambridge, MA 02138

nlarusstone@college.harvard.edu

{alabid@g, margo@eecs}.harvard.edu

Cynthia Rudin

Duke University

Durham, NC 27708

cynthia@cs.duke.edu

ABSTRACT
We present the design and implementation of a custom discrete

optimization technique for building rule lists over a categorical

feature space. Our algorithm provides the optimal solution, with a

certi�cate of optimality. By leveraging algorithmic bounds, e�cient

data structures, and computational reuse, we achieve several orders

of magnitude speedup in time and a massive reduction of memory

consumption. We demonstrate that our approach produces optimal

rule lists on practical problems in seconds. This framework is a

novel alternative to CART and other decision tree methods.

CCS CONCEPTS
• Computing methodologies → Discrete space search; Clas-
si�cation and regression trees;

KEYWORDS
Rule lists; Decision trees; Optimization; Interpretable models

1 INTRODUCTION
As machine learning continues to gain prominence in socially-

important decision-making, the interpretability of predictive mod-

els remains a crucial problem. Our goal is to build models that

are both highly predictive and easily understood by humans. We

use rule lists, also known as decision lists, to achieve this goal.

Rule lists are lists composed of if-then statements, which are easily

interpreted; the rules give a reason for each prediction (Figure 1).

Constructing rule lists, or more generally, decision trees, has been

a challenge for more than 30 years; most approaches use greedy

splitting techniques [4, 32, 34]. Recent approaches use Bayesian

analysis, either to �nd a locally optimal solution [6] or to explore

the search space [25, 45]. These approaches achieve high accuracy

while also managing to run reasonably quickly. However, despite

the apparent accuracy of the rule lists generated by these algorithms,

there is no way to determine either if the generated rule list is

optimal or how close it is to optimal, where optimality is de�ned

with respect to minimization of a regularized loss function.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’17, August 13-17, 2017, Halifax, NS, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4887-4/17/08. . . $15.00

https://doi.org/10.1145/3097983.3098047

Optimality is important, because there are societal implications

for a lack of optimality. Consider the recent ProPublica article on

the COMPAS recidivism prediction tool [23]. It highlights a case

where a black-box, proprietary predictive model is being used for

recidivism prediction. The authors show that the COMPAS scores

are racially biased, but since the model is not transparent, no one

(outside of the creators of COMPAS) can determine the reason or

extent of the bias [23], nor can anyone determine the reason for any

particular prediction. By using COMPAS, users implicitly assumed

that a transparent model would not be su�ciently accurate for re-

cidivism prediction, i.e., they assumed that a black box model would

provide better accuracy. We wondered whether there was indeed no

transparent and su�ciently accurate model. Answering this ques-

tion requires solving a computationally hard problem. Namely, we

would like to both �nd a transparent model that is optimal within a

particular pre-determined class of models and produce a certi�cate

of its optimality, with respect to the regularized empirical risk. This

would enable one to say, for this problem and model class, with

certainty and before resorting to black box methods, whether there

exists a transparent model. While there may be di�erences between

training and test performance, �nding the simplest model with

optimal training performance is prescribed by statistical learning

theory.

To that end, we consider the class of rule lists assembled from

pre-mined frequent itemsets and search for an optimal rule list that

minimizes a regularized risk function, R. This is a hard discrete

optimization problem. Brute force solutions that minimize R are

computationally prohibitive due to the exponential number of possi-

ble rule lists. However, this is a worst case bound that is not realized

in practical settings. For realistic cases, it is possible to solve fairly

large cases of this problem to optimality, with the careful use of

algorithms, data structures, and implementation techniques.

We develop specialized tools from the �elds of discrete optimiza-

tion and arti�cial intelligence. Speci�cally, we introduce a special

branch-and-bound algorithm, called Certi�ably Optimal RulE ListS

(CORELS), that provides (1) the optimal solution, (2) a certi�cate of

optimality, and (3) optionally, a collection of near-optimal solutions

and the distance between each such solution and the optimal one.

The certi�cate of optimality means that we can investigate how

if (aдe = 23 − 25) and (priors = 2 − 3) then predict yes
else if (aдe = 18 − 20) then predict yes
else if (sex =male) and (aдe = 21 − 22) then predict yes
else if (priors > 3) then predict yes
else predict no

Figure 1: An example rule list that predicts two-year recidi-
vism for the ProPublica dataset, found by CORELS.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

35

https://doi.org/10.1145/3097983.3098047

close other models (e.g., models provided by greedy algorithms)

are to optimal. In particular, we can investigate if the rule lists

from probabilistic approaches are nearly optimal or whether those

approaches sacri�ce too much accuracy in the interest of speed.

The e�cacy of CORELS depends on how much of the search

space our bounds allow us to prune; we seek a tight lower bound

on R. The bound we maintain throughout execution is a maximum

of several bounds that come in three categories. The �rst category

of bounds are those intrinsic to the rules themselves. This category

includes bounds stating that each rule must capture su�cient data;

if not, the rule list is provably non-optimal. The second type of

bound compares a lower bound on the value of R to that of the

current best solution. This allows us to exclude parts of the search

space that could never be better than our current solution. Finally,

our last type of bound is based on comparing incomplete rule lists

that capture the same data and allows us to pursue only the most

accurate option. This last class of bounds is especially important –

without our use of a novel symmetry-aware map, we are unable to

solve most problems of reasonable scale. This symmetry-aware map

keeps track of the best accuracy over all observed permutations of

a given incomplete rule list.

We keep track of these bounds using a modi�ed pre�x tree, a

data structure also known as a trie. Each node in the pre�x tree

represents an individual rule; thus, each path in the tree represents a

rule list such that the �nal node in the path contains metrics about

that rule list. This tree structure, together with a search policy

and sometimes a queue, enables a variety of strategies, including

breadth-�rst, best-�rst, and stochastic search. In particular, we can

design di�erent best-�rst strategies by customizing how we order

elements in a priority queue. In addition, we are able to limit the

number of nodes in the tree and thereby enable tuning of space-

time tradeo�s in a robust manner. This tree structure is a useful

way of organizing the generation and evaluation of rule lists.

CORELS targets large (not massive) problems, where interpretabil-

ity and certi�able optimality are important. We illustrate the e�cacy

of our approach using (1) the ProPublica COMPAS dataset [23], for

the problem of two-year recidivism prediction, and (2) the New York

Civil Liberties Union (NYCLU) 2014 stop-and-frisk dataset [30], to

predict whether a weapon will be found on a stopped individual

who is frisked or searched. We produce certi�ably optimal, inter-

pretable rule lists that achieve the same accuracy as approaches

such as random forests. This calls into question the need for use of

a proprietary, black box algorithm for recidivism prediction.

Our work overlaps with the thesis presented by Larus-Stone [24].

We have also written a long version of this report that includes

proofs to all bounds in §3, additional bounds and empirical results,

and further implementation and data processing details [1].

Our code is at https://github.com/nlarusstone/corels.

2 RELATEDWORK
Since every rule list is a decision tree and every decision tree can

be expressed as an equivalent rule list, the problem we are solving

is a version of the “optimal decision tree” problem, though regu-

larization changes the nature of the problem (as shown through

our bounds). The optimal decision tree problem is computationally

hard, though since the late 1990’s, there has been research on build-

ing optimal decision trees using optimization techniques [2, 13, 14].

A particularly interesting paper along these lines is that of Nijssen

and Fromont [31], who created a “bottom-up” way to form optimal

decision trees. Their method performs an expensive search step,

mining all possible leaves (rather than all possible rules), and uses

those leaves to form trees. Their method can lead to memory prob-

lems, but it is possible that these memory issues can be mitigated

using the theorems in this paper.
1

None of these methods used the

tight bounds and data structures of CORELS.

Because the optimal decision tree problem is hard, there are a

huge number of algorithms such as CART [4] and C4.5 [32] that

do not perform exploration of the search space beyond greedy

splitting. Similarly, there are decision list and associative classi�ca-

tion methods that construct rule lists iteratively in a greedy way

[26–28, 34, 37, 40, 41, 46]. Some exploration of the search space is

done by Bayesian decision tree methods [7, 8, 12] and Bayesian

rule-based methods [25, 45]. The space of trees of a given depth is

much larger than the space of rule lists of that same depth, and the

trees within the Bayesian tree algorithms are grown in a top-down

greedy way. Because of this, authors of Bayesian tree algorithms

have noted that their MCMC chains tend to reach only locally opti-

mal solutions. The RIPPER algorithm [10] is similar to the Bayesian

tree methods in that it grows, prunes, and then locally optimizes.

