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Abstract

This paperaddressesthe problemof forming groupsin
peer-to-peer(P2P)systemsandexamineswhatdependabil-
ity meansin decentralizeddistributedsystems.Much of the
literature in this field assumesthat the participantsform a
localpictureof globalstate, yetlittle research hasbeendone
discussinghowthis stateremainsstableasnodesenterand
leavethe system.We assumethat nodesremainin the sys-
temlong enoughto benefitfromretainingstate, but not suf-
ficientlylong that thedynamicnatureof theproblemcanbe
ignored.Welookat thecomponentsthatdescribea system’s
dependabilityandarguethat next-generation decentralized
systemsmustexplicitly delineatethe informationdispersal
mechanisms(e.g., probe, event-driven,broadcast),the ca-
pabilitiesassumedaboutconstituentnodes(bandwidth,up-
time, re-entry distributions), and distribution of informa-
tion demands(needlesin a haystack vs. hay in a haystack
[13]). We evaluate two systemsbasedon thesecriteria:
Chord [22] and a heterogeneous-nodehierarchical group-
ing scheme[11]. Theformer givesa ����� failed request
rate under normal P2P conditionsand a prototypeof the
latter a similar rate undermore strenuousconditionswith
an order of magnitudemore organizationalmessages. This
analysissuggestsseveral methodsto greatly improve the
prototype.

1. Introduction

Large-scaledecentralizeddistributedsystems— peer-to-
peer, ubiquitous,or sensornetwork systemswith multiple
millions of nodes— arejust beyondtheir infancy andhave
not yet haddependabilityquantifiedin a consistentmanner.
Many P2Pprojectsarein their researchphasesandonly a
handful are in commonuse. Most of thesedesignswork
well whentherateat which nodesenterandexit thesystem
issmall,butnonethatwehaveseenexplicitly discussthede-
signtradeoffs betweenthetypeof informationexchangefor
which thesystemis designed,thephysicalcharacteristicsof

the constituentnodes(e.g., meantime to failure), andhow
reliableinformationexchangeneedsto bein orderto fulfill
the system’s goals. Beforemore large-scaledecentralized
distributedsystemsaredesignedandbuilt, the community
needsto reachagreementon themeaningof acceptableand
unacceptablefunctionalityundera varietyof dynamiccon-
ditionsrepresentativeof P2Psystems.

Theintuitivenotionof “dependability”for thesesystems
is oneof reachability of information. Accordingly, depend-
ability shouldbe measuredby the percentageof timesthat
a requestresultsin theproperinformationmoving from its
source(s)to its destination(s).Therequirementsfor depend-
ability vary greatlywithin the parameterspaceof P2Psys-
tems.Considera point-to-pointsystemdesignedto answer
existencequeries.An instancewhereeverynodehasacom-
pletelyup-to-dateandaccuratepictureof therestof thesys-
temandwherethebandwidthconsumedby queriesandstate
transferdoesnot exceedthecapacityof any links would be
perfectly dependable.However, sucha designmight not
work if thetypeof informationexchangedwasevent-driven:
if, for example,onenodeneededto notify anothernodeor
collectionof nodeswhen therewasan abrupttemperature
changeor if abridgewereaboutto collapse.

In thispaper, wedefinedependabilityin P2Psystemsand
discusstheway in which Chordandour own hierarchically
groupedsystemself-organizeto overcomethe unreliability
of nodesthatcomprisethesystem.

2. Reliability in Decentralized Systems

A system’s dependabilityis defined in terms of three
characteristics: the type and method of information ex-
change (e.g., probes, point-to-point streams, broadcast
streams,etc.),theindividualnodes’capabilities,andthedis-
tribution of dataandqueriesamongthe nodes.Onethread
links all threecomponents:local informationmustprovide
aquantifiableandprobabilisticallyaccuratedepictionof the
globalstate.Therequiredlevel of this accuracy dependson
systemusage;increasedtolerancefor outof datelocal infor-
mationleadsto diminishedstate,messages,bandwidth,and



uptimerequirements.For example,in Chord,thelikelihood
that requestswill be fulfill-able dependson the join/failure
rateandon the rateat which a nodering stabilizationpro-
cedureis run,which in turn dependson thenode’scapacity
for topologymessages.

