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Abstract

This paperaddresseghe problemof forming groupsin
peerto-peer(P2P) systema&nd examinesvhatdependabil-
ity meansn decentalizeddistributedsystemsMuch of the
literature in this field assumeshat the participantsform a
local picture of global state yetlittle reseach hasbeendone
discussinghowthis stateremainsstableasnodesenterand
leavethe system.We assumehat nodesremainin the sys-
temlong enoughto benefitfromretainingstate but not suf-
ficientlylong that the dynamicnature of the problemcanbe
ignored. We look at thecomponentthatdescribea systens
dependabilityand arguethat next-genemtion decentalized
systemgnustexplicitly delineatethe informationdispessal
medtanisms(e.g., probe event-driven,broadcast),the ca-
pabilitiesassumedaboutconstituenhodes(bandwidth,up-
time re-entry distributions), and distribution of informa-
tion demandgneedlesn a haysta& vs. hayin a haysta&
[13]). We evaluatetwo systemdasedon thesecriteria:
Chord [22] and a hetepgeneous-nodéierarchical group-
ing scheme[11]. Theformergivesa > 1% failed request
rate under normal P2P conditionsand a prototypeof the
latter a similar rate under more strenuousconditionswith
an order of magnitudemore organizationalmessges. This
analysissugestsseveral methodsto greatly improve the
prototype

1. Introduction

Large-scalalecentralizedlistributedsystems— peerto-
peer ubiquitous,or sensometwork systemswith multiple
millions of nodes— arejust beyondtheirinfang/ andhave
notyet haddependabilityquantifiedin a consistenmanner
Many P2Pprojectsarein their researciphasesandonly a
handfularein commonuse. Most of thesedesignswork
well whentherateat which nodesenterandexit the system
is small,but nonethatwe have seerexplicitly discusghede-
signtradeofs betweerthetypeof informationexchangeor
whichthesystemis designedthephysicalcharacteristicef

the constituentnodes(e.g., meantime to failure), andhow
reliableinformationexchangeneedsto bein orderto fulfill
the systems goals. Before more large-scaledecentralized
distributed systemsare designedand built, the community
needgo reachagreementn the meaningof acceptableand
unacceptabléunctionality undera variety of dynamiccon-
ditionsrepresentatie of P2Psystems.

Theintuitive notion of “dependability”for thesesystems
is oneof reacability of information Accordingly, depend-
ability shouldbe measuredy the percentag®f timesthat
arequestesultsin the properinformationmoving from its
source(sjo its destination(s)Therequirement$or depend-
ability vary greatlywithin the parametespaceof P2Psys-
tems. Considera point-to-pointsystemdesignedo answer
existencequeries.An instancevhereevery nodehasa com-
pletelyup-to-dateandaccuratepictureof therestof thesys-
temandwherethebandwidthconsumedby queriesandstate
transferdoesnot exceedthe capacityof any links would be
perfectly dependable.However, sucha designmight not
work if thetypeof informationexchangedvasevent-drven:
if, for example,onenodeneededo notify anothemodeor
collection of nodeswhentherewas an abrupttemperature
changeor if abridgewereaboutto collapse.

In this paperwe definedependabilityn P2Psystemsand
discusgheway in which Chordandour own hierarchically
groupedsystemself-organizeto overcomethe unreliability
of nodesthatcomprisethe system.

2. Reliability in Decentralized Systems

A systems dependabilityis definedin terms of three
characteristics: the type and method of information ex-
change (e.g., probes, point-to-point streams, broadcast
streamsetc.),theindividualnodes'capabilitiesandthedis-
tribution of dataand queriesamongthe nodes.Onethread
links all threecomponentsiocal informationmustprovide
aquantifiableandprobabilisticallyaccuratedepictionof the
globalstate.Therequiredievel of this accurag depend®n
systemusagejncreasedoleranceor out of datelocalinfor-
mationleadsto diminishedstate,messagegandwidth,and



uptimerequirementsFor example,in Chord,thelikelihood
thatrequestwill be fulfill-able dependon the join/failure
rate and on the rate at which a nodering stabilizationpro-
cedurés run, whichin turn depend®n the nodes capacity
for topologymessages.