The space of rule lists is smaller than that of trees, and has simpler

structure. Consequently, Bayesian rule list algorithms tend to be

more successful at escaping local minima and can introduce meth-

ods of exploring the search space that exploit this structure—these

properties motivate our focus on lists. That said, the tightest bounds

for the Bayesian lists (namely those of Yang et al. [45], upon whose

work we build), are not nearly as tight as those of CORELS.

Tight bounds, on the other hand, have been developed for the

(immense) literature on building disjunctive normal form (DNF)

models, a good example of this is the work of Rijnbeek and Kors

[33]. For models of a given size, since the class of DNF’s is a proper

subset of decision lists, our framework can be restricted to learn

optimal DNF’s. The �eld of DNF learning includes work from the

�elds of rule learning/induction (e.g., early algorithms [9, 15, 29])

and associative classi�cation [41]. Most papers in these �elds aim to

carefully guide the search through the space of models. If we were to

place a restriction on our code to learn DNF’s, which would require

restricting predictions within the list to the positive class only, we

could potentially use methods from rule learning and associative

classi�cation to help order CORELS’ queue, which would in turn

help us eliminate parts of the search space more quickly.

Some of our bounds, including the minimum support bound

(§3.7, Theorem 3.8), come from Rudin and Ertekin [36], who pro-

vide �exible mixed-integer programming (MIP) formulations using

the same objective as we use here; MIP solvers in general cannot

compete with the speed of CORELS.

CORELS depends on pre-mined rules, which we obtain here via

enumeration. The literature on association rule mining is huge, and

any method for rule mining could be reasonably substituted.

CORELS’ main use is for producing interpretable predictive

models. There is a growing interest in interpretable (transparent,

1
There is no public version of their code for distribution as of this writing.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

36

https://github.com/nlarusstone/corels

comprehensible) models because of their societal importance (see

[3, 11, 16, 18, 20, 21, 38, 39, 42]). There are now regulations on algo-

rithmic decision-making in the European Union on the “right to an

explanation” [19] that would legally require interpretability of pre-

dictions. There is work in both the DNF literature [35] and decision

tree literature [17] on building interpretable models. Interpretable

models must be so sparse that they need to be heavily optimized;

heuristics tend to produce either inaccurate or non-sparse models.

Interpretability has many meanings, and it is possible to extend

the ideas in this work to other de�nitions of interpretability; these

rule lists may have exotic constraints that help with ease-of-use. For

example, Falling Rule Lists [44] are constrained to have decreasing

probabilities down the list, and thus could be easier to use. We are

currently working on bounds for Falling Rule Lists [5] similar to

those presented here, but even CORELS’ basic support bounds do

not hold for the falling case.

The models produced by CORELS are predictive only; they can-

not be used for policy-making. It is possible to adapt CORELS’

framework for causal inference [43], dynamic treatment regimes

[47], or cost-sensitive dynamic treatment regimes [22] to help with

policy design. Both Wang and Rudin [44] and Lakkaraju and Rudin

[22] use Monte Carlo searches to explore the space of rule lists.

CORELS could potentially be adapted to handle these kinds of

interesting problems.

3 LEARNING OPTIMAL RULE LISTS
3.1 Notation
We restrict our setting to binary classi�cation. Let {(xn ,yn)}

N
n=1

denote training data, where xn ∈ {0, 1}
J

are binary features and

yn ∈ {0, 1} are labels. Let x = {xn }Nn=1 and y = {yn }Nn=1, and let xn, j
denote the j-th feature of xn .

A rule list d = (r1, r2, . . . , rK , r0) of length K ≥ 0 is a (K + 1)-
tuple consisting of K distinct association rules, rk = pk → qk , for

k = 1, . . . ,K , followed by a default rule r0. Figure 1 illustrates a

4-rule list, d = (r1, r2, r3, r4, r0). An association rule r = p → q is an

implication corresponding to the conditional statement, “ifp, thenq.”

In our setting, an antecedent p is a Boolean assertion that evaluates

to either true or false for each datum xn , and a consequent q is a

label prediction. For example, (xn,1 = 0) ∧ (xn,3 = 1) → (yn = 1)
is an association rule. The �nal default rule r0 in a rule list can

be thought of as a association rule p0 → q0 whose antecedent p0
simply asserts true.

Let d = (r1, r2, . . . , rK , r0) be a rule list, where rk = pk → qk for

each k = 0, . . . ,K . We introduce a useful alternate rule list repre-

sentation: d = (dp ,δp ,q0,K), where we de�ne dp = (p1, . . . ,pK) to

bed’s pre�x, δp = (q1, . . . ,qK) ∈ {0, 1}
K

gives the label predictions

associated withdp , andq0 ∈ {0, 1} is the default label prediction. For

the rule list in Figure 1, we would write d = (dp ,δp ,q0,K), where

dp = (p1,p2,p3,p4), δp = (1, 1, 1, 1), q0 = 0, and K = 4.

Let dp = (p1, . . . ,pk , . . . ,pK) be an antecedent list, then for any

k ≤ K , we de�ne dkp = (p1, . . . ,pk) to be the k-pre�x of dp . For any

such k-pre�x dkp , we say that dp starts with dkp . For any given space

of rule lists, we de�ne σ (dp) to be the set of all rule lists whose

pre�xes start with dp :

σ (dp) = {(d
′
p ,δ
′
p ,q
′
0
,K ′) : d ′p starts with dp }. (1)

If dp = (p1, . . . ,pK) and d ′p = (p1, . . . ,pK ,pK+1) are two pre�xes

such that d ′p starts with dp and extends it by a single antecedent,

we say that dp is the parent of d ′p and that d ′p is a child of dp .

A rule list d classi�es datum xn by providing the label predic-

tion qk of the �rst rule rk whose antecedent pk is true for xn . We

say that an antecedent pk of antecedent list dp captures xn in the

context of dp if pk is the �rst antecedent in dp that evaluates to true

for xn . A pre�x captures those data captured by its antecedents; for

a rule list d = (dp ,δp ,q0,K), data not captured by the pre�x dp are

classi�ed according to the default label prediction q0.

Let β be a set of antecedents. We de�ne cap(xn , β) = 1 if an an-

tecedent in β captures datum xn , and 0 otherwise. For example,

letdp andd ′p be pre�xes such thatd ′p starts withdp , thend ′p captures

all the data thatdp captures: {xn : cap(xn ,dp)} ⊆ {xn : cap(xn ,d
′
p)}.

Now let dp be an ordered list of antecedents, and let β be a subset

of antecedents in dp . Let us de�ne cap(xn , β | dp) = 1 if β captures

datum xn in the context of dp , i.e., if the �rst antecedent in dp that

evaluates to true for xn is an antecedent in β , and 0 otherwise. Thus,

cap(xn , β | dp) = 1 only if cap(xn , β) = 1; cap(xn , β | dp) = 0 either

if cap(xn , β) = 0, or if cap(xn , β) = 1 but there is an antecedent α
in dp , preceding all antecedents in β , such that cap(xn ,α) = 1. For

example, if dp = (p1, . . . ,pk , . . . ,pK) is a pre�x, then

cap(xn ,pk | dp) =
*.
,

k−1∧
k ′=1

¬ cap(xn ,pk ′)
+/
-
∧ cap(xn ,pk)

indicates whether antecedent pk captures datum xn in the context

of dp . Now, de�ne supp(β, x) to be the normalized support of β ,

supp(β , x) =
1

N

N∑
n=1

cap(xn , β), (2)

and similarly de�ne supp(β , x | dp) to be the normalized support

of β in the context of dp ,

supp(β , x | dp) =
1

N

N∑
n=1

cap(xn , β | dp), (3)

Next, we address how empirical data constrains rule lists. Given

training data (x, y), an antecedent list dp = (p1, . . . ,pK) implies a

rule list d = (dp ,δp ,q0,K) with pre�x dp , where the label predic-

tions δp = (q1, . . . ,qK) and q0 are empirically set to minimize the

number of misclassi�cation errors made by the rule list on the train-

ing data. Thus for 1 ≤ k ≤ K , label prediction qk corresponds to

the majority label of data captured by antecedent pk in the context

of dp , and the default q0 corresponds to the majority label of data

not captured by dp . In the remainder of our presentation, whenever

we refer to a rule list with a particular pre�x, we implicitly assume

these empirically determined label predictions.