The first componentto the overall dependabilityof a
decentralizedsystemis the type of informationexchanged
acrossit. We divide informationexchangeinto the follow-
ing fivecategories:

probe Probequeriestest for the existenceof an object.
Thesequeriesoften usea filter structure(e.g., DHTs
or Bloom filters) or resourceintensive naive broadcast
queries(e.g., Gnutella[8], Freenet[5]); thelattergives
thesignificantadvantageof hightoleranceagainstnode
failureandallows for receiver-interpretedqueries.

event-driven point-to-point A node registersan interest
andis contactedwhensomethingmatchingthis inter-
estentersthe system. Examplesinclude abrupttem-
peraturechange,sensoraggregators[9], changein file
contents,file creation,new authorship,anddistributed
triggers[3].

event-driven broadcast This is a broadcastfrom onenode
to all othernodes,usedto distributeinformationglob-
ally. This couldbeused,for example,to implementa
softwareupdate.

continuous stream point-to-point This exchange pro-
vides a path for streamingdatafor an indeterminate
duration to anothernode or other nodes. Internet
routingis onesuchexample.Therequirementof conti-
nuity maymeanpro-activemeasuresagainstunknown
failureswill be necessary(e.g. usingmultiple paths),
comparedwith just post-failurecleanupandrecovery.

continuous stream broadcast Onenodecontinuouslyup-
datesthe entire system,similar to continuousstream
point-to-point.Theubiquitousnatureof thistypeof ex-
changemaymake it mucheasierto implementin P2P
systemswithout pro-activeroutinemeasures.

Most P2Pdesignsfocuson probequerieswhile sensornet-
work systemsfall into one of the remainingfour classes.
Thatsaid,onecouldimagineothersystemswhereP2Psys-
temssupportevent-basedqueriesandsensornetworks use
probes.Regardless,thecategoriesof requestsmustbecon-
sideredwhendefiningthesystem’s local state.

Thenodes’capabilitiesarethesecondcharacteristicthat
definesa system’s dependability. Liben-Nowell et al. intro-
ducedthe ideaof thehalf-life of a systemastheamountof
time it takesfor half of thenodesto exit [12]. Onecangen-
eralizethis conceptto include the probability of the node
returningto the systemand the length of time betweena
node’s exiting and returning. Most of the currentcrop of

popularP2Presearchsystems[6, 7] weredesignedwith a
large-scalestaticsystemin mind, anddo not performwell
underhigh volatility. Unfortunately, this high volatility is
the norm: a study of Mojo Nation found that 80% of the
nodesexist in thesystemfor lessthanonehour[25]. If they
areto bedeployedon dynamicP2Pnetworksor on battery-
conscioussensornetworks,new designsneedto incorporate
thedistributionof nodejoin andreturnfrom thebeginning.

Thethird componentof dependabilityis thedistribution
of informationandrequestsacrossthenodes.Adar andHu-
berman[1] andRipeanu[18] show thata small percentage
of filesmakeupthebulk of thequeriesandfiles in Gnutella,
andthat thedistribution of searchesareheavy-tailed. Lv et
al. [13] usethecorrelationbetweenfile andquerydistribu-
tions to explain why Gnutellahasnot collapsedunderthe
weight of its naive, flooding-basedprobescheme,as Rit-
ter predicted[19]. The simulationstudiesof this paperas-
sumea uniform distribution of files andfile requests,which
is probablynot appropriatefor the Gnutellaworld. How-
ever, it providesan upper-boundon the query failure rate
for a correlatedsystem.Also, Gnutella-likefile correlations
areclearlyinappropriatefor a library citation,DNS,or simi-
lar environmentwhereuserssearchfor bothhayandneedles
in a haystackof information[13]. We seethatit is essential
to considerthedistributionof bothdataandqueryelements
in orderto evaluatethesystem’sdependability.

Terminologyfrom the fault tolerantcommunitycan be
misleadingwhen applied to distributed decentralizedsys-
tems. Mean-time-to-failure hererefers to the mean-time-
to-node-departure.Mean-time-to-data-losshaslessmean-
ing whennodesarealwaysenteringandexiting thesystem;
queriesalwayshaveasignificantchanceof failing underre-
alistic conditions. For P2Pfilesharingsystemswe cande-
fine mean-time-to-query-failure (MTQF). More generally,
the dependabilitycan be quantifiedby the mean-time-to-
request-failure(MTRF), whichallows for all fivecategories
of informationexchangeto beconsidered.

