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Abstract

The bandwidth demands of the World Wide Web con-
tinue to grow at a hyper-exponential rate. Given this
rocketing growth, caching of web objects as a means
to reduce network bandwidth consumption is likely to
be a necessity in the very near future. Unfortunately,
many Web caches do not satisfactorily maintain cache
consistency. This paper presents a survey of contem-
porary cache consistency mechanisms in use on the
Internet today and examines recent research in Web
cache consistency. Using trace-driven simulation, we
show that a weak cache consistency protocol (the one
used in the Alex ftp cache) reduces network band-
width consumption and server load more than either
time-to-live fields or an invalidation protocol and can
be tuned to return stale data less than 5% of the time.

1.0 Introduction

Network traffic continues to grow at a hyper-exponen-
tial rate while network infrastructure does not. This
means that existing networks are plagued by ever
increasing utilization demands. One approach to cop-
ing with the increasing resource utilization is to cache
data at non-server sites. As service providers such as
America Online introduce millions of subscribers to
an already overburdened networking infrastructure, it
is nearly assured that systems must cache Web objects
to facilitate acceptable service. Caching can be quite
effective at reducing network bandwidth consumption
as well as server load. Netscape, a vendor of Web
servers, claimed in March of 1995 that a single local
proxy server can reduce internetwork demands by up
to 65% [1].
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The value of caching is greatly reduced, however,
if cached copies are not updated when the original
data change. Cache consistency mechanisms ensure
that cached copies of data are eventually updated to
reflect changes to the original data. There are several
cache consistency mechanisms currently in use on the
Internet: time-to-live fields, client polling, and
invalidation protocols.

Time-to-live fields are an a priori estimate of an
object’s life time that are used to determine how long
cached data remain valid. Each object is assigned a
time to live (TTL), such as two days or twelve hours.
When the TTL elapses, the data is considered invalid;
the next request for the object will cause the object to
be requested from its original source. TTLs are very
simple to implement in HTTP using the optional
“expires” header field specified by the protocol
standard [2]. The challenge in supporting TTLs lies in
selecting the appropriate time out value. Frequently,
the TTL is set to a relatively short interval, so that
data may be reloaded unnecessarily, but stale data are
rarely returned. TTL fields are most useful for
information with a known lifetime, such as online
newspapers that change daily.

Client polling is a technique where clients
periodically check back with the server to determine
if cached objects are still valid. The specific variant of
client polling in which we are interested originated
with the Alex FTP cache [6] and is based on the
assumptions that young files are modified more
frequently than old files and that the older a file is the
less likely it is to be modified. Adopting these
assumptions implies that clients need to poll less
frequently for older objects. The particular protocol
adopted by the Alex system uses an update threshold
to determine how frequently to poll the server. The
update threshold is expressed as a percentage of the
object’s age. An object is invalidated when the time
since last validation exceeds the update threshold



times the object’s age. For example, consider a cached
file whose age is one month (30 days) and whose
validity was checked yesterday (one day ago). If the
update threshold is set to 10%, then the object should
be marked invalid after three days (10% * 30 days).
Since the object was checked yesterday, requests that
occur during the next two days will be satisfied
locally, and there will be no communication with the
server. After the two days have elapsed, the file will
be marked invalid, and the next request for the file
will cause the cache to retrieve a new copy of the file.

There are two important points to note with
respect to client polling: it is possible that the cache
will return stale data (if the data change during the
time when the cached copy is considered valid) and it
is possible that the cache will invalidate data that are
still valid. The latter is a performance issue, but the
former means that, like TTL fields, client polling does
not support perfect consistency.

Like TTL, client polling can be implemented
easily in HTTP today. The “if-modified-since” request
header field indicates that the server should only
return the requested document if the document has
changed since the specified date. Most web proxies
today are already using this field.