Our method is technically an associative classi�cation method

since it leverages pre-mined rules.

3.2 Objective function
De�ne a simple objective function for a rule list d = (dp ,δp ,q0,K):

R (d, x, y) = `(d, x, y) + λK . (4)

This objective function is a regularized empirical risk; it consists of

a loss `(d, x, y), measuring misclassi�cation error, and a regulariza-

tion term that penalizes longer rule lists. `(d, x, y) is the fraction

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

37

of training data whose labels are incorrectly predicted by d . In

our setting, the regularization parameter λ ≥ 0 is a small constant;

e.g., λ = 0.01 can be thought of as adding a penalty equivalent to

misclassifying 1% of data when increasing a rule list’s length by one.

3.3 Optimization framework
Our objective has structure amenable to global optimization via

a branch-and-bound framework. In particular, we make a series

of important observations, each of which translates into a useful

bound, and that together interact to eliminate large parts of the

search space. We discuss these in depth in what follows:

• Lower bounds on a pre�x also hold for every extension of

that pre�x. (§3.4, Theorem 3.1)

• If a rule list is not accurate enough with respect to its length,

we can prune all extensions of it. (§3.4, Lemma 3.2)

• We can calculate a priori an upper bound on the maximum

length of an optimal rule list. (§3.5, Theorem 3.5)

• Each rule in an optimal rule list must have support that is

su�ciently large. This allows us to construct rule lists from

frequent itemsets, while preserving the guarantee that we

can �nd a globally optimal rule list from pre-mined rules.

(§3.7, Theorem 3.8)

• Each rule in an optimal rule list must predict accurately. In

particular, the number of observations predicted correctly

by each rule in an optimal rule list must be above a threshold.

(§3.7, Theorem 3.9)

• We need only consider the optimal permutation of antecedents

in a pre�x; we can omit all other permutations. (§3.8, Theo-

rem 3.10 and Corollary 3.11)

• If multiple observations have identical features and opposite

labels, we know that any model will make mistakes. In par-

ticular, the number of mistakes on these observations will be

at least the number of observations with the minority label.

(§3.10, Theorem 3.14)

We present additional theorems and all proofs in [1].

3.4 Hierarchical objective lower bound
We can decompose the misclassi�cation error into two contribu-

tions corresponding to the pre�x and the default rule:

`(d, x, y) ≡ `p (dp ,δp , x, y) + `0 (dp ,q0, x, y),

where dp = (p1, . . . ,pK) and δp = (q1, . . . ,qK);

`p (dp ,δp , x, y) =
1

N

N∑
n=1

K∑
k=1

cap(xn ,pk | dp) ∧ 1[qk , yn]

is the fraction of data captured and misclassi�ed by the pre�x, and

`0 (dp ,q0, x, y) =
1

N

N∑
n=1
¬ cap(xn ,dp) ∧ 1[q0 , yn]

is the fraction of data not captured by the pre�x and misclassi�ed

by the default rule. Eliminating the latter error term gives a lower

bound b (dp , x, y) on the objective,

b (dp , x, y) ≡ `p (dp ,δp , x, y) + λK ≤ R (d, x, y), (5)

where we have suppressed the lower bound’s dependence on label

predictions δp because they are fully determined, given (dp , x, y).

Algorithm 1 Branch-and-bound for learning rule lists.

Input: Objective function R (d, x, y), objective lower bound

b (dp , x, y), set of antecedents S = {sm }
M
m=1, training data (x, y) =

{(xn ,yn)}
N
n=1, initial best known rule list d0 with objective

R0 = R (d0, x, y)
Output: Provably optimal rule listd∗ with minimum objectiveR∗

(dc ,Rc) ← (d0,R0) . Initialize best rule list and objective

Q ← queue([()]) . Initialize queue with empty pre�x

while Q not empty do . Stop when queue is empty

dp ← Q .pop() . Remove pre�x dp from the queue

if b (dp , x, y) < Rc then . Bound: Apply Theorem 3.1

R ← R (d, x, y) . Compute objective of dp ’s rule list d
if R < Rc then . Update best rule list and objective

(dc ,Rc) ← (d,R)
end if
for s in S do . Branch: Enqueue dp ’s children

if s not in dp then
Q .push((dp , s))

end if
end for

end if
end while
(d∗,R∗) ← (dc ,Rc) . Identify provably optimal solution

Furthermore, b (dp , x, y) gives a lower bound on the objective of

any rule list whose pre�x starts with dp .

Theorem 3.1 (Hierarchical objective lower bound). De-
�neb (dp , x, y) = `p (dp ,δp , x, y) + λK , as in (5). Also, de�neσ (dp) to
be the set of all rule lists whose pre�xes starts withdp , as in (1). Letd =
(dp ,δp ,q0,K) be a rule list with pre�xdp , and letd ′ = (d ′p ,δ

′
p ,q
′
0
,K ′)

∈ σ (dp) be any rule list such that its pre�x d ′p starts with dp and
K ′ ≥ K , then b (dp , x, y) ≤ R (d ′, x, y).

To generalize, consider a sequence of pre�xes such that each pre-

�x starts with all previous pre�xes in the sequence. It follows that

the corresponding sequence of objective lower bounds increases

monotonically. This is precisely the structure required and exploited

by branch-and-bound, illustrated in Algorithm 1.

Speci�cally, the objective lower bound in Theorem 3.1 enables us

to prune the state space hierarchically. While executing branch-and-

bound, we keep track of the current best (smallest) objectiveRc , thus

it is a dynamic, monotonically decreasing quantity. If we encounter

a pre�x dp with lower bound b (dp , x, y) ≥ Rc , then by Theorem 3.1,

we do not need to consider any rule list d ′ ∈ σ (dp) whose pre�x d ′p
starts with dp . For the objective of such a rule list, the current best

objective provides a lower bound, i.e., R (d ′, x, y) ≥ b (d ′p , x, y) ≥
b (dp , x, y) ≥ Rc , and thus d ′ cannot be optimal.

Next, we state an immediate consequence of Theorem 3.1.

Lemma 3.2 (Objective lower bound with one-step looka-

head). Let dp be a K-pre�x and let Rc be the current best objective.
If b (dp , x, y) + λ ≥ Rc , then for any K ′-rule list d ′ ∈ σ (dp) whose
pre�x d ′p starts with dp and K ′ > K , it follows that R (d ′, x, y) ≥ Rc .

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

38

Therefore, even if we encounter a pre�x dp with lower bound

b (dp , x, y) ≤ Rc , if b (dp , x, y) + λ ≥ Rc , then we can prune all pre-

�xes d ′p that start with and are longer than dp .

3.5 Upper bounds on pre�x length
At any point during branch-and-bound execution, the current best

objective Rc implies an upper bound on the maximum pre�x length

we might still have to consider.

Theorem 3.3 (Upper bound on prefix length). Consider a state
space of all rule lists formed from a set of M antecedents. Let L(d) be
the length of rule list d and let Rc be the current best objective. For all
optimal rule lists d∗ ∈ argmind R (d, x, y)

L(d∗) ≤ min

(⌊
Rc/λ

⌋
,M

)
, (6)

where λ is the regularization parameter.

Corollary 3.4 (Simple upper bound on prefix length). For
all optimal rule lists d∗ ∈ argmind R (d, x, y),

L(d∗) ≤ min (b1/2λc ,M) . (7)

For any particular pre�x dp , we can obtain potentially tighter

upper bounds on pre�x length for all pre�xes that start with dp .

Theorem 3.5 (Prefix-specific upper bound on prefix length).