For Chordandthe hierarchicalgroupingsystemwe de-
scribebelow, we assumeexactprobesearcheson a uniform
distribution of filespresentamonglive nodesin thesystem:
only files that currentlyexist aresearchedfor. We assume
that nodesarenot overburdenedwith otheractivities, e.g.,
actuallymoving data.In theChordexperiments,weassume
a uniformity of nodecapabilities— somewhat realistic in
a sensornetwork with uniform components,but unrealis-
tic in a P2Psetting. In thehierarchicalgroupingsimulator,
nodescanhave bothuniform andheterogeneouscharacter-
istics, and we presentresultsfor both of thesesituations.
Theseassessmentsareclearlyonly thebeginning to a long
seriesof possibleevaluations. It seemsunlikely that one
systemwill work well underthewholerangeof P2Pparam-
eters;designersmustexplicitly statetheir target nodeand
dataaudienceandthenevaluatedependabilityaccordingly.



3. Topology of Hierarchical Groups

We havedesignedandimplementeda simulatorfor a hi-
erarchicalgroupingschemewhich is designedfor P2Pand
sensornetwork systems.In earlierwork,weevaluatedapro-
totypeof its searchmechanism[11], but its groupingmech-
anismhasnotbeenpreviouslydescribed.For completeness,
we presentboth here. We refer the readerto otherpapers
[22, 23] for anintroductionto Chord.

3.1. Search Overview

Webeginby describinghow thesearchsystemworksand
thenmove into detailsof how thesystemself-configures.A
systemconsistsof many hierarchicalgroups,eachshapedas
a tree.Every grouphasa root node.Theroot is responsible
for:

1. Calculatinga summaryof all objectsin thegroup.

2. Maintainingsummariesfor eachof its immediatechil-
dren(which in turn maintainsummariesfor their chil-
dren).

3. Directingsearchesof thegroup.

SummariesarerepresentedasBloom filters [4], whosesize
is computedby theroot. Bloom filters arebit stringswhose
size is proportionalto the numberof objectsthey summa-
rize[16]. All bitsareinitializedto zero;theadditionof each
objectto thefilter sets“on” thebitssignaledby severalhash
functionsfor which theobjectbeingaddedis theinput. Bits
thatarealreadysetremainon. To probea filter for a match,
the samehashfunctionsareperformedandthe bit arrayis
checked: if all of thebits areset,thefilter matches.Bloom
filters only give falsepositives,not falsenegatives. Nodes
underneaththeroot arearrangedin a �	� treestructurewith
���
����

nodesat level
�

. Nodescommunicatewith theirchil-
dren,their parent,with the root of their group,andwith a
dynamicallychangingcollectionof extra-groupnodes.

Giventhis configuration,a searchoriginatingat node � ,
proceedsasfollows:

1. Consult the group summaryfilter of node � . If the
filter indicatesthat the object could exist in the tree,
iterateoverall possiblechildrenthatmight containthe
object(usingthechild filtersstoredat � ). If theobject
is foundin any child, thesearchconcludessuccessfully.

2. If the object is not found in the current tree, node� passesthe query to root(� ). Root(� ) conductsa
searchon its descendants(pruningthe part of the tree
alreadysearchedby � ).

3. If root(� ) fails to locatethe objectin its currenttree,
it sendstherequestto any groupswhosefilter indicates
thattheobjectcouldresidethere.

4. Eachgroupqueriedtakesoneof threeactions:

(a) If thecurrentgroupfilter indicatesthattheobject
cannotbe in the group,the grouprespondswith
thenew groupfilter.

(b) If the object isn’t in the group, respondwith a
NACK andsomesuggestedgroupsthatmight be
queried(that is, consult any other group sum-
mariespresentandfor any potentialhits, tell the
initiating groupof thepotentialhit).

(c) Returnthelocationof thenodethathastheobject
in thegroup.

3.2. Hierarchy Structure

We definethe ideal topology as a collection of groups
of nodes,where the nodesin a group are relatedbased
on low intra-grouplatency andvariedmean-time-to-failure
(MTTF), andheterogeneousbandwidth.Ourgoalis to come
ascloseto this ideal topologyaspossibleusingonly local
information.

Nodesbenefitfrom beingin a groupbecausethey share
informationaboutothergroups,sothatwhennode � in ���
receivesinformationabout ��� , that informationis accessi-
ble to all othernodesin ��� , because��� ’s root caches��� ’s
filter. Thesebenefitsincreaseasgroupsgrow in size.Nodes
also benefit from the existenceof other groups,because
transmittedgroup summariesserve as an efficient mecha-
nismto prunethesearchspace.