Invalidation protocols are required when weak
consistency is not sufficient; many distributed file
systems rely on invalidation protocols to ensure that
cached copies never become stale. Invalidation
protocols depend on the server keeping track of
cached data; each time an item changes the server
notifies caches that their copies are no longer valid.
One problem with invalidation protocols is that they
are often expensive. Servers must keep track of where
their objects are currently cached, introducing
scalability problems or necessitating hierarchical
caching. Invalidation protocols must also deal with
unavailable clients as a special case. If a machine with
data cached cannot be notified, the server must
continue trying to reach it, since the cache will not
know to invalidate the object unless it is notified by
the server. Finally, invalidation protocols require
modifications to the server while the other protocols
can all be implemented at the level of the web-proxy.

In this paper, we examine the different
approaches to cache consistency. An ideal cache
consistency solution will provide a reduction in
network bandwidth and server load at very low cost.
In the next section, we discuss cache consistency
protocols in general and cache consistency as applied
to the Web in particular. Section 3 presents our
simulation environment and Section 4 our simulation
results. In Section 5, we suggest some areas for future
research and conclude in Section 6, with the

suggestion that weakly consistent protocols are a
good choice for web consistency.

2.0 Related Work

Danzig et al. motivate the need for hierarchical object
caches for Web objects on the Internet by examining
how strategically located FTP caches affect Internet
traffic [9]. They found that FTP traffic across the
backbone could be reduced by as much as 42%, sim-
ply by caching FTP files at the juncture between the
backbone and regional nets. This result inspired the
design of the Harvest object cache, which is a hierar-
chical proxy-cache [7].

Once the need for caching has been established, it
is instructive to consider how to maintain consistency
among the caches. While there are a number of
approaches for maintaining cache consistency in
distributed file systems, there has been little work
aimed specifically at evaluating cache consistency
protocols on the World Wide Web. Blaze explored
constructing large-scale hierarchical file systems [5].
While his architecture is similar to the one we posit
for the web [10], the systems are sufficiently different
that his results cannot be directly applied. In his
model clients can also act as servers and can cache
files on a long term basis. This is not necessarily true
in the web where clients are often personal computers
with limited resources.

The Berkeley xFS system [8] suggests a model of
cooperative caching that is also similar to the one we
propose for the web [10]. However, it relies on
clients, not only for long-term caching, but also to
retain the master copy of data. Like other distributed
file systems (e.g. the Sprite Distributed File System
[13], the Andrew File System [11]), it also assumes
objects can be changed by any machine while web
objects can be modified only on their primary server.

The web is fundamentally different from a
distributed file system in its access patterns. The web
is currently orders of magnitude larger than any
distributed file system. Each item on the web has a
single master site from which changes can be made.
This suggests that consistency issues may be simpler
because conflicting updates should never arise.

The most widely used web cache is the original
server distributed by CERN [12]. The CERN server
assigns cached objects times to live based on (in
order), the “expires” header field, a configurable
fraction of the “Last-Modified” header field, and a
configurable default expiration time. Cached objects
are returned, without further consultation with the
server, until they expire, at which point subsequent



requests cause an “If-Modified-Since” request to be
issued.

One study compares the performance of the
CERN proxy cache to a specially designed
lightweight caching server [15]. The lightweight
cache has an independent process that periodically
examines cached objects to determine if they have
become stale. Staleness is determined using both
TTLs and invalidation callbacks from cooperating
primary servers. Proxy caches are registered with the
primary server so that they can receive invalidation
notices. If one views the CERN proxy cache as
implementing an NFS-like consistency protocol [14],
the new server implements an AFS-like protocol. The
comparison focuses on the performance differences
between the two servers and does not examine the
relative behavior of the different consistency
protocols, which is the focus of this work.

To date, the only other detailed examination of
consistency protocols is a study by Worrell that
compared TTL fields to invalidation protocols [16].
He showed that the bandwidth savings for
invalidation protocols and TTL fields could be
comparable if the TTL were set to approximately
seven days. Unfortunately, with a TTL of 7 days, 20%
of the requests returned stale data. We believed that a
simple, but adaptive scheme, such as the Alex
protocol, might achieve comparable bandwidth
savings with substantially better stale hit rates, so we
obtained the same simulator used in Worrell’s study
and adapted it for a more extensive evaluation. In the
process of exploring the Alex protocol, we discovered
that the original workload in the Worrell study was
inconsistent with the workload we observed in server
traces. We hypothesized that, by using a more trace-
based workload, the simulation results would change
significantly.

