
Abstract

Extensible operating systems allow applications to
modify kernel behavior by providing mechanisms for
application code to run in the kernel address space. Exten-
sibility enables a system to efficiently support a broader
class of applications than is currently supported. This
paper discusses the key challenge in making extensible
systems practical: determining which parts of the system
need to be extended and how. The determination of which
parts of the system need to be extended requires self-moni-
toring, capturing a significant quantity of data about the
performance of the system. Determining how to extend the
system requires self-adaptation. In this paper, we describe
how an extensible operating system (VINO) can use in situ
simulation to explore the efficacy of policy changes. This
automatic exploration is applicable to other extensible
operating systems and can make these systems self-adapt-
ing to workload demands.

1 Introduction

Today’s extensible operating systems allow applica-
tions to modify kernel behavior by providing mechanisms
for application code to run in the kernel address space. The
advantage of this approach is that it provides improved
application flexibility and performance; the disadvantages
are that buggy or malicious code can jeopardize the integ-
rity of the kernel and a great deal of work is left to the
application or application designer. It has been demon-
strated that it is feasible to use a few simple mechanisms,
such as software fault isolation and transactions, to protect
the kernel from errant extensions [15]. However, it is not
well understood how to identify those modules most criti-
cal to an application’s performance and how to replace or
modify them to better meet the application’s needs.

The ability for applications to modify the kernel is the
key to extensible operating systems, but it is also its criti-
cal drawback. The power derived from enabling applica-
tions to control their own resource allocation and kernel
policy can lead to improved performance, increased func-
tionality, or better system integration, but it imposes a tre-
mendous burden on the application developer. The
application designer must determine which kernel mod-

ules are critical to an application’s performance and what
modifications to those modules are required.

Determining which parts of the kernel are critical to an
application’s performance requires an in-depth under-
standing of the demands that the application places on the
operating system. In some application areas, such as data-
base management, these demands are well understood
[16]. However, in other application domains or in the case
of emerging applications, these demands are not well-
understood, and there is no convenient method of obtain-
ing this information.

2 The Need for Data

One of the lessons learned from every major software
development project is that there is never enough data
about how the system is operating and what is going
wrong. Saltzer reminds designers that measurement is
more trustworthy than intuition and can reveal problems
that users have not yet detected. He encourages designers
to focus on understanding the inner workings of the sys-
tem, rather than relying on the response to changes in
workload [13]. Lucas conveys a similar message encour-
aging system designers to regularly run benchmarks and
build in as much instrumentation as possible [11]. While
many systems of the 70’s heeded these words of wisdom
and built in significant performance evaluation tools [8],
today’s systems show a surprising dearth of native mea-
surement tools.

The 1980’s produced a noticeable absence of well-
instrumented systems. Today’s common research plat-
form, UNIX, initially had very little in the way of perfor-
mance measurement tools, but now has a standard set of
utilities that can provide constant monitoring of system
state (e.g., netstat(1), iostat(8), vmstat(8), rstat(1),
nfsstat(1), pstat(8), systat(1) [4,5]). These utilities were
designed for their output to be read by humans, not pro-
cessed automatically. However, any system with such a
collection of performance monitoring tools could benefit
from the off-line analysis of regularly captured output
from them.

A second source of readily available data comes from
the hardware itself. Several of today’s microprocessors
contain one or more instrumentation counters that provide
invaluable data for performance analysis. For example, the
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Pentium processor family contains a 64-bit cycle counter
and two 40-bit counters that can be configured to count
any one of a number of hardware events such as TLB
misses, cache misses, and segment register loads [10]. The
Sparc [17] and Alpha [6] microprocessors also have per-
formance counters, although neither has as extensive a set
as those available on Pentium processors. Regular moni-
toring and collection from these hardware counters can
also provide a source of information and insight into sys-
tem behavior.

3 Self-Monitoring

This section introduces methods for making an operat-
ing system self-monitoring. The details are presented in
the context of the VINO operating system, on which a pro-
totype self-adapting system is being built. However, the
principles and approaches are applicable to any number of
systems that support extensibility (e.g., SPIN [2]).