Largergroupsprovide moresharedinformation,but this
benefit is offset by the cost of keepingthe group reason-
ably balanced,maintaininggroupsummaries,andthe load
on theroot. Theroot’s workloadgrows with thesizeof the
groupas it will broker all groupsearches,maintaingroup
andchild summaries,control entry to the groupanddeter-
minethetime for partitioningof thegroup.

It is this last responsibility, determiningpartition time,
that makes the systemfeasible. When the root becomes
overloaded,it shedsload by partitioning the group. This
partitioning, in conjunctionwith respondingto requeststo
join the group, is what provides the dynamismand self-
configurabilityof thesystem.

Severalotherprojectshaveproposed“supernodes”asthe
solutionto theheterogeneityempiricallyextant in P2Psys-
tems. Saroiu et al. have shown that there are multiple,
distinct categoriesof nodes,rangingfrom always-onhigh-
bandwidthnodesto 56kmodemsonly connectedfor anhour
or less[20]. Hierarchiesform a goodextensionto the “su-
pernodes”currently proposedin several researchprojects
(e.g., Gnutella++[8], Brocade[26]). In theseprojects,there
are two levels of nodes:“supernodes”that do mostof the
routing,andregularnodes.A moregeneralheterogeneous



systemshouldusea heterogeneoustopology, with “better”
nodesliving closerto theroot of eachgroup.

3.3. Node Entry

1. Whena node � entersthe system,it immediatelybe-
comesits owngroup ��� . ��� formsalist of credentials,
including its bandwidthcapabilitiesandits numberof
publicfiles.

2. Node � contactsa well-known location,calleda “node
cacher”,to find othernodes� in thesystem(similar to
GnutellaandMojo Nation). This bootstrappingcom-
ponentonly keepsa list of other nodesthat have re-
cently contactedit, also trying to find othernodesin
the system. Becausethis list is the only stateit con-
tains,it canbeeasilyreplicated,andcanpopin andout
of existence.

3. Usingthenodes� thatthenew nodelearnsaboutfrom
the “node cacher,” � � forwardsits credentialsto the
groupscontaining��� � , by sendingmessagesto each� , which thenforwardthis informationto their roots.

4. Eachroot thatconsiders��� valid for entryrespondto��� with its credentials. ��� chooseswhich group to
join by picking the one with the bestcredentials. If
thisgroupagrees,� � thenmergeswith thisgroup.If it
refuses,� � triesanothergroup.

3.4. Node Exit

We have experimentedwith two designsfor keepingthe
descendantsof a nodepartof a groupwhena nodeexits. In
onemechanism,nodestry to maintainknowledgeof their
siblingsandgrandparents.This informationis sufficient to
electanew leaderto taketheplaceof themissingparentand
thencontactthe grandparentto inform it of the new topol-
ogy, including the summaryfilter change.The other, lazy
mechanismjustdropschildrenfrom agroupwhentheirpar-
entdies. This expendsfewer topologymessagesandis the
onewe usein thesimulation.

3.5. Summary Propagation

The root determinesthe groupfilter size
�

by usingthe
numberof objectsin thetreeto estimatehow many bits are
requiredto producea Bloom filter with approximatelyhalf
of the bits set [16]. The lowest leaf nodesgeneratefilters
of size

�
bits by hashingon their storedobjects,turningon

thesebits in theirfilters,andsendingtheirfiltersto theirpar-
ents.Theseinternalnodesalsoperformtheir hashingmod-
ulo
�

bits andlogically OR their filters togetherwith their
children’s filters, andpassthesefilters up the tree. Finally,

the root nodewill have the summaryof all of the objects
in the group,with ideally abouthalf of the bits in its filter
set(morethanhalf-full filters tendto give many falseposi-
tives).Thehierarchyof filtersalsomakesit likely thatmore
bits aresethigherup in thetreeand,conversely, thatfilters
aremoresparse— andthereforemoreaccurateandmore
compressiblewherebandwidthis less— assearcheswind
down thetree.This informationhierarchyis usedbothout-
sidethegroupto determinewhetherto contactthegroupat
all andwithin to betterdirectqueriesbetweennodes.

As nodesjoin andexpirefrom thenetwork,wehavethem
self-forminto a communication-andinformation-basedhi-
erarchybasedon local information. With global informa-
tion, nodeswould form themselvesinto idealgroups.With
local information,however, they will form themselvesinto
a closeapproximationof this ideal, forming a continuously
maintained“almost-ideal”state.