The first componentto the overall dependabilityof a
decentralizedystemis the type of informationexchanged
acrosst. We divide informationexchangento the follow-
ing five cateyories:

probe Probe queriestest for the existenceof an object.
Thesequeriesoften usea filter structure(e.g., DHTS
or Bloom filters) or resourcentensie naive broadcast
queries(e.g., Gnutella[8], Freene{5]); thelattergives
thesignificantadvantageof hightoleranceagainsnode
failureandallows for recever-interpretedqueries.

event-driven point-to-point A node registersan interest
andis contactedvhensomethingmatchingthis inter-
estentersthe system. Examplesinclude abrupttem-
peraturechange sensotaggreyators[9], changein file
contentsfile creation,nen authorshipanddistributed

triggers|[3.

event-driven broadcast Thisis abroadcasfrom onenode
to all othernodes,usedto distribute informationglob-
ally. This couldbe used,for example,to implementa
softwareupdate.

continuous stream point-to-point This exchange pro-
vides a path for streamingdatafor an indeterminate
duration to anothernode or other nodes. Internet
routingis onesuchexample.Therequiremenbf conti-
nuity may meanpro-active measuregsgainstunknown
failureswill be necessarye.g. usingmultiple paths),
comparedvith just post-filurecleanupandrecovery.

continuous stream broadcast One nodecontinuouslyup-
datesthe entire system,similar to continuousstream
point-to-point. Theubiquitousnatureof thistypeof ex-
changemay malke it mucheasierto implementin P2P
systemswithout pro-active routinemeasures.

Most P2Pdesignsfocuson probequerieswhile sensomet-
work systemsfall into one of the remainingfour classes.
Thatsaid,onecouldimagineothersystemsavhereP2Psys-
temssupportevent-basedjueriesand sensometworks use
probes.Regardlessthe catgyoriesof requestsnustbe con-
sideredwhendefiningthe systems local state.
Thenodes’capabilitiesarethe secondcharacteristi¢hat
definesa systems dependability Liben-Nowell etal. intro-
ducedtheideaof the half-life of a systemasthe amountof
timeit takesfor half of thenodego exit [12]. Onecangen-
eralizethis conceptto include the probability of the node
returningto the systemand the length of time betweena
nodes exiting andreturning. Most of the currentcrop of

popularP2Presearctsystemg6, 7] were designedwith a
large-scalestatic systemin mind, anddo not performwell
underhigh volatility. Unfortunately this high volatility is
the norm: a study of Mojo Nation found that 80% of the
nodesexistin the systenfor lessthanonehour[25]. If they
areto bedeployedon dynamicP2Pnetworks or on battery-
consciousensonetworks,new designseedto incorporate
thedistribution of nodejoin andreturnfrom the beginning.

The third componenbf dependabilityis the distribution
of informationandrequestacrosghenodes. AdarandHu-
berman[1] andRipeanu[18] showv thata small percentage
of filesmake up thebulk of thequeriesandfilesin Gnutella,
andthatthe distribution of searchesreheary-tailed. Lv et
al. [13] usethe correlationbetweerfile andquerydistribu-
tions to explain why Gnutellahasnot collapsedunderthe
weight of its naive, flooding-basedrobe scheme as Rit-
ter predicted[19]. The simulationstudiesof this paperas-
sumea uniform distribution of files andfile requestsyhich
is probablynot appropriatefor the Gnutellaworld. How-
ever, it providesan upperboundon the query failure rate
for acorrelatedsystem.Also, Gnutella-like file correlations
areclearlyinappropriatdor alibrary citation,DNS, or simi-
lar environmentwhereuserssearcHor bothhayandneedles
in ahaystackof information[13]. We seethatit is essential
to considetthe distribution of bothdataandqueryelements
in orderto evaluatethe systems dependability

Terminologyfrom the fault tolerantcommunity can be
misleadingwhen appliedto distributed decentralizedsys-
tems. Mean-time-to-&ilure hererefersto the mean-time-
to-node-departure Mean-time-to-data-loskaslessmean-
ing whennodesarealwaysenteringandexiting the system;
queriesalwayshave a significantchanceof failing underre-
alistic conditions. For P2Pfilesharingsystemswve cande-
fine mean-time-to-querydilure (MTQF). More generally
the dependabilitycan be quantifiedby the mean-time-to-
request-dilure(MTRF), which allows for all five cateyories
of informationexchangeo be considered.