Let d = (dp ,δp ,q0,K) be a rule list, let d ′ = (d ′p ,δ
′
p ,q
′
0
,K ′) ∈ σ (dp)

be any rule list such that d ′p starts with dp , and let Rc be the current
best objective. If d ′p has lower bound b (d ′p , x, y) < Rc , then

K ′ < min

(
K +

⌊
Rc − b (dp , x, y)

λ

⌋
,M

)
. (8)

We can view Theorem 3.5 as a generalization of our one-step

lookahead bound (Lemma 3.2), as (8) is equivalently a bound on

K ′ − K , an upper bound on the number of remaining ‘steps’ cor-

responding to an iterative sequence of single-rule extensions of a

pre�x dp .

3.6 Upper bounds on pre�x evaluations
In this section, we use Theorem 3.5’s upper bound on pre�x length

to derive a corresponding upper bound on the number of pre�x

evaluations made by Algorithm 1. We present Theorem 3.6, in which

we use information about the state of Algorithm 1’s execution

to calculate, for any given execution state, upper bounds on the

number of additional pre�x evaluations that might be required for

the execution to complete. The relevant execution state depends on

the current best objective Rc and information about pre�xes we are

planning to evaluate, i.e., pre�xes in the queue Q of Algorithm 1.

We de�ne the number of remaining pre�x evaluations as the number

of pre�xes that are currently in or will be inserted into the queue.

Theorem 3.6 (Upper bound on the number of remaining

prefix evaluations). Consider the state space of all rule lists formed
from a set ofM antecedents, and consider Algorithm 1 at a particular
instant during execution. Let Rc be the current best objective, let Q be
the queue, and let L(dp) be the length of pre�x dp . De�ne Γ(Rc ,Q)
to be the number of remaining pre�x evaluations, then

Γ(Rc ,Q) ≤
∑
dp ∈Q

f (dp)∑
k=0

(M − L(dp))!

(M − L(dp) − k)!
, (9)

where f (dp) = min

(⌊
Rc − b (dp , x, y)

λ

⌋
,M − L(dp)

)
. (10)

Proof. The number of remaining pre�x evaluations is equal to

the number of pre�xes that are currently in or will be inserted into

queueQ . For any such pre�x dp , Theorem 3.5 gives an upper bound

on the length of any pre�x d ′p that starts with dp :

L(d ′p) ≤ min

(
L(dp) +

⌊
Rc − b (dp , x, y)

λ

⌋
,M

)
≡ U (dp). (11)

This gives an upper bound on the number of remaining pre�x eval-

uations: Γ(Rc ,Q) ≤
∑
dp ∈Q

∑U (dp)−L(dp)
k=0 P (M − L(dp),k). �

The proposition below is a naïve upper bound on the total num-

ber of pre�x evaluations over the course of Algorithm 1’s execution.

It only depends on the number of rules and the regularization

parameter λ; i.e., unlike Theorem 3.6, it does not use algorithm

execution state to bound the size of the search space.

Proposition 3.7 (Upper bound on the total number of prefix

evaluations). De�ne Γtot (S) to be the total number of pre�xes
evaluated by Algorithm 1, given the state space of all rule lists formed
from a set S ofM rules. For any set S ofM rules,

Γtot (S) ≤
K∑
k=0

M!

(M − k)!
, where K = min(b1/2λc,M). (12)

Proof. By Corollary 3.4, K ≡ min(b1/2λc,M) gives an upper

bound on the length of any optimal rule list. We obtain (12) by

viewing our problem as �nding the optimal selection and permuta-

tion of k out of M rules, over all k ≤ K . �

3.7 Lower bounds on antecedent support
In this section, we give two lower bounds on the normalized support

of each antecedent in any optimal rule list; both are related to the

regularization parameter λ.

Theorem 3.8 (Lower bound on antecedent support). Let
d∗ = (dp ,δp ,q0,K) ∈ argmind R (d, x, y) be any optimal rule list, with
objective R∗. For each antecedent pk in pre�x dp = (p1, . . . ,pK), the
regularization parameter provides a lower bound, λ ≤ supp(pk , x | dp),
on the normalized support of pk .

Thus, we can prune a pre�x dp if any of its antecedents cap-

tures less than a fraction λ of data, even if b (dp , x, y) < R∗. The

bound in Theorem 3.8 depends on the antecedents, but not the label

predictions, and thus does not account for misclassi�cation error.

Theorem 3.9 gives a tighter bound by leveraging this information.

Theorem 3.9 (Lower bound on accurate antecedent sup-

port). Let d∗ ∈ argmind R (d, x, y) be any optimal rule list, with ob-
jective R∗; let d∗ = (dp ,δp ,q0,K), with pre�x dp = (p1, . . . ,pK) and
labels δp = (q1, . . . ,qK). For each rule pk → qk in d∗, de�ne ak to
be the fraction of data that are captured by pk and correctly classi�ed:

ak ≡
1

N

N∑
n=1

cap(xn ,pk | dp) ∧ 1[qk = yn]. (13)

The regularization parameter provides a lower bound, λ ≤ ak .

Thus, we can prune a pre�x if any of its rules correctly classi�es

less than a fraction λ of data. While the lower bound in Theorem 3.8

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

39

is a sub-condition of the lower bound in Theorem 3.9, we can still

leverage both – since the sub-condition is easier to check, checking

it �rst can accelerate pruning. In addition to applying Theorem 3.8

in the context of constructing rule lists, we can furthermore apply

it in the context of rule mining (§3.1). Speci�cally, it implies that

we should only mine rules with normalized support of at least λ;

we need not mine rules with a smaller fraction of observations.
2

In

contrast, we can only apply Theorem 3.9 in the context of construct-

ing rule lists; it depends on the misclassi�cation error associated

with each rule in a rule list, thus it provides a lower bound on the

number of observations that each such rule must correctly classify.

3.8 Equivalent support bound
If two pre�xes capture the same data, and one is more accurate

than the other, then there is no bene�t to considering pre�xes that

start with the less accurate one. Let dp be a pre�x, and consider

the best possible rule list whose pre�x starts with dp . If we take its

antecedents in dp and replace them with another pre�x with the

same support (that could include di�erent antecedents), then its

objective can only become worse or remain the same.

Formally, letDp be a pre�x, and let ξ (Dp) be the set of all pre�xes

that capture exactly the same data as Dp . Now, let d be a rule list

with pre�xdp in ξ (Dp), such thatd has the minimum objective over

all rule lists with pre�xes in ξ (Dp). Finally, letd ′ be a rule list whose

pre�x d ′p starts with dp , such that d ′ has the minimum objective

over all rule lists whose pre�xes start with dp . Theorem 3.10 below

implies that d ′ also has the minimum objective over all rule lists

whose pre�xes start with any pre�x in ξ (Dp).

Theorem 3.10 (Eqivalent support bound). De�ne σ (dp) to
be the set of all rule lists whose pre�xes start with dp , as in (1). Let
d = (dp ,δp ,q0,K) be a rule list with pre�x dp = (p1, . . . ,pK), and
let D = (Dp ,∆p ,Q0,κ) be a rule list with pre�x Dp = (P1, . . . , Pκ),
such that dp and Dp capture the same data, i.e.,

{xn : cap(xn ,dp)} = {xn : cap(xn ,Dp)}. (14)

If the objective lower bounds ofd andD obeyb (dp , x, y) ≤ b (Dp , x, y),
then the objective of the optimal rule list in σ (dp) gives a lower bound
on the objective of the optimal rule list in σ (Dp):

min

d ′∈σ (dp)
R (d ′, x, y) ≤ min

D′∈σ (Dp)
R (D ′, x, y). (15)

Thus, if pre�xes dp and Dp capture the same data, and their

objective lower bounds obeyb (dp , x, y) ≤ b (Dp , x, y), Theorem 3.10

implies that we can prune Dp . Next, in Sections 3.9 and 3.9.1, we

highlight and analyze the special case of pre�xes that capture the

same data because they contain the same antecedents.

3.9 Permutation bound
If two pre�xes are composed of the same antecedents, i.e., they

contain the same antecedents up to a permutation, then they capture

the same data, and thus Theorem 3.10 applies. Therefore, if one is

more accurate than the other, then there is no bene�t to considering

pre�xes that start with the less accurate one. Let dp be a pre�x, and

consider the best possible rule list whose pre�x starts with dp . If we

permute its antecedents in dp , then its objective can only become

worse or remain the same.