4. Grouping Analysis

We baseour groupingmodelon naturalsystemsthatex-
hibit self-configuration,driven by particle interactionsthat
lowerenergycostswhenanorganizedstateis realized.Evo-
lution models[2], non-equilibriumphasetransitions[24],
andcrystalfacetstructureformation[15] amongothers,all
show this behavior, and theseideashave beenwidely ap-
plied to a numberof economicsandengineeringproblems.

Wederiveanode’scostbasedonits bandwidthconsump-
tion, thougha refinementto includelatency would bea nat-
ural extensionof this method.To make groupingdecisions,
nodescomparetheir currentcostwith the costof being in
the othergroupsof which they areaware. If, by forming a
group,two nodescanlower thenumberof queriesthey re-
ceive andtheefficiency of thequeriesthey generate,thena
groupconfigurationis moredesirable.However, thereis an
activation cost to form a new group,comprisedof the one
time costof distributing filters andreorganizingthetree. If
groupsonly form whenthecostof theold stateexceedsthe
sumof the activationcostandthe new state’s cost,we can
encouragestability. Having groupsflit in andout of exis-
tenceis expensiveandis mitigatedby this activationcost.

As notedabove, theoverall costthateachnodeseeksto
minimizeis theweightedsumof thebandwidthcosts.Band-
width usageconsistsprimarily of queriesandfilter updates.
We assumenodeshave poor knowledgeof the systemout-
sidetheir own group,makingqueryestimatesdifficult. The
only reliablecomputationnodescanperformwith regardsto
thecostsoutlinedabovearethoselocal to thegroup,thatis,
specificto thefilters. We settheindividual groupfilter cost
to thefractionof bandwidthconsumedby filter messagesto
total bandwidth:!#"%$'&)(+*-,/.1032 $4&5(6 $'&)( ,7098�:<; $'&)(=?> $'&)(



where,7.#0@2 $'&)( is thenumberof filter messagessentoutover
thetime 6 $4&5( with averagesize ,70@8A:<; $4&5( , and

=B> $4&5(
is the

total bandwidthof thegroup.A moresophisticatedmethod
of estimatingthe filter messagerate involving a weighted
averagefavoringnear-timeeventswould beanaturalexten-
sionof thismodel.

Theestimateof thecombinedcostis then!C"D$4& �FE & � (F*HGI,/.1032 $'& � (6 $4& � (KJ ,/.1032 $4& � (6 $'& � (ML ,7098�:<; $'& �NE & � (=?> $'& � E & � (	O
Fromthis we canguessthattheactivationcostshouldgo asP * QSR�TVU $ 
 � E 
 � ( , 0@8A:<; $4& � E & � (W3X�Y Z\[@]'^V_ `'Z9a $'& �NE & � ( =B> $4& �NE & � ( O
where

W3X�Y Zb[@]'^c_ `4Z9a
is the averagetime to redistribute a filter.

Assumingthesefactorsare uniform for groupsof a given
size,theactivationcostsetsthecostscaleof thesystem.

We canalsodeducesimpleinformationabouttheeffec-
tivenessof searchesfrom thelocal groupinformation,such
asusingconnectivity information to determinethe quality
of searches.We definethesearchquality factorto bed 0 * � $ QeRATcU $4& � E & � (S( Jgf $'hji �/k i�i �jl UVQ $4& � E & � (S(
with � and f proportionalto the inverseof the numberof
nodesin thesystem.In thehighbandwidthlimit weset � to
zeroand f to theinverseof thetotal numberof nodesin the
system.Then

d 0 goesto onewhena groupis connectedto
theentiresystem.However, aswe mayexpectmany dupli-
catefiles, the advantageof having many membersin one’s
own groupandnot justconnectedmaybesignificant;this is
representedby non-zero� .

Thecombinedcostfunctionis thenm � Qen *poq! " Jsr�t d 0
with the additionalconstraintof a hardwall in bandwidth
usage,thatis !#"vuxw
where

wIy � for mostP2Psystemswherebandwidthshould
beallocatedfor file-transfer. Theparametersfor groupfor-
mation are then

o
, r , z * � t7f , and

w
. In the limit ofo|{ r , bandwidthconsumptionisminimized,while r {}o

(but reasonable
w
) allowsfor qualityof searchmaximization

constrainedby reasonablebandwidthconsumption.Smallz correspondsto an emphasison highly connectedgroups,
while large z shouldtendto favor largegroups.