The original simulation environment consisted of
a cache simulator and a collection of file ages
gathered over several months for 4,000 files located
around the Web. The simulator modeled a hierarchical
caching system and provided both a TTL cache
consistency protocol and an invalidation protocol.
The invalidation protocol was optimized so that upon
receipt of an invalidation message, objects were
simply marked invalid, but not immediately retrieved.
This increased latency on subsequent accesses, but
decreased bandwidth consumption if the object was
not accessed again. Finally, the simulator used the
average and variance of the file ages to generate a
uniform, random stream of file accesses.

3.0 Simulation Environment

We began with Worrell’s simulator and modified it in
a number of ways. We made two initial modifications
to begin the experiments. First, we added the Alex
protocol. Then, in order to isolate the effects of cache
consistency policy from the effects of hierarchical
caching, we flattened the cache hierarchy to model a
single cache.

Worrell’s simulation analyzed the Harvest
cache’s hierarchical caching. We wished to separate
the issues of hierarchical caching and cache
consistency, focusing only on the latter. While
eliminating the hierarchy changes the amount of
invalidation traffic in the study, in most cases it does
not affect the relative traffic of the different
invalidation schemes. When it does affect the relative
traffic, it does so in a manner that favors invalidation
protocols.

Figure 1 shows the cases in which our results
may be distorted by collapsing the hierarchy. In all
cases where the relative performance of invalidation
and time-based protocols is different in the
hierarchical and collapsed systems, our simulation
favors the invalidation protocols, while our results
suggest that time-based protocols are more desirable.
Therefore, we expect that time-based protocols in a
cache hierarchy will perform even better than our
results indicate.

Since we flatten the hierarchy, Worrell’s
“goodness” metric of network hops * number of bytes
transferred is no longer a useful measure. We use the
number of bytes required to maintain consistency,
including invalidation messages, stale data checks,
and file data movement. For the remainder of this
paper, we will refer to Worrell’s modified simulator
with Alex and a flattened hierarchy as the base
simulator.

The base simulator produced results very similar
to those reported by Worrell. Our next step was to
optimize the Alex and TTL protocols in a manner
similar to the invalidation protocol optimization.
When a cached datum expired, instead of immediately
requesting a new copy, the items were marked invalid.
Upon next reference, we issued an “If-Modified-
Since” request to the server. The item was only
retransmitted if it had, in fact, changed since the last
time it was sent. In this manner, we traded the latency
of the query request for the bandwidth savings, i.e.
not having to retransmit data when a valid copy
existed in the cache. By combining the query with the
retransmit request to yield a “send this file if it has
changed since a specific date” request, we avoided
extra overhead and still saved bandwidth where
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Figure 1. Comparison of Hierarchical Caching and Collapsed Caching. In each diagram, the left picture shows a hierarchical
cache and the right picture shows the collapsed hierarchy. The arrows indicate messages sent by the different protocols. In figures
a and b, there is no traffic for time-based protocols because the data’s time-out has not expired. Therefore, in both simulations, the
time-based protocol uses 0% of the bandwidth of the invalidation protocol. In figure ¢, both time-based and invalidation messages
(and files) are sent. If the item is requested from all caches, then the bandwidths of the invalidation protocol and the time-based
protocol are equal to each other and the time-based protocol requires 100% of the bandwidth of the invalidation protocol. If some
of the caches do not later access the data (e.g. cache-1b), then the time-based protocol will require less bandwidth in the
hierarchical model, but still 100% of the bandwidth in the collapsed model. Therefore, when this occurs, we bias the results against
the time-based protocols. Figure d shows a similar effect. There is no invalidation traffic, but time-based messages are issued. In
the hierarchical case, messages will only be issued from those caches requiring the item, while in the collapsed case, “all” clients
request the item. Again, this biases the results against the time-based protocols.

possible. We call the simulator with this modification
the optimized simulator.

