Structuring the Kernel as a Toolkit of Extensible, Reusable
Components

Christopher Small and Margo Seltzer
{chris,margo} @eecs.harvard.edu
Division of Applied Sciences
Harvard University

Cambridge, MA 02138

Abstract

Applications often require functionality that is im-
plemented in the kernel, but is not directly available
to the user level. While extensible operating systems
allow kernel functionality to be augmented, we believe
that the emphasis on extensibility is misplaced. Appli-
cations should be able to reuse kernel code directly and
the emphasts should be placed on designing a kernel
with that reuse in mind. The advantage of structur-
ing the kernel as a set of reusable, extensible tools is
that applications can avoid re-implementing function-
ality that 1s already present in the kernel. This will
lead to smaller applications, fewer lines of total code,
and a more unified computing environment that will
be easier to maintain and perform better.

1 Introduction

Many applications share functionality with the op-
erating system kernel. For example, databases and
file systems manage persistent data, arbitrate shared
access, and sometimes implement transactions. File
systems and many applications (e.g. text editors,
word processors) restore data to a consistent state af-
ter failure. Multimedia applications perform schedul-
ing and synchronization. We can simplify application
development and avoid the duplication of effort that
plagues software development by allowing applications
to reuse and extend kernel components. The key ca-
pability that is required to provide this reuse is to
support fine-grained, per-operation extensibility. This
per-operation extensibility allows applications to over-
ride the kernel’s policy decisions (i.e. how to use allo-
cated resources), without affecting the kernel’s ability
to make global allocation decisions. Addition of new
algorithms and support for new resource types can be
accomplished by adding new components to the ker-
nel.

2 Motivation and Model

The VINO kernel [13], under development at Har-
vard University, is structured as a toolkit of classes
that implement core system behavior. Instances
of these classes can be incrementally specialized for
application-specific purposes by specifying policies for
resource use, providing fine-grained extensibility. New
classes can be derived from the toolkit classes to ex-
tend kernel functionality, providing coarse-grained ex-
tensibility. We find that there are three forms of ker-
nel augmentation: replacement of resource policy de-
cisions, subsystem reusability, and the addition of new
functionality. Each of these forms implies a model of
fine-grained modification of kernel operations.

First, implicit decisions concerning resource use are
embedded in many system components, e.g. cache re-
placement strategy, scheduling decisions, and file read-
ahead policy. Kiczales et al. [8] point out that ab-
stracting the implementation of the kernel as a black
box hides these policy decisions. Policy-making is of-
ten a zero sum game; a policy that benefits one ap-
plication often harms some other application. When
policy decisions are left to the kernel, 1t must select a
least-common-denominator policy that harms all ap-
plications the least rather than one that benefits any
particular application the most. A better solution is to
allow each application to select its own policy and have
the kernel mediate between the different policies. We
are not proposing that applications control global allo-
cation decisions; the kernel retains control over global
allocation, and the application controls how the re-
sources are used.

In the VINO kernel, all policy decisions are imple-
mented as application-replaceable operations. This
may seem unnecessarily complex, but many policy
decisions are simply priority decisions: which page
or buffer should be evicted, which process or thread
should be scheduled next. These decisions require lit-



tle or no access to global kernel state and in many
cases, the policy can be specified algorithmically (e.g.
LRU, MRU, round-robin) or can be driven by data
supplied by the user-level application via shared mem-
ory. For example, database systems often know what
blocks they will be reading next, but the blocks do
not necessarily follow an ordering that is apparent to
the operating system. Rather than using the kernel’s
default read-ahead policy that attempts to detect se-
quential access and read the next sequential block, the
database could place a list of disk block addresses in
shared memory and let the kernel reference this list
when it is ready to issue a read-ahead request.