VINO is an extensible operating system designed to
provide resource-intensive applications greater control
over resource management. VINO supports the download-
ing of kernel extensions (grafts), which are written in C++
and protected using software fault isolation. To facilitate
graceful recovery from an extension failure, VINO runs
each invocation of an extension in the context of a transac-
tion. If the invocation fails or must be aborted (e.g.,
because it is monopolizing resources), the transaction
mechanism undoes all actions taken by the invocation of
the extension [15].

The VINO kernel is constructed from a collection of
objects and consists of an inner kernel and a set of
resources. VINO provides two different modes of extensi-
bility. First, a process can replace the implementation of a
member function (method) on an object; this type of
extension is used to override default policies, such as
cache replacement or read-ahead. Second, a process can
register a handler for a given event in the kernel (e.g., the
establishment of a connection on a particular TCP port).
Extensions of this type are used to construct new kernel-
based services such as HTTP and NFS servers.

The VINO approach to self-monitoring and adaptabil-
ity takes advantage of the extensible architecture of the
VINO system providing the following features:

1. Continuous monitoring of the system to
construct a database of performance statistics.

2. Correlation of the database by process, process
type, and process group.

3. Collection of traces and logs of process activity.

4. Deriving heuristics and algorithms to improve
performance for the observed patterns.

5. In situ simulation of new algorithms using logs
and traces.

6. Adapting the system according to results of sim-
ulation.

These steps are described in more detail in the following
sections.

3.1 Monitoring

Each VINO subsystem includes a statistics module that
maintains counts of all the important events handled by the
subsystem. For example, the transaction system records
the number of transactions begun, committed, and aborted,
as well as the number of nested transactions begun, com-
mitted, and aborted. The locking system maintains statis-
tics about the number of lock requests and the time to
obtain and release locks. Each module in the system
records the statistics relevant to the module and provides
interfaces to access these statistics.

The first step in making VINO self-monitoring is to
periodically record the statistics for each of the kernel’s
modules and accumulate a database of performance activ-
ity. In VINO, this mechanism can be provided by con-
structing an event graft (one that responds to a timer event)
that polls the kernel modules and records the statistics it
collects. We can factor out the overhead of the measure-
ment thread itself by running the measurement graft in its
own thread, and using our normal thread accounting pro-
cedures.

3.2 Compiler Profile Output

The second source of system performance information
comes from the compiler. Harvard’s HUBE project has
produced a version of the SUIF compilation system [9]
that collects detailed profiling information. By compiling
VINO using the SUIF compiler, we can collect detailed
statistics concerning code-path coverage and branch pre-
diction accuracy in the kernel. These statistics augment
those collected with the measurement thread described in
the previous section.

3.3 Tracing and Logging

The measurement thread output and compiler profile
output represent static data that characterizes the behavior
of the system. The next task is to capture dynamic data
about the behavior of the system. We use VINO’s grafting
architecture to facilitate the collection of this dynamic
data.

We attach simple grafts to the inputs and outputs of all
modules in the system. On input methods, these grafts



record the incoming request stream and then pass the
requests to the original destination module. This record of
incoming requests, called a trace, captures the workload to
a given module and is used to drive that module or its
replacement during simulation. Similarly, grafts placed on
output methods of a module record the outgoing messages
or data before passing them along to the next module. This
record of outgoing results, called a log, captures the results
of a particular module and is used to compare the efficacy
of a number of different modules or policy decisions
within the module. The set of traces and logs are then
available for simulation.

3.4 Simulation

The combination of statically gathered data, traces, and
logs creates a complete picture of what the system is being
asked to do. The next step is to evaluate the currently
implemented policy and determine its efficacy and the
potential for other possible policies.

The VINO grafting mechanism provides the ability to
perform in situ simulation. This is a significant improve-
ment over conventional simulation methodology where
entirely separate simulation systems are typically used to
evaluate design decisions. Since VINO provides the mech-
anism to replace a kernel module on a per-process basis, a
simulation process can simply replace the module under
investigation with an alternate implementation, rerun a
trace, and record the result log that would be produced if
the system used the alternate implementation. The result
logs from multiple simulation runs are then compared to
determine which of the simulations produced the best
results.

Most modules inside the VINO kernel can be instanti-
ated as simulation modules. Simulation modules are iden-
tical to real modules except that they do not modify the
global state. Therefore, simulations can run without affect-
ing the rest of the system.   Since the simulators and real
modules share much of the code, we do not increase code
size substantially and our results are realistic. Similar tech-
nology has been employed in the design and analysis of
file systems, with encouraging results [3].