2
We describe our application of this idea in the appendix of our long report [1].

Formally, let P = {pk }
K
k=1 be a set of K antecedents, and let Π

be the set of all K-pre�xes corresponding to permutations of an-

tecedents in P . Let pre�x dp in Π have the minimum pre�x misclas-

si�cation error over all pre�xes in Π. Also, let d ′ be a rule list whose

pre�x d ′p starts with dp , such that d ′ has the minimum objective

over all rule lists whose pre�xes start with dp . Corollary 3.11 below,

which can be viewed as special case of Theorem 3.10, implies that d ′

also has the minimum objective over all rule lists whose pre�xes

start with any pre�x in Π.

Corollary 3.11 (Permutation bound). Let π be any permu-
tation of {1, . . . ,K }, and de�ne σ (dp) to be the set of all rule lists
whose pre�x starts with dp , as in (1). Let d = (dp ,δp ,q0,K) and
D = (Dp ,∆p ,Q0,K) denote rule lists with pre�xes dp = (p1, . . . ,pK)
and Dp = (pπ (1) , . . . ,pπ (K)), respectively, i.e., the antecedents in Dp
correspond to a permutation of the antecedents in dp . If the objective
lower bounds of d and D obey b (dp , x, y) ≤ b (Dp , x, y), then the ob-
jective of the optimal rule list in σ (dp) gives a lower bound on the
objective of the optimal rule list in σ (Dp):

min

d ′∈σ (dp)
R (d ′, x, y) ≤ min

D′∈σ (Dp)
R (D ′, x, y). (16)

Thus if pre�xes dp and Dp have the same antecedents, up to a

permutation, and their objective lower bounds obey b (dp , x, y) ≤
b (Dp , x, y), Corollary 3.11 implies that we can prune Dp . We call

this symmetry-aware pruning, and we illustrate the subsequent

computational savings next in §3.9.1.

3.9.1 Upper bound on prefix evaluations with symmetry-aware
pruning. Here, we present an upper bound on the total number

of pre�x evaluations that accounts for the e�ect of symmetry-

aware pruning (§3.9). Since every subset ofK antecedents generates

an equivalence class of K ! pre�xes equivalent up to permutation,

symmetry-aware pruning dramatically reduces the search space.

Algorithm 1 describes a breadth-�rst exploration of the state

space of rule lists. Now suppose we integrate symmetry-aware

pruning into our execution of branch-and-bound, so that after

evaluating pre�xes of length K , we only keep a single best pre�x

from each set of pre�xes equivalent up to a permutation.

Theorem 3.12 (Upper bound on prefix evaluations with

symmetry-aware pruning). Consider a state space of all rule lists
formed from a set S ofM antecedents, and consider the branch-and-
bound algorithm with symmetry-aware pruning. De�ne Γtot (S) to be
the total number of pre�xes evaluated. For any set S ofM rules,

Γtot (S) ≤ 1 +

K∑
k=1

1

(k − 1)!
·

M!

(M − k)!
, (17)

where K = min(b1/2λc,M).

Proof. By Corollary 3.4, K ≡ min(b1/2λc,M) gives an upper

bound on the length of any optimal rule list. The algorithm begins by

evaluating the empty pre�x, followed by M pre�xes of length k = 1,

then P (M, 2) pre�xes of length k = 2, where P (M, 2) is the number

of size-2 subsets of {1, . . . ,M }. Before proceeding to length k = 3,

we keep only C (M, 2) pre�xes of length k = 2, where C (M,k) de-

notes the number of k-combinations of M . Now, the number of

length k = 3 pre�xes we evaluate is C (M, 2) (M − 2). Propagating

this forward gives Γtot (S) ≤ 1 +
∑K
k=1C (M,k − 1) (M − k + 1). �

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

40

Pruning based on permutation symmetries thus yields signi�-

cant computational savings. Let us compare, for example, to the

naïve number of pre�x evaluations given by the upper bound

in Proposition 3.7. If M = 100 and K = 5, then the naïve number

is about 9.1 × 109, while the reduced number due to symmetry-

aware pruning is about 3.9 × 108, which is smaller by a factor of

about 23. If M = 1000 and K = 10, the number of evaluations falls

from about 9.6 × 1029 to about 2.7 × 1024, which is smaller by a

factor of about 360,000. While 10
24

seems infeasibly enormous, it

does not represent the number of rule lists we evaluate. As we

show in §5, our permutation bound in Corollary 3.11 and our other

bounds together conspire to reduce the search space to a size man-

ageable on a single computer. The choice of M = 1000 and K = 10

in our example above corresponds to the state space size our e�orts

target. K = 10 rules represents a (heuristic) upper limit on the size

of an interpretable rule list, and M = 1000 represents the approxi-

mate number of rules with su�ciently high support (Theorem 3.8)

we expect to obtain via rule mining (§3.1).

3.10 Equivalent points bound
The bounds in this section quantify the following: If multiple obser-

vations that are not captured by a pre�x dp have identical features

and opposite labels, then no rule list that starts withdp can correctly

classify all these observations. For each set of such observations,

the number of mistakes is at least the number of observations with

the minority label within the set.

Consider a dataset {(xn ,yn)}
N
n=1 and also a set of antecedents

{sm }
M
m=1. De�ne distinct observations to be equivalent if they are

captured by exactly the same antecedents, i.e., xi , x j are equiva-

lent if

1

M

M∑
m=1

1[cap(xi , sm) = cap(x j , sm)] = 1. (18)

Notice that we can partition a dataset into sets of equivalent points;

let {eu }
U
u=1 enumerate these sets. Let eu be the equivalent points set

that contains observation xi . Now de�ne θ (eu) to be the normalized

support of the minority class label with respect to set eu , e.g., let

eu = {xn : ∀m ∈ [M], 1[cap(xn , sm) = cap(xi , sm)]}, and let qu be

the minority class label among points in eu , then

θ (eu) =
1

N

N∑
n=1

1[xn ∈ eu]1[yn = qu]. (19)

The existence of equivalent points sets with non-singleton sup-

port yields a tighter objective lower bound that we can combine

with our other bounds; as our experiments demonstrate (§5), the

practical consequences can be dramatic. First, for intuition, we

present a general bound in Proposition 3.13; next, we explicitly

integrate this bound into our framework in Theorem 3.14.

Proposition 3.13 (General eqivalent points bound). Let
d = (dp ,δp ,q0,K) be a rule list, then R (d, x, y) ≥

∑U
u=1 θ (eu) + λK .

Now, recall that to obtain our lower bound b (dp , x, y) in (5), we

simply deleted the default rule misclassi�cation error `0 (dp ,q0, x, y)
from the objective R (d, x, y). Theorem 3.14 obtains a tighter objec-

tive lower bound via a tighter lower bound on the default rule

misclassi�cation error, 0 ≤ b0 (dp , x, y) ≤ `0 (dp ,q0, x, y).

Theorem 3.14 (Eqivalent points bound). Let d be a rule
list with pre�x dp and lower bound b (dp , x, y), then for any rule
list d ′ ∈ σ (d) whose pre�x d ′p starts with dp ,

R (d ′, x, y) ≥ b (dp , x, y) + b0 (dp , x, y), where (20)

b0 (dp , x, y) =
1

N

U∑
u=1

N∑
n=1
¬ cap(xn ,dp) ∧ 1[xn ∈ eu]1[yn = qu].

4 IMPLEMENTATION
For every pre�x dp evaluated during Algorithm 1’s execution, we

compute the objective lower bound b (dp , x, y) and sometimes the

objective R (d, x, y) of the corresponding rule list d . These calcu-

lations are the dominant computations and motivate our use of a

highly optimized library, designed by Yang et al. [45], for represent-

ing rule lists and performing operations encountered in evaluating

functions of rule lists. Furthermore, we exploit the hierarchical na-

ture of the objective function and its lower bound to compute these

quantities incrementally throughout branch-and-bound execution.

We implement our algorithm using a collection of optimized data

structures: a trie (pre�x tree), a symmetry-aware map, and a queue.