The second form of kernel augmentation is subsys-
tem reusability. Kernel subsystems such as caching,
logging, persistent storage, and transaction manage-
ment should be directly reusable by applications.
Most systems implement file system recovery (e.g. re-
playing the log in a journaling file system), but appli-
cations must rewrite their own recovery system from
scratch. Instead, the logging and recovery subsystem
of the kernel should be exported so that 1t may be
reused directly or augmented slightly and reused by
applications. Recovery is a particularly good example
where reuse is of paramount importance. Research in-
dicates that recovery code is notoriously difficult to
implement and debug [14]. Because it handles excep-
tion cases, 1t 1s exercised infrequently, yet in order
to provide system stability, it is essential that it be
correct. Rather than requiring that each application
implement this crucial functionality from scratch, it
should be implemented once, gotten right, and reused.

The third form of kernel augmentation is the ability
to add new functionality at the right level of granu-
larity. Current extensibility models (e.g. the exter-
nal pagers of Mach, the VFS layer of 4.4BSD) offer
only coarse-grained extensibility; a pager or filesys-
tem must be replaced as a whole. Instead, the kernel
should be decomposed into smaller, easily combined,
easily extended classes. For example, most relational
databases store relations and tuples in files provided
by the file system or by implementing a storage system
on a raw disk device. Instead, the kernel classes that
implement directories and files should be structured
in a way that would allow the kernel’s file system to
be augmented and reused to support the format of the
database system. An RDBMS “filesystem” could then
be created by reusing the standard buffer-cache code
(with an application-specific eviction policy), the stan-
dard naming and directory code, application-specific
files (with the read-ahead operation taking advantage
of index information), and the system logging and

transaction facilities.

3 Kernel Classes

The kernel should be decomposed into reusable
classes that do not make assumptions about the data
they manipulate. Indexing and caching classes need
not know the details of the data they reference; file
storage systems should remain ignorant of the imple-
mentation of their indexing structures. Policy deci-
sions must be made explicit in such a way that they
can be replaced without perturbing the rest of the
implementation. The Kernel Classes provide for the
basic functionality of VINO. They are designed with
reuse in mind, so that they can be combined and ex-
tended to build new services.

e Storage: a Storage instance accepts a block of
data for storage and retrieves it on demand. Stor-
age can be backed by a disk, a virtual memory
object, a File (which itself would be backed by a
Storage instance), or a Log. The implementation
of a disk-based Storage class is concerned with ef-
ficient layout; a Log requires periodic truncaton
or archival.

e (ache: the interface to a generic cache consists
of a fault operation, a writeback operation, and
a select-victim operation. Interfaces for marking
entries used, dirty, and invalid allow the client to
pass information to the select-victim operation.
This model supports using physical memory as
a cache for virtual memory or building a buffer
cache for a Storage object.

e Name Directory: a Name Directory maps a name
to an object. To support hierarchical naming,
the object can itself be another Name Direc-
tory. A general-purpose naming system is use-
ful not only for naming files, but also elements in
a database schema, environment variables, and
X11 resources. Name Directory objects can be
used to construct a tree, a directed acyclic graph,
or a more general directed graph.

e File: a File consists of an indexing structure that
maps file-relative addresses to disk blocks and
write and read operations to move data to and
from the store. The File class can be specialized
by changing the indexing structure (to use an in-
ode, B-tree, hash table, or extent-based index),
the read and write operations (for automatic com-
pression and decompression), or the open and
close operations (for implementing access-control
lists).

e Log: a Log can be volatile (backed by physical
or virtual memory) or persistent (backed by disk
or non-volatile RAM). A database management



system would create a Log that spans disk and
archive media (e.g. tape), while the kernel would
use an ephemeral log to support transactions on
kernel data structures. A log sequence number
(LSN) is assigned to each piece of data added to
the log; sequence numbers are used to allow the
log to be replayed in LSN order. The checkpoint
operation flushes the log and reclaims unneeded
records.

e Transaction: the general-purpose transaction
class supports the standard begin, commit, and
abort interface. A Transaction instance is pro-
vided with references to log entries and acquired
locks; at commit or abort time, the transaction
has the information needed to commit or abort
changes. The implementation for ephemeral data
uses a simple in-memory shadow copy scheme;
an implementation that uses a persistent log and
persistent copies can be used for persistent data.
By subclassing Transaction, extended transaction
models can be supported.