For Chordandthe hierarchicalgroupingsystemwe de-
scribebelow, we assumexactprobesearchesn a uniform
distribution of files presenamonglive nodesin the system:
only files that currently exist are searchedor. We assume
that nodesare not overkurdenedwith otheractuities, e.g.,
actuallymoving data.In the Chordexperimentsye assume
a uniformity of nodecapabilities— somavhat realisticin
a sensoretwork with uniform componentsput unrealis-
tic in a P2Psetting. In the hierarchicalgroupingsimulator
nodescanhave both uniform andheterogeneousharacter
istics, and we presentresultsfor both of thesesituations.
Theseassessmentre clearly only the beginningto a long
seriesof possibleevaluations. It seemsunlikely that one
systermwill work well underthewholerangeof P2Pparam-
eters;designeramustexplicitly statetheir target nodeand
dataaudienceandthenevaluatedependabilityaccordingly



3. Topology of Hierarchical Groups

We have designecandimplementeda simulatorfor a hi-
erarchicalgroupingschemewhich is designedor P2Pand
sensonetwork systemsin earlierwork, we evaluatedapro-
totypeof its searchmechanisnj11], butits groupingmech-
anismhasnotbeenpreviously describedFor completeness,
we presentboth here. We refer the readerto otherpapers
[22, 23] for anintroductionto Chord.

3.1. Search Overview

We begin by describinghow thesearctsystemworksand
thenmove into detailsof how the systemself-configuresA
systenconsistf mary hierarchicalgroups,eachshapeds
atree.Every grouphasaroot node.Therootis responsible
for:

1. Calculatinga summaryof all objectsin thegroup.

2. Maintainingsummariedor eachof its immediatechil-
dren(whichin turn maintainsummariedor their chil-
dren).

3. Directingsearchesf thegroup.

SummariearerepresentedsBloom filters [4], whosesize
is computedby theroot. Bloom filters arebit stringswhose
sizeis proportionalto the numberof objectsthey summa-
rize[16]. All bitsareinitializedto zero;theadditionof each
objectto thefilter sets‘on” thebits signaledby severalhash
functionsfor whichtheobjectbeingaddeds theinput. Bits
thatarealreadysetremainon. To probeafilter for amatch,
the samehashfunctionsare performedandthe bit arrayis
checled: if all of thebits areset,thefilter matchesBloom
filters only give falsepositives, not falsenegatives. Nodes
underneathhe root arearrangedn a k—treestructurewith
log;, n nodesatlevel n. Nodescommunicatevith their chil-
dren, their parent,with the root of their group,andwith a
dynamicallychangingcollectionof extra-groupnodes.

Giventhis configurationa searcthoriginatingatnodeN,
proceedssfollows:

1. Consultthe group summaryfilter of node N. If the
filter indicatesthat the object could exist in the tree,
iterateover all possiblechildrenthatmight containthe
object(usingthechild filters storedat NV). If theobject
isfoundin ary child, thesearctconcludesuccessfully

2. If the objectis not found in the currenttree, node
N passeghe queryto root(NV). Root(V) conductsa
searchon its descendant@runingthe part of the tree
alreadysearchedy N).

3. If root(V) fails to locatethe objectin its currenttree,
it sendgherequesto ary groupswhosefilter indicates
thatthe objectcouldresidethere.

N

. Eachgroupqueriedtakesoneof threeactions:

(a) If thecurrentgroupfilter indicatesthatthe object
cannotbe in the group,the grouprespondswith
thenew groupfilter.

(b) If the objectisn’t in the group, respondwith a
NACK andsomesuggestedroupsthatmight be
queried (that is, consultarny other group sum-
mariespresentandfor ary potentialhits, tell the
initiating groupof the potentialhit).

(c) Returnthelocationof thenodethathastheobject
in thegroup.

3.2. Hierarchy Structure

We definethe ideal topology as a collection of groups
of nodes,where the nodesin a group are related based
on low intra-grouplatengy andvariedmean-time-to-dilure
(MTTF), andheterogeneousandwidth.Ourgoalis to come
ascloseto this ideal topology as possibleusingonly local
information.