Our last change addressed the workload issue
mentioned in Section 2. Worrell modeled the file

exhibit bimodal lifetimes. Either a file will remain
unmodified for a long period of time or it will be
modified frequently within a short time period [10].
(It was this observation that led us to believe that the

lifetime distribution as a flat distribution between the
minimum and maximum observed lifetimes. This
means that files were modified with no attention to
their type or past modification history. The results of
trace analysis from a modified campus Web server
show that this is an inappropriate model. Files tend to

Alex protocol would be well suited to Web cache
consistency.) Additionally, Worrell used a uniform
distribution to generate file requests, but Bestavros
has shown that the more popular a file is, the less
frequently the file changes [4]. We modified the
simulator to use a trace-driven workload. This
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Figure 2. Comparison of bandwidth usage in the base
simulator. The cache is pre-loaded with valid copies of
all the files held in the primary server. Note the use of a
log-scale to display the bandwidth with higher accuracy.
The invalidation protocol is superior to both TTL and
Alex until the update threshold or TTL is quite large. This
result is similar to Worrell’s result for TTL protocols and
indicates that Alex behaves comparably.

simulator is referred to as the modified workload
simulator.

4.0 Simulation Results

Figures 2 and 3 show the trade-offs inherent in the
parameterization of the Alex and TTL protocols. With
Alex, as the update threshold increases, the bandwidth
savings also increase (i.e. total bandwidth decreases).
However, with this increase in bandwidth savings
comes an increase in the number of times stale data is
returned to the user (the “stale hits” line in Figure 3).
Similarly, with TTL fields, the increase in TTL that
induces more bandwidth savings also induces more
stale hits. The invalidation protocol is unaffected by
parameterization, yielding the constant bandwidth
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Figure 3. Comparison of cache miss rates in the base
simulator. The increases in update threshold and TTL
that induced bandwidth savings in Figure 2 also induce an
increase in the stale hit rate. The invalidation protocol
provides perfect consistency resulting in a 0% stale hit
rate (not shown in the figure).

shown in Figure 2, and since valid entries are never
evicted from the cache, it also produces the near per-
fect cache miss rates shown in Figure 3.

Although we expected Alex to outperform TTL,
the two figures show that for a specified acceptable
stale hit rate, TTL provides greater bandwidth
savings. For example, if the acceptable stale hit rate is
25%, then Alex must select an update threshold of
approximately 40% (from Figure 3a), inducing a total
bandwidth of 400 MB (from Figure 2a). In contrast, to
achieve a 25% stale hit rate, the TTL must be set to
approximately 125 hours, resulting in a total
bandwidth of approximately 130 MB. In both cases,
the bandwidth required is greater than that required
for the invalidation protocol, and the stale cache rate
of 25% is unacceptably high. The difference in
bandwidth consumption between Alex and TTL is
discussed in more detail in Section 4.2.
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Figure 4. Comparison of bandwidth usage in the
optimized simulator. Files are transmitted only when
they are truly stale. With this optimization, both TTL and
Alex use less bandwidth than the Invalidation Protocol in
nearly all cases.

4.1  Optimized Retrieval

Our next set of experiments evaluated the conditional
retrieval provided by the optimized simulator. The
Alex and TTL protocols query the server to determine
the validity of their cached, but invalid, data before
requesting that a new copy be sent. Figure 4 shows
the effect of this change on the total network band-
width. With this optimization, both protocols outper-
form the Invalidation Protocol for most parameter
settings.

To understand why the protocols save bandwidth,
consider the amount of information that must be
exchanged in each case. The information can be
categorized into messages and file transfers. The
invalidation protocol sends an invalidation message
every time that a file changes, but sends files only
when an invalid file is requested. Both Alex and TTL
send messages only after a file has timed out and has
been requested again, and send files only when a file
that is truly out of date is requested. All three
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Figure 5. Comparison of cache miss rates in the
optimized simulator. The cache miss rates improve
dramatically from Figure 3 since invalidated files are left
in the cache. All three protocols show miss rates that are
indistinguishable from the near perfect miss rate of the
invalidation protocol. However, the stale hit rate remains
unacceptably high.

protocols transfer files that are truly invalid.
Therefore, neither Alex nor TTL will ever transmit
more file information than the invalidation protocol,
but could transmit less if stale files are ever returned.
On the other hand, the amount of bandwidth
consumed by Alex and TTL for messages (queries to
the server to check for stale data) could be more or
less than that for the invalidation protocol depending
on the cache settings. Since each message averages 43
bytes and each file averages several thousand bytes,
the effect of saving file transfers is much more
pronounced than the effect of sending more server
queries. As the number of stale hits increases, the
bandwidth consumption decreases.