4.1. Analysis of Summary Filters

We presenta brief analysisof the probability of a false
positivefor afile not in thesystem,or thefalsepositiverate.
As describedabove,eachroot nodein thesystemmaintains

anup-to-dateBloomfilter representingthefiles in its group.
In addition,root nodesacquiretheaggregatefilters of other
groups.Let

&
bethenumberof groupsin thesystem,

�
the

numberof distinctfiles pergroup, f thenumberof bits per
file usedand � the numberof independenthashfunctions
usedin theBloom filter datastructure.Assumingthathash
functionsare perfectly random,the theoreticalprobability
of afalsepositivefor afile not in thesystem,or thesystem’s
falsepositiverateis:&�~ �1� $ �1�g� t � f ( �<�)� ��� &�$ �1� Uc�)� $ ��� t�f (e( �
where � 0 * Uc�j� $ ��� t�f ( is the probability that a specific
bit in any of the aggregatebloom filters is still 0. Note
that given

&
, f and

�
, the numberof hashfunctions � can

be optimizedto minimize that falsepositive rate. Namely,
taking � * f $ 
 i���( yields an optimal falsepositive rateof,�0 *�&	$ � t ��( � *x&�$\� O � �V��� (@� .

The falsepositive rate derived above correspondsto a
theoreticalupperboundon thefractionof groupscontacted
per search.Sincethe factor

$ �1��� 0 ( � decreasesexponen-
tially with f , the numberof bits allocatedper file, for op-
timal numberof hashfunctions � , so doesthe fraction of
redundantsearchmessagesbetweengroups.

Onepotentialsourcefor concernin ourdesignis whether
the root nodeswill have the capacityto storeandkeepup-
datedfiltersof evenasmallfractionof therestof thesystem.
A rough calculationshows this is possible. If we assume
that nodeson averagestore100

� ���
files (as they do in

Gnutella[1]), andthataggregatefiltersarebuilt using � *����
bitsperfile (giving afalsepositiverateof

� � � ), with 1000
nodes,storingall of the filters takes

� �9�v� ��� � � � *�� �S�
bits
* � � � kilobytesof storageand1 million

� � �S� nodes
consumes128megabytes,still not anunreasonableamount
of storage.Of course,ashasbeennotedabove,rootsarenot
requiredto cacheall or even mostothergroups’filters, so
theactualamountstoredis only a fractionof thesevalues.

This hierarchicaluseof Bloom filters is different from
theattenuatedBloomfiltersusedin OceanStore[17, 10]. Its
usageof usinga combinedfilter to describea distinct sub-
group of neighboringnodesis similar the logical OR pre-
sentedhere. However, OceanStoredoesnot have the con-
ceptof hierarchiesof filters with increasingnumbersof bits
setor of representativegroupfilters.

4.2. Compressed Bloom Filters

Large sparseBloom Filters canbe greatlycompressed.
Theoretically, an � -bit filter canbecompressedto � P $ � (
bits where� is theprobabilitythata bit in thefilter is 0 andP $ � (I* �N� 
A��
 � ��� $ �#��� ( 
A��
 � �1��� is theentropy func-
tion. For sufficiently largefilters,arithmeticcodingguaran-
teescloseto optimal compression,so if � is small enough,



P $ � ( is muchsmallerthan1, andsignificantsavings in the
transmissionsizecanbeachieved[14].

Thebulk of theupdatemessagesconsistof sparsefilters.
In particular, bothfilters of thenodesin the lower levelsof
the treehierarchyof a groupandupdatefilters aresparse.
Updatesto filterscanbesentasdeltas:indicesof whichbits
to turn on or off, insteadof sendingthe whole filter. For
a relatively balancedtreea nodeat level �+�p� hasapprox-
imately

� Y ���<� �)  8 � ���¡ subnodes,thereforeassumingthat
eachnodehasroughlythesamenumberof distinctfiles, the
sparsenessof thechild filters of a nodein thetreeincreases
exponentiallywith thelevel of thenodein thetree.

We havepresenteda brief descriptionof our P2Psystem
which useshierarchicalgroupsto prunesearchesandtake
advantageof nodeheterogeneityto improvesystemstability.
Now we returnto looking at reliability in Chordandin our
system.

5. Reliability in Chord

We evaluatedChordby determininghow it mappedinto
our threecharacteristicsof decentralizedsystemreliability
andby modifying a pre-existing simulator[21] to test for
thesecharacteristics.