Nodesbenefitfrom beingin a groupbecausehey share
informationaboutothergroups,sothatwhennodea in G,
recevesinformationaboutGs, thatinformationis accessi-
ble to all othernodesin GG, becaus&;’sroot caches7s’s
filter. Thesebenefitancreaseasgroupsgrow in size.Nodes
also benefit from the existenceof other groups, because
transmittedgroup summariessene as an efficient mecha-
nismto prunethe searchrspace.

Largergroupsprovide moresharednformation,but this
benefitis offset by the cost of keepingthe group reason-
ably balancedmaintaininggroup summariesandthe load
ontheroot. Theroot's workloadgrows with the sizeof the
groupasit will broker all group searchesmaintaingroup
and child summariescontrol entry to the groupand deter
minethetime for partitioningof the group.

It is this last responsibility determiningpartition time,
that makes the systemfeasible. When the root becomes
overloaded,it shedsload by partitioning the group. This
partitioning, in conjunctionwith respondingo requestgo
join the group, is what provides the dynamismand self-
configurabilityof the system.

Severalotherprojectshave proposedsupernodesasthe
solutionto the heterogeneitgmpirically extantin P2Psys-
tems. Saroiuet al. have showvn that there are multiple,
distinct catggoriesof nodes rangingfrom always-onhigh-
bandwidthnodego 56k modemsnly connectedor anhour
or less[20]. Hierarchiesform a goodextensionto the “su-
pernodes”currently proposedin several researchprojects
(e.0., Gnutella++H8], Brocad€26]). In theseprojectsthere
aretwo levels of nodes: “supernodes’that do mostof the
routing, andregular nodes.A moregeneralheterogeneous



systemshouldusea heterogeneoutpology, with “better”
nodediving closerto theroot of eachgroup.

3.3. Node Entry

1. Whena nodez entersthe system,it immediatelybe-
comedts own groupG,. G, formsalist of credentials,
includingits bandwidthcapabilitiesandits numberof
publicfiles.

2. Nodez contactsawell-known location,calleda “node
cacher” to find othernodesS in the system(similarto
Gnutellaand Mojo Nation). This bootstrappingcom-
ponentonly keepsa list of other nodesthat have re-
cently contactedit, alsotrying to find othernodesin
the system. Becausethis list is the only stateit con-
tains,it canbeeasilyreplicatedandcanpopin andout
of existence.

3. UsingthenodesS thatthenew nodelearnsaboutfrom
the “node cachej’ G, forwardsits credentialsto the
groupscontainings € S, by sendingmessageto each
s, which thenforwardthis informationto theirroots.

4. Eachroot thatconsiderds,, valid for entryrespondo
G, with its credentials. G, chooseswhich groupto
join by picking the one with the bestcredentials. If
thisgroupagrees(, thenmemgeswith this group.If it
refuses(s, triesanothergroup.

3.4. Node Exit

We have experimentedvith two designgor keepingthe
descendantsf a nodepartof agroupwhenanodeexits. In
one mechanismnodestry to maintainknowledgeof their
siblingsandgrandparentsThis informationis sufficient to
electanew leaderto take the placeof the missingparentand
thencontactthe grandparento inform it of the new topol-
ogy, including the summaryfilter change. The other, lazy
mechanisnjustdropschildrenfrom agroupwhentheir par
entdies. This expendsfewer topology messageandis the
onewe usein thesimulation.

3.5. Summary Propagation

Theroot determineghe groupfilter sizen by usingthe
numberof objectsin thetreeto estimatehow mary bits are
requiredto producea Bloom filter with approximatelyhalf
of the bits set[16]. The lowestleaf nodesgeneratdilters
of sizen bits by hashingon their storedobjects,turningon
thesebitsin theirfilters,andsendingheirfiltersto their par
ents. Theseinternalnodesalsoperformtheir hashingmod-
ulo n bits andlogically OR their filters togetherwith their
children’sfilters, and passthesefilters up the tree. Finally,

the root nodewill have the summaryof all of the objects
in the group, with ideally abouthalf of the bits in its filter
set(morethanhalf-full filters tendto give mary falseposi-
tives). Thehierarchyof filters alsomakesit likely thatmore
bits aresethigherup in thetreeand,corversely thatfilters
are more sparse— andthereforemore accurateand more
compressiblavherebandwidthis less— assearchesvind
down thetree. Thisinformationhierarchyis usedboth out-
sidethe groupto determinewhetherto contactthe groupat
all andwithin to betterdirectqueriesbetweemodes.