The more dramatic improvement occurs in the
miss rates shown in Figure 5. Both Alex and TTL
now achieve near perfect miss rates because the
invalidated data are left in the cache, avoiding future



Server Files Requests ?{:};::S(;tse Total Changes % lir/lilll::ble Muﬁl?llzrl?“,iles
DAS 1403 30,093 84% 321 6.83% 2.61%
FAS 290 56,660 39% 11 2.41% 0.00%
HCS 573 32,546 50% 260 23.3% 5.22%

Table 1: Summary of mutability statistics for various campus servers over a one-month period. Mutable files are defined to
be those files that were observed to change more than once over the time period. Very mutable files are those that were observed
to change more than 5 times. Any request that was not generated by a client in our campus domain was considered remote, and
any files added in the middle of this time period were not included in these statistics. Notice that the most popular server, the FAS

server, is also the one with the fewest mutable files.

retrievals. Cache misses are recorded only when a file
actually needs to be transferred to the cache.
Unfortunately, the stale cache hit rate is unchanged.
For example, selecting a TTL of 100 hours saves only
32% of the invalidation protocol’s bandwidth but
results in a 20% stale cache hit rate. This number of
stale hits is probably unacceptable for the moderate
bandwidth savings.

4.2 Modified Access Patterns

We expected that an adaptive protocol such as the
Alex protocol would do better than the static TTL
protocol, so we examined the factors that contributed
to Alex’s poor performance. The flat lifetime distribu-
tion coupled with the fact that all files were assigned
equal retrieval probability seemed to be the leading
cause. The analysis of traces gathered in our local
environment coupled with results by Bestavros [3]
convinced us to consider an alternative workload gen-
erator.

Bestavros found that on any given server only a
few files change rapidly. Furthermore, he observed
that globally popular files are the least likely to
change. A workload modeled by these characteristics
departs significantly from the workload modeled by
the base and optimized simulators. If the file request
distribution is skewed towards popular files and
popular files change less often, then the number of
stale hits reported will decrease significantly. An
adaptive protocol, such as Alex, will then work well
on both rapidly changing files as well as stable ones.
While files are changing rapidly, Alex checks
frequently; once the files stabilize, Alex checks
infrequently.

The modified workload simulator uses Web
server logs from our local environment to generate
file lifetimes. The server logs were taken from several
campus Web servers, modified to store the last-
modified timestamps with each file request satisfied

by the servers. We used the file system’s last
modification time for the timestamp. The server logs
are summarized in Table 1.

The three systems from which we gathered logs
are FAS, our university web server, DAS, the web
server for the Division of Applies Sciences (think,
“College of Engineering”), and HCS, the web server
for our local computer society. The statistics from
these server logs confirm Bestavros’ observation that
the most popular files are also the least mutable ones.

It is instructive to compare our trace
characteristics with those of the workload simulated
by the base simulator. The traced files change far less
often than the files with randomly generated lifetimes.
For example, one run of the base simulator included
accesses to 2085 files over a 56 day simulated run.
Those 2085 files changed 19,898 times yielding a
17% average probability that on any given day a
particular file changed. Our HCS trace, which
changed the most frequently, involved 573 files
changing 260 times over 25 days. This yields a 1.8%
average change probability, which is consistent with
Bestavros’ per-day file-change probability of 0.5% —
2.0%, with more popular files changing less often
than other files.

While the simulation of our trace data modeled
the exact modification behavior on our servers, the
change probability computed above is based on a
small sample size. Bestavros offers another data
point, but it is only accurate between one-day
intervals. It is possible that the one day granularity
masked a number of changes equivalent to those used
by Worrell, but it is unlikely, since Bestavros’ data
reflected an order of magnitude less change than the
simulated workload. Each file that was recorded as
changed would have had to have changed not once,
but 10 times between samples to produce an
equivalent rate of change. Given the significant
difference in the rapidity of change between the trace



data and the simulated workload, we expected to
observe far fewer stale cache hits with the Alex and
TTL protocols using the trace data than we did with
the random lifetime generation.