Chord, in its current form, supportsprobe (existence)
queries:if an objectexists in the system,it (hopefully) re-
turns a pointer to the nodestoring that object. Although
the primary Chordpapers[23, 6] do not explicitly discuss
nodecharacteristics,it is designedto run on aP2Pnetwork,
inferringthatthenodesexhibit thepreviouslyoutlinedchar-
acteristics[20, 18, 1, 25], in particular, that averagenode
lifetime is on the order of one to several hours. As pre-
viously mentioned,the objectschosento queryarechosen
randomlyfrom thosecurrentlyexisting on livenodes.

We modifieda Chordsimulatorto count the numberof
messagesusedfor search,object relocation,andstabiliza-
tion. The stabilizationprocessprovides a mechanismfor
nodesto confirm they arethe predecessorsof their succes-
sorsandto repairtheir fingerandsuccessortables.Thisop-
erationkeepsthering intactandthemorefrequentlynodes
join andexit, themorefrequentlystabilize needsto be
run to keepfailurerateslevel.

Weshow theresultsfrom two setsof experimentsin Fig-
ures1 and2. Both experimentswererun with 1000nodes
performingonesearchper minuteon average(all average
eventsfor the Chord simulator follow a Poissondistribu-
tion). Thenumberof fingerswas40andthenumberof suc-
cessorswas20. Theaveragemessagedelayfor Chordand
for hierarchicalgroupswas50 milliseconds. Both figures
averagefive separateexperiments(errorbarswere omitted
from Figure2 for visualclarity). Figure1 showsthegradual
improvementin the failed lookup rateas the averagelife-
time increasesfrom 15 minutesto 3 hours. The stabilize
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Figure 2. Effect of rate at whic h stabilizing pro-
cess is run in Chor d.

procedurerunsonceevery 30 secondspernodeon average,
updatingtwo pointersperrun: thesuccessorandarandomly
chosenothernodefromthesuccessortable,with nearbysuc-
cessorschosenwith higherprobability. This appearsto be
the default usedin mostof the experimentsin the Techni-
cal Report [23], except the one on lookup failure, where
thesimulatorupdatesall fingerentrieson every invocation.
Eachexperimentranfor 3 or morehoursof virtual time;we
found that shorterexperimentsyielded resultswith higher
variability.

Figure2 showsChordastherateof stabilizationchanges
with averagelifetimes of 45 minutesand120 minutes. In-
creasingmessageratesto £¤� O � � messagesper nodeper
secondallowsa reductionin failedlookupsto

u¥� O ¦ � .
Thismeansfrom areliability standpointthatreachingthe

levelsof availability expectedby mostfile systemusers,say



�¨§�§ O §�§ %, would bedifficult in Chordunless(a) all nodes
exhibit higherthanpreviously observedlevelsof uptimeor
(b) all nodeshave the bandwidthcapacityto run stabilize
many timespersecond.Thepreferentialavailability of some
dataof othersis impossiblein Chorddueto its DHT design;
of course,usinga higher layer for redundancy would par-
tially amelioratetheavailability problem(asCFSdoes[6]).

6. Reliability in Hierarchical Groups

We have designedand implementeda simulatorproto-
type whosenodesfollow the stepsoutlined in Sections3
and4 to form groupsandperformsearches.Although we
ran testswith larger numbersof nodes,we presentresults
with 1000nodesup on averageandwith nodesperforming
onesearchper minuteon average. Becausethe parameter
spacefor hierarchicalgroupsis large (therearemorethan
20 separateparametersoncewe includedifferentpossible
network configurations),wehavebeenlimited in thevariety
of experimentswecouldexamineprior to this publication.

Theprimarysimplificationmadein thecurrentsimulator
is that groupsareformedonly virtually. That is, nodesdo
not walk a branchof the treeandreacha final destination;
instead,they all exist directly underthe root. Thedeathof
a node,however, dislocatesnodesfollowing a distribution
which is baseduponfailureof nodesin a treeshapedtopol-
ogy with


���
 � � nodesat level
�

, suchthat approximately
half of thefailuresareassumedto beleaf failures,thenhalf
of thoseremainingparentswith onechild,ansoon. Thishas
preventedusfrom evaluatingtheeffectivenessof intragroup
filtersandseeingthebenefitsresultingfrom thecompressed
bloomfiltersat thebottomof thetree.
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Figure 3. Effect of varying average lif etimes in
Hierarchical Groups.