The trie acts like a cache, keeping track of pre�xes that we have

already evaluated and are also still of interest. Each node in the trie

contains metadata associated with that corresponding rule list; the

metadata consists of bookkeeping information such as what child

rule lists are feasible and the lower bound and accuracy for that

rule list. We also track the best observed minimum objective and

its associated rule list.

The symmetry-aware map supports symmetry-aware pruning.

We implement this using the C++ STL unordered_map, to map all

permutations of a set of antecedents to a key, whose value contains

the best ordering of those antecedents (i.e., the pre�x with the

smallest lower bound). Every antecedent is associated with an index,

and we call the numerically sorted order of a set of antecedents

its canonical order. Thus by querying a set of antecedents by its

canonical order, all permutations map to the same key. This map

dominates memory usage for problems that explore longer pre�xes.

Before inserting permutation Pi into the symmetry-aware map, we

check if there exists a permutation Pj of Pi already in the map. If no

such permutation exists, then we insert Pi in the map. Otherwise,

if a permutation Pj exists and the lower bound of Pi is better than

that of Pj , we update the map and remove Pj and its subtree from

the trie. Else, if Pj exists and has a better lower bound than Pi , we

do nothing (i.e., we do not insert Pi into the symmetry-aware map

or the trie).

We use a queue to store all of the leaves of the trie that still

need to be explored. We order entries in the queue to implement

several di�erent policies, including breadth-�rst search (BFS) and

best-�rst search. For best-�rst we use a priority queue, ordered by

either the lower bound, the objective, or a custom priority metric.

In preliminary work (not shown), we also experimented with sto-

chastic exploration processes that do not require a queue; instead,

these follow random paths from the root to leaves. Developing such

methods could be an interesting direction for future work. We �nd

that ordering by the lower bound and other priority metrics often

leads to a shorter runtime than using BFS.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

41

GLM SVM

AdaB
oo

st

CART
C4.5 RF

RIP
PE

R
SBRL

CORELS

0.65

0.68

0.71

0.74

A
cc

u
ra

cy

Recidivism prediction (ProPublica)

GLM SVM

AdaB
oo

st

CART
C4.5 RF

SBRL

CORELS

Weapon prediction (NYCLU)

Figure 2: Test accuracy means (white squares), standard de-
viations (error bars), and values (colors correspond to folds).
For CORELS, λ = 0.005 (left) and λ = 0.01 (right).

Mapping our algorithm to our data structures produces the

following execution strategy. While the trie contains unexplored

leaves, a scheduling policy selects the next pre�x to extend. Then,

for every antecedent that is not already in this pre�x, we calculate

the lower bound, objective, and other metrics for the rule list formed

by appending the antecedent to the pre�x. If the lower bound of

the new rule list is less than the current minimum objective, we

insert that rule list into the symmetry-aware map, trie, and queue,

and, if relevant, update the current minimum objective. If the lower

bound is greater than the minimum objective, then no extension

of this rule list could possibly be optimal, thus we do not insert

the new rule list into the tree or queue. We also leverage our other

bounds from §3 to aggressively prune the search space.

During execution, we garbage collect the trie. Each time we

update the minimum objective, we traverse the trie in a depth-

�rst manner, deleting all subtrees of any node with lower bound

larger than the current minimum objective. At other times, when we

encounter a node with no children, we prune upwards, deleting that

node and recursively traversing the tree towards the root, deleting

any childless nodes. This garbage collection allows us to constrain

the trie’s memory consumption, though in our experiments we

observe the minimum objective to decrease only a few times.

5 EXPERIMENTS
Our experimental analysis addresses four questions: (1) How does

CORELS’ accuracy and model size compare to that of other algo-

rithms? (2) How rapidly do the objective value and its lower bound

converge, for di�erent values of λ? (3) How much does each of

the implementation optimizations contribute to CORELS’ perfor-

mance? (4) How rapidly does CORELS prune the search space? We

present additional empirical results and further implementation

and data processing details in a long version of this report [1].

All timed results ran on a server with two Intel Xeon E5-2699 v4

(55 MB cache, 2.20 GHz) processors and 756 GB RAM. Except where

we mention a memory constraint, all experiments can run comfort-

ably on smaller machines, e.g., a laptop with 16GB RAM.

We focus on two problems: (1) Predicting which individuals in

the ProPublica COMPAS dataset [23] recidivate within two years

(N = 7, 215). Our rule mining procedure yields M = 156 single- and

two-clause antecedents. (2) Using the NYCLU 2014 stop-and-frisk

dataset [30] to predict whether a weapon will be found on a stopped

individual who is frisked or searched. We identify a subset of 29,595

records for stopped individuals who were frisked and/or searched.

Of these, criminal possession of a weapon was identi�ed in about 5%

of instances, thus we resampled due to class imbalance. In the �rst

0 5 10 15 20 25 30
Model size

0.62

0.64

0.66

0.68

0.70

A
cc

u
ra

cy

Two-year recidivism prediction (ProPublica dataset)

CORELS (.005)
CORELS (.01)
CORELS (.02)
SBRL (3, 9, 1000)
SBRL (15, 5, 10000)

CART (.001)
CART (.003)
CART (.01)
CART (.03)
CART (.1)

C4.5 (.05)
C4.5 (.15)
C4.5 (.25)
C4.5 (.35)
RIPPER

0 10 20 30 40 50
Model size

0.65

0.70

0.75

0.80

0.85

A
cc

u
ra

cy

CORELS (.0025)
CORELS (.01)
CORELS (.04)
SBRL (3, 9, 1000)
SBRL (500, 5, 10000)

CART (.001)
CART (.003)
CART (.01, .03)
CART (.1)

400 700

C4.5 (.00001)
C4.5 (.0001)
C4.5 (.001)

Weapon prediction (NYCLU stop-and-frisk dataset)

Figure 3: Training and test accuracy as a function of model
size. In the legend, numbers in parentheses are algorithmpa-
rameters that we vary for CORELS (λ), CART (cp), C4.5 (C),
and SBRL (η, λ, i), where i is the number of iterations. Legend
markers and error bars indicate means and standard devia-
tions, respectively, of test accuracy across cross-validation
folds. Small circles mark training accuracy means. Top:
ProPublica dataset. No models exhibit signi�cant over�t-
ting. Bottom: NYCLU dataset. CART with cp = 0.001 over�ts;
C4.5 �nds large models and dramatically over�ts. Note the
broken horizontal axis and change in scale.

two subsections below, we use M = 28 single-clause antecedents;

in the latter two, we add negations of some, yielding M = 46.

Accuracy and model size: We �rst ran a 10-fold cross validation

experiment using CORELS and eight other algorithms:
3

logistic re-

gression, support vector machines, AdaBoost, CART, C4.5, random

forests, RIPPER,
4

and scalable Bayesian rule lists (SBRL).
5

Figure 1

shows an optimal rule list that CORELS learns for the ProPublica

dataset. Figure 2 shows that there were no statistically signi�cant

di�erences in algorithm accuracies – the di�erence between folds

was far larger than the di�erence between algorithms. We conclude

that CORELS produces models whose accuracy is comparable to

those found via other algorithms. Figure 3 summarizes di�erences

in accuracy and model size for CORELS and other tree (CART, C4.5)

and rule list (RIPPER, SBRL) learning algorithms. For both problems,

CORELS can learn short rule lists without sacri�cing accuracy.

Convergence and regularization: We illustrate several views of

CORELS execution traces, for the NYCLU stop-and-frisk dataset

with M = 28 antecedents, for the same three regularization parame-

ters (λ = 0.04, 0.01, 0.025) as in Figure 3 (bottom). The panels in Fig-

ure 4 plot example execution traces, from a single cross-validation

fold, of both the current best objective value Rc and the lower

3
We use standard R packages, with default parameter settings, for the �rst seven. By de-

fault, CART and C4.5 use complexity parameters cp = 0.01 andC = 0.25, respectively.