o Schedule: a Schedule is responsible for sharing
CPU time among a group of processes. A simple
schedule performs round-robin allocation; more
complex feedback scheduling mechanisms are im-
plemented using the standard schedule interface.
By default, processes are added to the global
Schedule, which uses a global priority scheme. A
group of processes can control their relative prior-
ities by creating a specialized Schedule, and then
linking their Schedule to the global one. For ex-
ample, when a client is blocked on a request to
a server, it would prefer that the server get its
CPU allocation, in order that the request com-
plete more quickly. A client-server application
would construct a Schedule that used a delega-
tion algorithm, where the server would normally
get little or no allocation; when a client makes
a request of the server, the client’s time quanta
would be delegated to the server while the request
is pending.

4 The VINO Augmentation Model:
Grafting

VINO places extensions in the kernel, rather than
leaving them in user space. Research has shown that
the cost of crossing protection boundaries (between
user and system, or user-system-user, as in the case of
a Mach external server) is very high [3]. By placing
extension code in the kernel, we decrease the number
of protection boundary crossings, improving perfor-
mance.

Placing extensions in the kernel can potentially

compromise system integrity in three ways.

e Violating address space boundaries: a major ad-
vantage of running application code in a separate
address space is that it can not read or modify
kernel structures.

e CPU hogging: once invoked, a kernel extension
might run forever, starving all other processes.

e Failure: errors can cause a kernel extension to
leave kernel data structures in an inconsistent
state.

There are at least three ways to address the po-
tential integrity violations of kernel extensions. Some
extensible systems (e.g. SPIN [4] and Thor [10]) use
type safe languages for writing kernel extensions. Oth-
ers (e.g. HiPEC [9]) use specialized, interpreted lan-
guages that are limited to the specific extension do-
main. VINO uses software fault isolation techniques
such as sandboring [15], which allow grafts to be writ-
ten in conventional languages, such as C. Sandboxing
forces all memory operations (read, write, and jump)
to fall within the address space boundaries allocated to
the grafted code. By refusing to download any code
that has not been sandboxed, we can avoid address
space violations.

We expect policy grafts to be fairly small; for short
sequences of code, the runtime overhead of software
fault isolation can be much lower than that of kernel-
user protection-domain crossings. The overhead of
sandboxing has been shown to be substantially lower
than that of interpreted languages, which typically
have a slowdown factor of one to two orders of mag-
nitude [11].

We ensure that grafted code does not monopolize
the CPU by preempting and time-slicing long-running
grafts. A graft that is called in the context of an ap-
plication (e.g. in read-ahead code) that runs for an
extended period of time blocks the progress of only
the grafting application. A graft that does not termi-
nate in a reasonable amount of time is aborted.

To address failure, a graft is run in the context of
a transaction, using the standard kernel transaction
support. If grafted code fails or is aborted, the enclos-
ing transaction i1s aborted, causing graft resources to
be deallocated and modifications to kernel structures
to be undone, using compensating operations. The
kernel then kills the process that installed the graft,
or resumes the operation, using its default implemen-
tation.

5 Related Work

Cao et al. [5] separate buffer cache allocation deci-
sions from use decisions, showing that with only two



policy choices (LRU vs. MRU) application perfor-
mance can be significantly improved. VINO’s exten-
sion model provides this algorithmic selection as well
as other, more complex, decision models.

Scheduler Activations [1] are lightweight threads for
multiprocessors that leave global processor allocation
decisions to the kernel, but move thread scheduling
to application control. Threads are a user-level con-
struct, and their scheduling is performed entirely at
the user level. This is implemented in a kernel exten-
sion model by allowing the set of processes that imple-
ment the multi-threaded task to implement their own
scheduling algorithm.