In order to verify that the data from our traces is
representative of “typical” web usage, we gathered
both information on the distribution of accesses to
different types of files as well as the average life-
spans of these file types. We gathered this data from
two different sources. We obtained information about
the distribution of accesses to different types of web
objects from a proxy cache at Microsoft. We obtained
information about the life-span of different file types
from modification logs of the Boston University web
server.

The Microsoft proxy cache sits between all
Microsoft employees and anything outside of
Microsoft. The access logs for the server contain the
types and sizes of files accessed, but not the last-
modified date for files retrieved, so we could not
simulate this log. Instead, we used the data to
characterize access patterns by file type. On an
average week day, the Microsoft proxy cache server
receives approximately 150,000 requests for web
objects. Of these, 65% are for image files (gif and
jpg). The file type breakdown is shown in the second
and third columns of Table 2.

To understand what files are the most likely to
change, we analyzed the data gathered from the
Boston University web server. Each day between
March 28 and October 7, Bestavros sampled the
server and recorded all the files that were modified
since the previous day [4]. The logs contain
approximately 2,500 file references and 14,000
changes during that 186 day time period. Categorizing
this data by file type, we can determine the average
life span per file type. This data is shown in the last
two columns of Table 2.

In computing these life-spans, we err on the side
of conservatism, overestimating the rate of change by
assuming that all data changed at least once during the
measurement interval. This biases the results because
the longest life-span we consider is 186 days and
there almost certainly exist files with longer life-
spans. However, ignoring files that did not change and
considering only those files that did change would
have skewed the results far more.

Images, which represent 65% of the accesses in
the Microsoft data, have the longest lifetimes, living
85-100 days. Surprisingly, image files are also
relatively small, so caching them is feasible. This
supports our hypothesis that weak consistency
caching will be effective, since the most popular web
objects also have the longest life-span.

Microsoft Boston University

Fi %-age | Average| Average| Median
ile type| o tal | file size|life-span Age
accesses (days)| (days)

gif 55% 7791 85 146
html 22% 4786 50 146
ipg 10%| 21608 100 72
cgi 9% 5980 NA NA
other 4% NA NA NA

Table 2: Tabulation of Microsoft and Boston
University server log summaries. The Microsoft data
provides information on file access patterns while the
Boston University data provides information on file type
lifetimes.

While we still need to collect better data from a
single server, the behavior observed at Microsoft and
Boston University convinced us that our own local
traces were representative of the rate of change
observed on the web. We then simulated the three
different consistency algorithms using a workload
based on the trace data summarized in Table 1.

Figures 6 and 7 show dramatically different
results from those in Figures 2 through 5. Both Alex
and TTL produce less bandwidth usage than the
invalidation protocol with few stale cache hits,
reflecting the fact that few files change frequently on
the server. Since files do not change often, they do not
cause stale data to be returned. In contrast to the
earlier calculations, we find that with an acceptable
stale hit rate of less than 5%, both Alex and TTL
demand less bandwidth than the invalidation protocol
for nearly all parameter settings and that Alex and
TTL offer similar savings in bandwidth.

Having established that the weakly consistent
schemes are competitive with invalidation protocols
in terms of bandwidth and stale cache hits, it is useful
to examine the server load created by the various
protocols. Figure 8 shows the number of server
operations (i.e. requests for documents, queries to
determine whether documents are stale, and
invalidation messages) for each of the protocols.
While TTL offers bandwidth savings and acceptably
low stale cache hit rates, it induces a higher server
load than either Alex (with properly tuned
parameters) or the invalidation protocol. The number
of server queries generated by Alex with an update
threshold of O is particularly noteworthy. This
configuration represents the case where the cache
checks with the server on every client request as some
poorly designed servers currently do. Not only is this
unnecessary, since an update threshold as low as 5%
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Figure 6.Comparison of bandwidth using the
workload modified simulator. These results depict the
averages of the FAS, HCS, and DAS traces. Files that
were not in the primary host at the beginning of the month
were not simulated. Both Alex and TTL use less
bandwidth than the Invalidation Protocol for nearly all
parameter settings.

returns stale data less than 1% of the time, but it is
excessively wasteful of server resources since it
creates nearly two orders of magnitude more server
queries.