As nodegoin andexpire from thenetwork, we have them
self-forminto a communicationandinformation-basedhi-
erarchybasedon local information. With global informa-
tion, nodeswould form themselesinto ideal groups. With
local information, however, they will form themselesinto
a closeapproximatiorof this ideal, forming a continuously
maintained'almost-ideal’state.

4. Grouping Analysis

We baseour groupingmodelon naturalsystemghat ex-
hibit self-configurationdriven by particleinteractionsthat
lower enegy costswhenanorganizedstateis realized.Evo-
lution models[2], non-equilibriumphasetransitions[24],
andcrystalfacetstructureformation[15] amongothers,all
shaw this behaior, and theseideashave beenwidely ap-
plied to anumberof economicsandengineeringoroblems.

We deriveanodes costbasednits bandwidthconsump-
tion, thougha refinemento includelateny would bea nat-
ural extensionof this method.To make groupingdecisions,
nodescomparetheir currentcostwith the costof beingin
the othergroupsof which they areaware. If, by forming a
group,two nodescanlower the numberof queriesthey re-
ceive andthe efficiengy of the queriesthey generatethena
groupconfigurationis moredesirable However, thereis an
activation costto form a new group,comprisedof the one
time costof distributing filters andreorganizingthetree. If
groupsonly form whenthe costof the old stateexceedshe
sumof the activation costandthe new states cost,we can
encouragestability. Having groupsflit in and out of exis-
tenceis expensve andis mitigatedby this activationcost.

As notedabove, the overall costthat eachnodeseeksto
minimizeis theweightedsumof thebandwidthcosts.Band-
width usageconsistgprimarily of queriesandfilter updates.
We assumenodeshave poor knowledgeof the systemout-
sidetheir own group,makingqueryestimatedlifficult. The
only reliablecomputatiomodescanperformwith regardsto
thecostsoutlinedabove arethoselocal to thegroup,thatis,
specificto thefilters. We settheindividual groupfilter cost
to thefractionof bandwidthconsumedy filter messageto
total bandwidth:

— fmé‘y (g) fsz'ze (g)
Cr9 ="y Bwly)



wheref,,s4(g) isthenumberof filter messagesentoutover
thetime 7(g) with averagesize fs;..(g), andBW (g) is the
total bandwidthof the group. A moresophisticateanethod
of estimatingthe filter messageate involving a weighted
averagefavoring neartime eventswould be a naturalexten-
sionof thismodel.

Theestimateof the combinedcostis then

Fmsg(g1) + fmsy(g2)> Jsize(g1 U g2)
7(g1) 7(g2) BW(g1Ugs)

CilgrUg2) = (
Fromthis we canguesghattheactivationcostshouldgo as

- size(g1 U g2) fsize (g1 U g2)
talterdist. (91 U 92) BW (g1 U g2)

wheretgerdist. 1S the averagetime to redistrikute a filter.
Assumingthesefactorsare uniform for groupsof a given
size theactivationcostsetsthe costscaleof the system.

We canalsodeducesimpleinformationaboutthe effec-
tivenesof searchef$rom thelocal groupinformation,such
asusing connectvity informationto determinethe quality
of searchesWe definethe searchquality factorto be

Qs = a(size(g1 U g2)) + b(known nodes(g; U g2))

with a and b proportionalto the inverseof the numberof
nodesin the system.In the high bandwidthlimit we seta to
zeroandb to theinverseof thetotal numberof nodesn the
system.Then@,; goesto onewhena groupis connectedo
the entiresystem.However, aswe may expectmary dupli-
catefiles, the advantageof having mary membersn one’s
own groupandnot just connectednaybesignificant;thisis
representeddy non-zeroa.
The combinedcostfunctionis then

Cost = aCy + 8/Qs

with the additionalconstraintof a hardwall in bandwidth
usagethatis
Cf <€

wheree < 1 for mostP2Psystemsvherebandwidthshould
be allocatedfor file-transfer The parametersor groupfor-
mation arethena, 8, v = a/b, ande. In the limit of
a > B, bandwidthconsumptions minimized,while 3 >
(but reasonable) allows for quality of searchmaximization
constraineddy reasonabléandwidthconsumption. Small
~ correspondso an emphasion highly connectedyroups,
while large~y shouldtendto favor largegroups.