In our simulationswe set
o©*ª�%« r * � « and z * � t � ,

with a maximumfilter-messagebandwidthusage
w�*M� O �

and no activation cost. We hopeto emphasizequality of
searchesover bandwidthusagebeyond the hardlimit of

w
.

In thelong-lifetimelimit (averagenodeuptimesbeyondten
hours)within 10minutesa1000nodesystemstabilizedto a
betterthana 0.1 % searchfailuresystemrate. We alsoran
four simulationsperaveragelifetime usingauniformdistri-
bution of nodeswith averagelifetimesbetween15 minutes
and4 hoursand56k modem-like bandwidths.Filter sizes
weresetto 5 bits perfile to minimizebandwidthconsump-
tion for filters. One node-cacherwas used,disseminating
five nodesto every joining node. Theseresultsareshown
in Figure3. We seea much lower failure rateandhigher
messagerate thanChord for similar nodelifetimes, doing
betterthan1% even with averagelifetimes of 15 minutes.
The large fluctuationof resultsis most likely due to digi-
tization effectsfrom small nodenumbernear0.1% failure
rates.Comparingto Figure2, we seethata similar number
of messagesarerequiredfor both simulatorsto get similar
failureratesat 45 minutes.However, thebulk of thesemes-
sagesare group join queries,followed by filter messages
and thenall others(search,other intra-group),and that of
thesethe vastmajority aregeneratedby nodefailure lead-
ing to child nodesregrouping.In particular, a �	� treeleads
to deathscreatingorder


���
 � QSR�TVU $4&5( t � timesthenumberof
nodesdisseminatedby the node-cachermessages.For the
simulationswith averagelifetimesof 45minutes,thiscorre-
spondsto £ � ��� msg/min.Weexpectthatwideningthetree
or addinggrandparentto child links asdiscussedpreviously
shouldmitigatethis cost.Theextra links would requiretwo
additionalmessagesper join and � additionalmessagesper
death,which is £M� �7� msg/minfor an averagelifetime of
45 minutesand1000nodes.Then,the filter messagerates
asshown in Figure3 shoulddominate.

Wealsoransimulationswith asubsetof nodeswith high-
bandwidthandlong-uptimes,asmightbeexpectedin anac-
tual network, to look for the effects of thesenodesin the
trees.They weregiven10 timesthebandwidthandlifetime
of the regularnodes.However, with only 5% of nodesthe
high-bandwidthtype,we seelittle improvementat thelevel
of 1000nodes,thoughlargersystemsmaydemonstratethis
moreeffectively. Furthermore,asgrouprearrangementand
root replacementhaveyet to beimplemented,thebenefitof
theseextranodesmaybemarginal.

By introducingtheserefinementsandin additionconsid-
ering sparsefilter compression,we can make the limiting
factor for group overheadfilter messages,and reducethe
currentbandwidthconsumptionby filtersby afactorof 80%
for groupsof size 200 and 96% for groupsof size 1000.
Thuswe canscalefrom a maximumgroupsizeof 200 in
our simulationfor

wC*�� O � andMTTF of 45 minutesto well
beyondthatfor evensmaller

w
. It seemsthatrootnodeover-

usagewill becomethe limiting factorfor large numbersof
nodes.As shown earlier, this will allow for scalingthesys-



temto order � ��¬ nodes.

7. Conclusion

This papermakes threecontributions. First, we exam-
ine how the implicit goalsandassumptionsabouta partic-
ular decentralizedsystemaffect measuresof its reliability.
Second,we introduceaself-organizinghierarchically-based
P2Psystem.Third, we take theassumptionsimplicit in cur-
rent P2Pfilesharingsystemsandevaluatethe reliability of
Chordandthehierarchicalgroupingsystem.In simulation
experiments,both systemsperform adequatelyas long as
thereexist a

� O �­�p®j� tolerancefor failure undernormal
conditions.This failurerateis probablyacceptablefor afile
sharingsituationbut wouldneedto betamperedby ahigher-
levelapplicationthatwouldprovideredundancy in morerig-
orousfile system-like scenarios.Both systemsutilize self-
configuration— stabilize andlocal-information-based
groupformation— to maintainanadequatedegreeof reli-
ability evenunderhigh fluctuation.In particular, our model
enablesthe formationof local pointsof stability andhigh
bandwidth,andwe show how self-configurationcancreate
many local foci to which therestof themoredynamicsys-
temcanattach.

Wewould liketo thankM. Mitzenmacherfor helpfuldis-
cussions.
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