4
We were unable to execute RIPPER for the NYCLU problem.

5
Code for SBRL can be found at https://github.com/Hongyuy/sbrlmod. By default,

SBRL sets η = 3, λ = 9, the number of chains to 11 and iterations to 1,000.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

42

https://github.com/Hongyuy/sbrlmod

10-3 10-2 10-1 100 101 102 1030.0

0.1

0.2

0.3

0.4

0.5

V
a
lu

e

1
2 ¸ = 0.04

Objective

Lower bound

Optimum

10-3 10-2 10-1 100 101 102 103

Time (s)

0.0

0.1

0.2

0.3

0.4

0.5 Overlay

10-3 10-2 10-1 100 101 102 1030.0

0.1

0.2

0.3

0.4

0.51
2

3

¸ = 0.01

10-3 10-2 10-1 100 101 102 103

Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

V
a
lu

e

1
2

3 7

¸ = 0.0025

Figure 4: Example CORELS execution traces (NYCLU). Ob-
jective value (lines) and lower bound (dashes) for CORELS.
Numbered points along the trace of the objective value in-
dicate when the length of the best known rule list changes
and are labeled by the new length. For each value of λ, a star
marks the optimum and the time at which it was achieved.
Bottom right: Overlay of the three traces.

10-3 10-2 10-1 100 101 1020.0

0.1

0.2

0.3

0.4

0.5

V
a
lu

e

1

2 3 4

Execution progress (ProPublica)

Objective (CORELS)

Lower bound (CORELS)

Lower bound (No equiv. pts. bound)

10-3 10-2 10-1 100 101 102

Time (s)

0

50

100

150

lo
g
1

0
(S

iz
e
)

Size of remaining search space

No equivalent points bound

CORELS

10-3 10-2 10-1 100 101 102 103 1040.0

0.1

0.2

0.3

0.4

0.5 1
2

3

Execution progress (NYCLU)

Lower bound (No map)

10-3 10-2 10-1 100 101 102 103 104

Time (s)

0

20

40

60

Size of remaining search space

No symmetry-aware map

Figure 5: Signi�cant algorithm optimizations for ProPublica
(left) and NYCLU (right). Top: Objective value (thin lines)
and lower bound (dashes) for CORELS, as in Figure 4, and
lower bound (thick lines) for separate executions of vari-
antswithout equivalent points (left) and permutation (right)
bounds. Bottom: Upper bound on remaining search space
size, for CORELS (thin lines) and variants (thick lines).

bound b (dp , x, y) of the pre�x dp being evaluated. These plots il-

lustrate that CORELS certi�es optimality when the lower bound

matches the objective value. In these examples, CORELS achieves

the optimum in a small fraction of the total execution time.

As λ decreases, these times increase because the search prob-

lems become more di�cult. In particular, CORELS must evaluate

longer pre�xes: across 10 cross-validation folds, the maximum eval-

uated pre�x lengths are 6, 11, and 16-17, for λ = 0.04, 0.01, and

0.025, respectively. Consequently, our data structures grow in size:

e.g., across folds, the mean number of queue elements are 1,900 (100),

170,000 (1,300), and 2,400,000 (170,000), with standard deviations

shown in parentheses, for λ = 0.04, 0.01, and 0.025, respectively.

Algorithm optimizations: We determine the e�cacy of each of our

bounds and data structure optimizations. In the remainder, we show

results using the ProPublica dataset. Table 1 provides summary

t
total

topt i
total

Qmax Kmax

Algorithm variant (min) (s) (×106) (×106)

CORELS 5.4 (1.6) 8 (2) 1.7 (0.4) 1.3 (0.4) 5-6

BFS priority queue 6.4 (2.0) 34 (21) 3.5 (1.4) 2.6 (1.2) 5-6

No support bounds 10.0 (3.3) 12 (4) 2.7 (0.8) 2.2 (0.7) 5-6

No symmetry-aware map 56.8 (22.3) 21 (6) 16.0 (5.9) 14.5 (5.7) 5-6

No lookahead bound 70.0 (22.0) 8 (2) 18.5 (5.9) 17.1 (5.5) 6-7

No equivalent pts bound >87 >3744 >1004 >987 ≥10

Table 1: Per-component performance improvement
(ProPublica). Columns report total execution time, time to
optimum, number of queue insertions, maximum queue
size, and maximum evaluated pre�x length. The �rst row
shows CORELS; subsequent rows show variants that each
remove one implementation optimization or bound. We ter-
minated each experiment in the last row once the size of the
trie reached 10

9 nodes (each execution consumed ∼350GB
RAM). In all but the �nal row and column, we report means
(and standard deviations) over 10 cross-validation folds; in
the �nal row, we report the minimum values across folds.

10-3 10-1 101 103100

102

104

106

108

C
o
u
n
t

T ´ 331 s

CORELS

10-3 10-1 101 103100

102

104

106

108 4584 s ¼ 14 T

No lookahead bound

10-3 10-1 101 103

Time (s)

100

102

104

106

108

C
o
u
n
t

3272 s ¼ 9.9 T

No symmetry-aware map

10-3 10-1 101 103

Time (s)

100

102

104

106

108 > 5359 s ¼ 16 T

No equivalent points bound

1
2
3
4
5

6
7
8
9
10

Figure 6: Queue composition (ProPublica). Numbers of pre-
�xes in the queue (log scale), labeled and colored by length,
for CORELS (top left) and without three speci�c implemen-
tation optimizations or bounds. Gray shades the area be-
neath the total number of queue elements for CORELS,
i.e., the sum over all lengths in the top left �gure. For com-
parison, we replicate the same gray region in all sub�gures.

statistics for experiments using the full CORELS implementation

and variants that each remove a speci�c optimization. Figure 6

presents a view of the same experiments, focusing on three of our

optimizations. These plots depict the number of pre�xes of a given

length in the queue during the algorithm’s execution.

State space pruning: Figure 5 highlights the most signi�cant al-

gorithm optimizations for our two problems: the equivalent points

bound for the ProPublica dataset (left) and the symmetry-aware

map for the NYCLU dataset (right). On the left, for CORELS (thin

lines), the objective drops quickly, achieving the optimal value

within 10 seconds. CORELS certi�es optimality in less than 6 min-

utes: the objective lower bound steadily converges to the optimal

objective (top) as the search space shrinks (bottom). We dynami-

cally and incrementally calculate blog
10
Γ(Rc ,Q)c, where Γ(Rc ,Q)

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

43

is the upper bound on remaining search space size (Theorem 3.6);

this adds some computational overhead. In the same plots, we

also show a separate execution of CORELS without the equivalent

points bound (Theorem 3.14). This execution is far from complete:

the lower bound is far from the optimum objective value (top) and

much of the search space remains unexplored (bottom). On the

right, CORELS achieves the optimum objective in well under a

second and certi�es optimality in less than a minute. Removing the

permutation bound (Corollary 3.11), and thus the symmetry-aware

map, increases the execution time by orders of magnitude.

6 CONCLUSION
CORELS is an e�cient and accurate algorithm for constructing

provably optimal rule lists. Optimality is particularly important

in domains where model interpretability has social consequences,

e.g., recidivism prediction. While achieving optimality on such

discrete optimization problems is computationally hard in general,

we aggressively prune our problem’s search space via a suite of

bounds. This makes realistically sized problems tractable. CORELS

is amenable to parallelization, which should allow it to scale to even

larger problems.

ACKNOWLEDGEMENTS
E.A. is supported by the Miller Institute for Basic Research in Sci-

ence, University of California, Berkeley, and is hosted by Prof. M.I.

Jordan at RISELab. C.D.R. is supported in part by MIT-Lincoln Labs.

REFERENCES
[1] E. Angelino, N. Larus-Stone, D. Alabi, M. Seltzer, and C. Rudin. 2017. Learning

certi�ably optimal rule lists for categorical data. Preprint at arXiv:1704.01701
(April 2017).

[2] K. P. Bennett and J. A. Blue. 1996. Optimal Decision Trees. Technical Report. R.P.I.

Math Report No. 214, Rensselaer Polytechnic Institute.

[3] I. Bratko. 1997. Machine learning: Between accuracy and interpretability. In

Learning, Networks and Statistics. International Centre for Mechanical Sciences,

Vol. 382. Springer Vienna, 163–177.

[4] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classi�cation and
Regression Trees. Wadsworth.

[5] C. Chen and C. Rudin. 2017. Optimized Falling Rule Lists and Softly Falling Rule

Lists. (2017). Work in progress.