4.1. Analysisof Summary Filters
We presenta brief analysisof the probability of a false

positivefor afile notin thesystempr thefalsepositiverate
As describedabove, eachroot nodein the systemmaintains

anup-to-dateBloomfilter representinghefilesin its group.
In addition,root nodesacquirethe aggrayatefilters of other
groups.Let g be the numberof groupsin the systemp the
numberof distinctfiles pergroup,b the numberof bits per
file usedand k the numberof independenhashfunctions
usedin the Bloom filter datastructure.Assumingthathash
functionsare perfectly random, the theoreticalprobability
of afalsepositive for afile notin thesystemor thesystems
falsepositive rateis:

o (1= 1/mb))" g (1 - exp(—k/B)*

wherep, = exp(—£k/b) is the probability that a specific
bit in ary of the aggreyate bloom filters is still 0. Note
thatgiven g, b andn, the numberof hashfunctionsk can
be optimizedto minimize that falsepositive rate. Namely
takingk = b(In 2) yields an optimal falsepositive rate of
fs=9(1/2)F = g (0.6185)".

The false positive rate derived above correspondgo a
theoreticalupperboundon the fraction of groupscontacted
per search. Sincethe factor (1 — ps)k decreasesxponen-
tially with b, the numberof bits allocatedper file, for op-
timal numberof hashfunctionsk, so doesthe fraction of
redundansearchmessagebetweergroups.

Onepotentialsourcefor concernin ourdesignis whether
theroot nodeswill have the capacityto storeandkeepup-
datedfilters of evenasmallfractionof therestof thesystem.
A rough calculationshows this is possible. If we assume
that nodeson averagestore 100 ~ 27 files (asthey doin
Gnutella[1), andthataggreyatefilters arebuilt using8 = 23
bits perfile (giving afalsepositive rateof ~ 2%), with 1000
nodes,storingall of the filters takes21? x 27 x 23 = 220
bits = 128 kilobytesof storageand1 million ~ 22° nodes
consumed 28 megabytesstill notanunreasonablamount
of storage Of course ashasbeennotedabove, rootsarenot
requiredto cacheall or even mostothergroups’filters, so
theactualamountstoredis only afraction of thesevalues.

This hierarchicaluse of Bloom filters is different from
theattenuatedBloomfilters usedin OceanStor¢l7, 10]. Its
usageof usinga combinedfilter to describea distinct sub-
group of neighboringnodesis similar the logical OR pre-
sentedhere. However, OceanStoreloesnot have the con-
ceptof hierarchieof filters with increasinghumbersof bits
setor of representatie groupfilters.

4.2. Compressed Bloom Filters

Large sparseBloom Filters can be greatly compressed.
Theoretically anm-bit filter canbe compressedo mH (p)
bits wherep is the probability thata bit in thefilter is 0 and
H(p) = —plog, p — (1 — p) log, 1 — pis theentropy func-
tion. For suficiently largefilters, arithmeticcodingguaran-
teescloseto optimal compressionsoif p is smallenough,



H(p) is muchsmallerthanl, andsignificantsavingsin the
transmissiorsizecanbe achiered[14.

Thebulk of theupdatemessagesonsistof sparsdilters.
In particular bothfilters of the nodesin the lower levels of
the tree hierarchyof a group and updatefilters are sparse.
Updatedo filters canbe sentasdeltas:indicesof which bits
to turn on or off, insteadof sendingthe whole filter. For
arelatively balancedreea nodeat level i — 1 hasapprox-
imately 2!°82"~% ~ % subnodesthereforeassuminghat
eachnodehasroughlythe samenumberof distinctfiles, the
sparsenessf the child filters of anodein thetreeincreases
exponentiallywith thelevel of thenodein thetree.

We have presented brief descriptionof our P2Psystem
which useshierarchicalgroupsto prunesearchesandtake
adwantageof nodeheterogeneityo improvesystenstability.
Now we returnto looking at reliability in Chordandin our
system.

5. Reliability in Chord

We evaluatedChordby determininghow it mappednto
our threecharacteristicof decentralizedsystemreliability
and by modifying a pre-&isting simulator[21] to testfor
thesecharacteristics.