5.0 Future Work

Our simulations indicate that maintaining cache con-
sistency in the World Wide Web need not be expen-
sive. However, there are still important issues to be
examined. The time-based protocols (Alex and TTL)
both rely on careful tuning of parameters. Leaving
this tuning to manual intervention is guaranteed to
result in suboptimal performance. Furthermore, as the
Boston University and Microsoft trace data indicate,
different types of files exhibit different update behav-
ior. One important area of further research is to inves-
tigate tuning cache consistency protocol parameters.

(a) Alex Cache Consistency Protocol
T T T T

Invalidation Protocol Cache Misses o]
Alex Cache Misses —x—

Alex Stale Cache Hits 55—

75% |- B

100% -

50% - -

Percentage of Total

25% - y

0%

0 20 40 60 80 100
Update Threshold (Percent)

(b) Time to Live Fields
T T T T T T T T T ]
Invalidation Protocol Cache Misses ——

TTL Cache Misses ——
TTL Stale Cache Hits &

100%

75% -

50% 1

Percentage of Total

25% -

0 50 100 150 200 250 300 350 400 450 500
TTL value (hours)

Figure 7. Comparison of cache miss rates using the
modified workload simulator. Both protocols provide
extremely low stale data rates using trace-driven
simulation. The cache miss rates for the invalidation
protocol, Alex, and TTL are all less than 0.04%,
producing the overlapping lines near 0%.

We are investigating algorithms by which caches can
be self-tuning, by adjusting parameters based on the
data type and the history of accesses to items of that
type.

Another trend in web usage that has an affect on
proxy caching is the increasing number of web
objects that are dynamically generated. The Microsoft
trace logs revealed that 10% of the requests were for
dynamically generated pages. This represents a
tenfold increase from only six months ago. As the
number of dynamic objects increases it will become
critical to devise ways to cache the actual scripts that
generate dynamic pages. Web scripting languages
such as Java and Tcl offer one possible approach, but
autonomously replicating the databases that underlie
most dynamic content is non-trivial.
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Figure 8. Comparison of server loads on the three
consistency protocols. Notice that parameterization is
critical for efficient operation of either Alex or TTL and
that Alex imposes less load on the server than TTL. TTL
always imposes more load than the invalidation protocol
while Alex requires an update threshold of at least 64% in
order to achieve the same server load as the invalidation
protocol. At this 64% threshold, the stale cache miss rate
is 4%.

6.0 Conclusions

While Worrell’s results presented a strong preference
for invalidation protocols relative to TTL, our results
differ significantly. If network bandwidth is the driv-
ing force, then TTL is an attractive alternative, offer-
ing reduced network bandwidth and a low stale hit
rate. It does present a significantly higher load to the
server, which makes it unattractive. However, in gen-
eral, the Alex protocol provides the best of all worlds
in that it can be tuned to:

* reduce network bandwidth consumption by an
order of magnitude over an invalidation
protocol,

* produce a stale rate of less than 5%, and

* produce server load comparable to, or less than,
that of an invalidation protocol with much less
bookkeeping.

Although Alex is preferable to TTL, there are
cases where TTL might still be suitable. For example,
when object lifetimes are known a priori, as is the
case with daily news articles or weekly schedules,
TTL is the right choice.

Although invalidation protocols are still required
when perfect cache consistency is a necessity, the
weakly consistent protocols are particularly attractive
for a number of reasons. They are both much simpler
to implement. They are both more fault resilient when
machines become unreachable; the right thing
automatically happens. Documents eventually
become invalidated and the server is contacted upon
subsequent requests. With an invalidation protocol,
recovery is much more complicated. The changes
required to implement an invalidation protocol in
existing web servers and clients is more significant
than the effort to implement either TTL or Alex.
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