[6] H. A. Chipman, E. I. George, and R. E. McCulloch. 1998. Bayesian CART model

search. J. Amer. Statist. Assoc. 93, 443 (1998), 935–948.

[7] H. A. Chipman, E. I. George, and R. E. McCulloch. 2002. Bayesian treed models.

Machine Learning 48, 1 (2002), 299–320.

[8] H. A. Chipman, E. I. George, and R. E. McCulloch. 2010. BART: Bayesian additive

regression trees. The Annals of Applied Statistics 4, 1 (2010), 266–298.

[9] P. Clark and T. Niblett. 1989. The CN2 induction algorithm. Machine Learning 3

(1989), 261–283. Issue 4.

[10] W. W. Cohen. 1995. Fast E�ective Rule Induction. In Twelfth International Con-
ference on Machine Learning (ICML). 115–123.

[11] R. M. Dawes. 1979. The robust beauty of improper linear models in decision

making. American Psychologist 34, 7 (1979), 571–582.

[12] D. Dension, B. Mallick, and A.F.M. Smith. 1998. A Bayesian CART algorithm.

Biometrika 85, 2 (1998), 363–377.

[13] D. Dobkin, T. Fulton, D. Gunopulos, S. Kasif, and S. Salzberg. 1996. Induction of

shallow decision trees. (1996).

[14] A. Farhangfar, R. Greiner, and M. Zinkevich. 2008. A Fast Way to Produce Optimal

Fixed-Depth Decision Trees. In International Symposium on Arti�cial Intelligence
and Mathematics (ISAIM 2008).

[15] Eibe Frank and Ian H. Witten. 1998. Generating Accurate Rule Sets Without

Global Optimization. In Proceedings of the Fifteenth International Conference on
Machine Learning (ICML ’98). 144–151.

[16] A. A. Freitas. 2014. Comprehensible classi�cation models: a position paper. ACM
SIGKDD Explorations Newsletter 15, 1 (2014), 1–10.

[17] M. Garofalakis, D. Hyun, R. Rastogi, and K. Shim. 2000. E�cient Algorithms

for Constructing Decision Trees with Constraints. In Proceedings of the Sixth

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’98). 335–339.

[18] C. Giraud-Carrier. 1998. Beyond predictive accuracy: What?. In Proceedings of
the ECML-98 Workshop on Upgrading Learning to Meta-Level: Model Selection and
Data Transformation. 78–85.

[19] B. Goodman and S. Flaxman. 2016. European Union regulations on algorithmic

decision-making and a “right to explanation”. In ICML Workshop on Human
Interpretability in Machine Learning (WHI).

[20] R. C. Holte. 1993. Very simple classi�cation rules perform well on most commonly

used datasets. Machine Learning 11, 1 (1993), 63–91.

[21] J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen, and B. Baesens. 2011. An

empirical evaluation of the comprehensibility of decision table, tree and rule

based predictive models. Decision Support Systems 51, 1 (2011), 141–154.

[22] H. Lakkaraju and C. Rudin. 2017. Cost-sensitive and Interpretable Dynamic

Treatment Regimes Based on Rule Lists. In Proceedings of the Arti�cial Intelligence
and Statistics (AISTATS).

[23] J. Larson, S. Mattu, L. Kirchner, and J. Angwin. 2016. How We Analyzed the

COMPAS Recidivism Algorithm. ProPublica (2016).

[24] N. L. Larus-Stone. 2017. Learning Certi�ably Optimal Rule Lists: A Case For
Discrete Optimization in the 21st Century. (2017). Undergraduate thesis, Harvard

College.

[25] B. Letham, C. Rudin, T. H. McCormick, and D. Madigan. 2015. Interpretable

classi�ers using rules and Bayesian analysis: Building a better stroke prediction

model. Annals of Applied Statistics 9, 3 (2015), 1350–1371.

[26] W. Li, J. Han, and J. Pei. 2001. CMAR: Accurate and e�cient classi�cation based

on multiple class-association rules. IEEE International Conference on Data Mining
(2001), 369–376.

[27] B. Liu, W. Hsu, and Y. Ma. 1998. Integrating classi�cation and association rule

mining. In Proceedings of the 4th International Conference on Knowledge Discovery
and Data Mining (KDD ’98). 80–96.

[28] M. Marchand and M. Sokolova. 2005. Learning with decision lists of data-

dependent features. Journal of Machine Learning Research 6 (2005), 427–451.

[29] R.S. Michalski. 1969. On the quasi-minimal solution of the general covering

problem. In Proceedings of the Fifth International Symposium on Information
Processing. 125–128.

[30] New York Civil Liberties Union. 2014. Stop-and-Frisk Data. (2014). http:

//www.nyclu.org/content/stop-and-frisk-data.

[31] S. Nijssen and E. Fromont. 2010. Optimal constraint-based decision tree induction

from itemset lattices. Data Mining and Knowledge Discovery 21, 1 (2010), 9–51.

[32] J. R. Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann.

[33] P. R. Rijnbeek and J. A. Kors. 2010. Finding a Short and Accurate Decision Rule

in Disjunctive Normal Form by Exhaustive Search. Machine Learning 80, 1 (July

2010), 33–62.

[34] R. L. Rivest. 1987. Learning Decision Lists. Machine Learning 2, 3 (Nov. 1987),

229–246.

[35] U. Rückert and L. De Raedt. 2008. An experimental evaluation of simplicity in

rule learning. Arti�cial Intelligence 172 (2008), 19–28.

[36] C. Rudin and S. Ertekin. 2015. Learning Optimized Lists of Rules with Mathemat-

ical Programming. (2015). Unpublished.

[37] C. Rudin, B. Letham, and D. Madigan. 2013. Learning Theory Analysis for

Association Rules and Sequential Event Prediction. Journal of Machine Learning
Research 14 (2013), 3384–3436.

[38] S. Rüping. 2006. Learning interpretable models. Ph.D. Dissertation. Universität

Dortmund.

[39] G. Shmueli. 2010. To explain or to predict? Statist. Sci. 25, 3 (Aug. 2010), 289–310.

[40] M. Sokolova, M. Marchand, N. Japkowicz, and J. Shawe-Taylor. 2003. The Decision

List Machine. In Advances in Neural Information Processing Systems (NIPS ’03),
Vol. 15. 921–928.

[41] K. Vanhoof and B. Depaire. 2010. Structure of association rule classi�ers: A

review. In Proceedings of the International Conference on Intelligent Systems and
Knowledge Engineering (ISKE ’10). 9–12.

[42] A. Vellido, J. D. Martín-Guerrero, and P. J.G. Lisboa. 2012. Making machine

learning models interpretable. In Proceedings of the European Symposium on
Arti�cial Neural Networks, Computational Intelligence and Machine Learning.

[43] F. Wang and C. Rudin. 2015. Causal Falling Rule Lists. Preprint at arXiv:1510.05189
(Oct. 2015).

[44] F. Wang and C. Rudin. 2015. Falling Rule Lists. In Proceedings of Arti�cial Intelli-
gence and Statistics (AISTATS).

[45] H. Yang, C. Rudin, and M. Seltzer. 2017. Scalable Bayesian Rule Lists. In Proceedings
of the 34th International Conference on Machine Learning (ICML ’17).

[46] X. Yin and J. Han. 2003. CPAR: Classi�cation based on predictive association

rules. In Proceedings of the 2003 SIAM International Conference on Data Mining
(ICDM ’03). 331–335.

[47] Y. Zhang, E. B. Laber, A. Tsiatis, and M. Davidian. 2015. Using decision lists to

construct interpretable and parsimonious treatment regimes. Biometrics 71, 4

(2015), 895–904.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

44

http://www.nyclu.org/content/stop-and-frisk-data
http://www.nyclu.org/content/stop-and-frisk-data

	Abstract
	1 Introduction
	2 Related Work
	3 Learning optimal rule lists
	3.1 Notation
	3.2 Objective function
	3.3 Optimization framework
	3.4 Hierarchical objective lower bound
	3.5 Upper bounds on prefix length
	3.6 Upper bounds on prefix evaluations
	3.7 Lower bounds on antecedent support
	3.8 Equivalent support bound
	3.9 Permutation bound
	3.10 Equivalent points bound

	4 Implementation
	5 Experiments
	6 Conclusion
	References