Chord, in its currentform, supportsprobe (existence)
queries:if anobjectexistsin the system,it (hopefully) re-
turns a pointer to the node storing that object. Although
the primary Chord papers[23, 6] do not explicitly discuss
nodecharacteristicgt is designedo run on a P2Pnetwork,
inferring thatthenodesexhibit the previously outlinedchar
acteristics[20, 18, 1, 25|, in particular that averagenode
lifetime is on the order of oneto several hours. As pre-
viously mentionedthe objectschosento queryarechosen
randomlyfrom thosecurrentlyexisting on live nodes.

We modifieda Chord simulatorto countthe numberof
messagesisedfor search,objectrelocation,and stabiliza-
tion. The stabilizationprocessprovides a mechanisnfor
nodesto confirmthey arethe predecessorsf their succes-
sorsandto repairtheir fingerandsuccessotables.This op-
erationkeepsthering intactandthe morefrequentlynodes
join andexit, themorefrequentlystabilize needgo be
runto keepfailurerateslevel.

We show theresultsfrom two setsof experimentsn Fig-
uresl and2. Both experimentswererun with 1000nodes
performingone searchper minute on average(all average
eventsfor the Chord simulatorfollow a Poissondistribu-
tion). Thenumberof fingerswas40 andthe numberof suc-
cessorsvas20. The averagemessagelelayfor Chordand
for hierarchicalgroupswas 50 milliseconds. Both figures
averagefive separateexperiments(errorbarswere omitted
from Figure2 for visualclarity). Figurel shovsthegradual
improvementin the failed lookup rate as the averagelife-
time increasedrom 15 minutesto 3 hours. The stabilize
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Figure 2. Effect of rate at whic h stabilizing pro-
cess is run in Chord.

procedureunsonceevery 30 secondpernodeon average,
updatingtwo pointersperrun: thesuccessoandarandomly
choserothernodefrom thesuccessaiable,with nearbysuc-
cessorhosenwith higherprobability. This appeardo be
the default usedin mostof the experimentsin the Techni-
cal Report[23], exceptthe one on lookup failure, where
the simulatorupdatesall fingerentrieson every invocation.
Eachexperimentranfor 3 or morehoursof virtual time; we
found that shorterexperimentsyielded resultswith higher
variability.

Figure2 shows Chordastherateof stabilizationchanges
with averagelifetimes of 45 minutesand 120 minutes. In-
creasingmessageatesto ~ 1.25 messageger node per
secondallows areductionin failedlookupsto < 0.4%.

Thismeandrom areliability standpointhatreachinghe
levelsof availability expectedby mostfile systemuserssay



> 99.99%, would be difficult in Chordunless(a) all nodes
exhibit higherthanpreviously obsened levels of uptimeor

(b) all nodeshave the bandwidthcapacityto run stabilize
mary timespersecond Thepreferentiabvailability of some
dataof othersis impossiblen Chorddueto its DHT design;
of course,using a higherlayer for redundang would par

tially ameliorateheavailability problem(asCFSdoeq[6]).

6. Reliability in Hierarchical Groups

We have designedand implementeda simulator proto-
type whosenodesfollow the stepsoutlined in Sections3
and4 to form groupsand performsearches Although we
ran testswith larger numbersof nodes,we presentresults
with 1000nodesup on averageandwith nodesperforming
one searchper minute on average. Becausehe parameter
spacefor hierarchicalgroupsis large (thereare morethan
20 separatgparameteroncewe include different possible
network configurations)we have beenlimited in thevariety
of experimentsve could examineprior to this publication.

Theprimarysimplificationmadein the currentsimulator
is that groupsareformedonly virtually. Thatis, nodesdo
not walk a branchof the treeandreacha final destination;
instead they all exist directly underthe root. The deathof
a node, however, dislocatesnodesfollowing a distribution
whichis baseduponfailure of nodesin atreeshapedopol-
ogy with log, n nodesat level n, suchthat approximately
half of thefailuresareassumedo beleaffailures,thenhalf
of thoseremainingparentswith onechild, ansoon. Thishas
preventedusfrom evaluatingthe effectivenes®f intragroup
filtersandseeinghebenefitsresultingfrom the compressed
bloomfilters at the bottomof thetree.
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Figure 3. Effect of varying average lifetimes in
Hierarchical Groups.