The Mach external pager interface allows pagers to
control how backing store is used, but not which pages
to evict. McNamee and Armstrong [12] extended the
model to allow external pagers to control page evic-
tion. The level of granularity is still coarse; imple-
menting a different paging algorithm implies imple-
menting a new pager. We argue for a fine-grained
model that allows any particular algorithm to replaced
in the context of an existing pager.

The SPIN extensible microkernel [4] allows client
code to be dynamically added to the kernel, although
the focus 1s on extensibility rather than reuse. Ander-
son’s proposal [2] to implement extensibility by mov-
ing functionality out of the kernel and up to the appli-
cation level, also seen in Lipto [6] and Aegis [7], allows
for structuring system services as a library of reusable
classes.

References

[1] Anderson, T. Bershad, B., Lazowska, E., Levy, H.,
“Scheduler Activations: Effective Kernel Support
for the User-Level Management of Parallelism”,

Proceedings of the 13th SOSP, pp. 95-109 (1991).

[2] Anderson, T., “The Case for Application-Specific
Operating Systems”, Proceedings of WWOS II1
(1992).

[3] Bershad, B., Anderson, T., Lazowska, E., Levy,
H., “Lightweight Remote Procedure Call”, Pro-
ceedings of the Twelfth ACM Symposium on Oper-
ating System Principles, (1989).

[4] Bershad, B., Chambers, C., Eggers, S., Maeda,
C., McNamee, D., Pardyak, P., Savage, S.,
Sirer, E., “SPIN - An Extensible Microkernel for
Application-specific Operating System Services”,
University of Washington Technical Report 94-03-
03 (February 1994).

[6] Cao, P., Felten, E., Li, K., “Implementation
and Performance of Application-Controlled File

Caching” | Proceedings of the First OSDI, pp. 165—
178 (November 1994).

[6] Drushel, P., Peterson, L., Hutchinson, N. C., “Be-
yond Microkernel Design: Decoupling Modularity
and Protection in Lipto” Proc. 12th Int. Conf.
on Distributed Computing Systems, pp. 512-520,
Yokohama, Japan (June 1992).

[7] Engler, D., Kaashoek, M., O’Toole, J. Jr., “The
Operating System Kernel and a Secure Pro-
grammable Machine”, Proceedings of the Sizth
SIGOPS European Workshop (September 1994).

[8] Kiczales, G., Lamping, J., Maeda, C., Keppel, D.,
McNamee, D. “The Need for Customizable Oper-
ating Systems”, Proceedings of the Fourth Work-

shop on Workstation Operating Systems, Napa,
CA (August 1993).

[9] Lee, C-H., Chen, M. C, Chang, R-C., “HiPEC:
High Performance External Virtual Memory
Caching”, Proceedings of the First OSDI, pp. 153~
164 (November 1994).

[10] Liskov, B., Day, M., and Shrira, M., “Distributed
Object Management in Thor”, in Distributed Ob-
ject Management, Morgan Kaufmann, San Mateo,

California (1994).

[11] May, C., “MIMIC: A Fast System/370 Simula-
tor”, Proc. SIGPLAN ’87 Symposium on Inter-
preters and Interpretive Techniques, published as

SIGPLAN Notices 22, 7, St. Paul, MN (July 1987).

[12] McNamee, D.; Armstrong, K. “Extending the
Mach External Pager Interface to Accommodate
User-Level Page Replacement Policies”, USENIX
Mach Workshop, pp. 17-29 (October 1990).

[13] Seltzer, M., Endo, Y., Small, C., Smith, K.
“An Introduction to the VINO Architecture,” In
“VINO: The 1994 Fall Harvest,” Harvard Univer-
sity Technical Report TR-34-94.

[14] Sullivan, M., and R. Chillarege, “Software De-
fects and Their Impact on System Availability —
A Study of Field Failures in Operating Systems”,
Dugest 21st International Symposium on Fault Tol-
erant Computing (June 1991).

[15] Wahbe, R., Lucco, S., Anderson, T., and Gra-
ham, S., “Efficient Software-Based Fault Isola-
tion”, Proceedings of the 14th SOSP, Asheville, NC
(December 1993).