In our simulationswe seta = 0,5 = 1, andy = 1/2,
with a maximumfilter-messagéandwidthusagee = 0.1

and no activation cost. We hopeto emphasizeguality of
searchesver bandwidthusagebeyond the hardlimit of e.
In thelong-lifetimelimit (averagenodeuptimesbeyondten
hours)within 10 minutesa 1000nodesystemmstabilizedto a
betterthana 0.1 % searchfailure systemrate. We alsoran
four simulationsperaveragdifetime usinga uniformdistri-
bution of nodeswith averagelifetimes betweenl5 minutes
and 4 hoursand 56k modem-like bandwidths. Filter sizes
weresetto 5 bits perfile to minimize bandwidthconsump-
tion for filters. One node-cachewas used,disseminating
five nodesto every joining node. Theseresultsare shavn
in Figure 3. We seea muchlower failure rate and higher
message@ate than Chord for similar nodelifetimes, doing
betterthan 1% even with averagelifetimes of 15 minutes.
The large fluctuationof resultsis mostlikely dueto digi-
tization effectsfrom small nodenumbernear0.1% failure
rates.Comparingto Figure 2, we seethata similar number
of messagearerequiredfor both simulatorsto get similar
failureratesat 45 minutes.However, the bulk of thesemes-
sagesare group join queries,followed by filter messages
andthenall others(search,otherintra-group),andthat of
thesethe vastmajority are generatedy nodefailure lead-
ing to child nodesregrouping. In particular a k—treeleads
to deathscreatingorderlog,, size(g)/k timesthe numberof
nodesdisseminatedy the node-cachemessagesFor the
simulationswith averagdifetimesof 45 minutes thiscorre-
spondgo ~ 600 msg/min.We expectthatwideningthetree
or addinggrandparento child links asdiscussegreviously
shouldmitigatethis cost. The extra links would requiretwo
additionalmessageperjoin andk additionalmessageper
death,which is ~ 120 msg/minfor an averagelifetime of
45 minutesand 1000nodes. Then,the filter messageates
asshown in Figure3 shoulddominate.

We alsoransimulationswith asubsebf nodeswith high-
bandwidthandlong-uptimesasmightbeexpectedn anac-
tual network, to look for the effects of thesenodesin the
trees.They weregiven 10 timesthe bandwidthandlifetime
of the regular nodes. However, with only 5% of nodesthe
high-bandwidthtype, we seelittle improvementat the level
of 1000nodesthoughlarger systemsnay demonstratehis
moreeffectively. Furthermoreasgrouprearrangemerand
rootreplacemenhave yetto beimplementedthe benefitof
theseextranodesmaybemarginal.

By introducingtheserefinementsandin additionconsid-
ering sparsefilter compressionwe can make the limiting
factor for group overheadfilter messagesand reducethe
currentbandwidthconsumptiorby filters by afactorof 80%
for groupsof size 200 and 96% for groupsof size 1000.
Thuswe canscalefrom a maximumgroup size of 200 in
our simulationfor e = 0.1 andMTTF of 45 minutesto well
beyondthatfor evensmallere. It seemghatroot nodeover-
usagewill becomethe limiting factorfor large numbersof
nodes.As shawn earlier, this will allow for scalingthe sys-



temto order10% nodes.
7. Conclusion

This papermakesthree contributions. First, we exam-
ine how the implicit goalsandassumptionsbouta partic-
ular decentralizedsystemaffect measure®f its reliability.
Secondwe introducea self-omganizinghierarchically-based
P2Psystem.Third, we take the assumptiongmplicit in cur-
rent P2Pfilesharingsystemsand evaluatethe reliability of
Chordandthe hierarchicalgroupingsystem.In simulation
experiments,both systemsperform adequatelyas long as
thereexist a 0.5 — 3% tolerancefor failure undernormal
conditions.Thisfailurerateis probablyacceptabldor afile
sharingsituationbut would needto betamperedy a higher
level applicationthatwould provideredundang in morerig-
orousfile system-lile scenarios.Both systemautilize self-
configuration— stabilize andlocal-information-based
groupformation— to maintainan adequatelegreeof reli-
ability evenunderhigh fluctuation.In particular our model
enablegthe formation of local points of stability and high
bandwidth,andwe shov how self-configuratiorcancreate
mary local foci to which the restof the moredynamicsys-
temcanattach.

We wouldliketo thankM. Mitzenmachefor helpful dis-
cussions.
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