Modules that support simulation must consist of two
logical sets of states: the first set is writable by both the
real and simulation instances of the module and is dupli-
cated for each instance of such modules, the second set is
writable only by the real instance of the module because
the states are shared system-wide.   Returning to the exam-
ple of a buffer cache module, meta-data such as buffer
headers falls into the first category, while the actual data
falls in the second.

The simulation modules run without affecting the rest
of the system and are not affected by other activities in the

system.   This allows the simulations to be run reproduc-
ibly under many different configurations.

4 Self-Adaptation

The four components described in Section 3 provide
the framework for building a self-monitoring and adapt-
able operating system. The statistics gathered through self-
monitoring provide invaluable feedback for identifying
performance-critical portions of the kernel. More impor-
tantly, this data is gathered in the context of actual work-
loads, so it reflects the demands of the workload in
practice, not the demands under some artificial bench-
marking workload. Because data is collected via grafts, we
have access to a low-level interface that provides more
detailed data than is typically available to user-level utili-
ties.

The first step in making a system self-modifying is to
endow it with the proper analytic tools to allow it to detect
unusual or problematic occurrences. We use two different
types of analysis to make system changes. Online analysis
takes advantage of the data as it is being collected while
off-line analysis consists of a post-processing phase. In
general, the off-line system is responsible for monitoring
long-term behavior of the system, identifying common
and uncommon profiles, suggesting thresholds to the
online system, and evaluating the feasibility of system
changes. The online system is responsible for monitoring
the current state of the system, posing “questions” to the
off-line system, and identifying trouble spots as they arise.
As we will show in the following sections, the online and
off-line systems work together, each gathering data or per-
forming an analysis task best suited to that system.

4.1 Off-line Analysis

As described in Section 3.1, one part of our measure-
ment system is a kernel thread that polls each of the sub-
systems at regular intervals and records the state of the
performance counters. After each collection, this data is
written to a system-wide database of statistics for later
processing. The off-line analysis phase uses this database
and specific queries from the online system as its input.
The off-line analysis system consists of a collection of
user-level processes that process system data to accom-
plish two goals: construct a characterization of the system
under normal behavior and detect anomalous behavior and
use that anomalous behavior to suggest performance
thresholds to the online system. The latter goal depends
significantly on the former goal: in order to identify anom-
alous behavior, we must have an accurate view of normal
behavior.



Let us consider the selection of the measurement inter-
val as an example of how the off-line system works and
how it can provide useful information to the online system
to change how the system behaves. Our normal system
characterization is based on time series analyses of
resource utilizations. For each resource (e.g., memory,
disk, network, processor) we maintain utilization statistics.
Initially, the in-kernel thread collects utilization statistics
every 100 ms. Periodically (at least once per hour), the
data are collected each millisecond. All the data are writ-
ten to the system wide database. Each night, the off-line
system performs variance analysis. First, it examines the
one-ms data and determines if the default measurement
interval is sufficiently short (i.e., that it does not fail to
capture important utilization patterns). If the current mea-
surement interval is determined to be appropriate, the off-
line system performs variance analysis on the normal
intervals, to determine if the measurement interval can be
increased without loss of information. For each resource,
the off-line system feeds this interval information back to
the measurement thread, which modifies its behavior
according to the recommendation of the off-line system. In
this way, the online and off-line systems interact to allow
the measurement thread to run as infrequently as possible
without loss of important information.

The next task of the off-line system is to examine the
day’s resource usage profile, identifying any periods of
anomalous behavior and informing the online system of
suggested thresholds for resource utilization. We have ana-
lyzed the behavior of the systems that comprise our central
computing facility and found that, in general, system
usage follows a regular pattern over the course of a week
[12]. Therefore, in analyzing our system profiles, we com-
pare a day’s profile to reference profiles constructed from
profiles of the previous day, the same day of the previous
week, and the same day of the previous month. We use
these three profiles to generate a reference profile for the
day and then compare the daily profile to the reference
profile, looking for periods of abnormal utilization. If we
detect abnormally high utilization, we trigger detailed
analysis.

In order to perform detailed profile analysis, we decom-
pose the daily profile into per-process profiles. Using these
per-process profiles, we determine if the anomaly is
caused by a single process, a small group of processes, or
by an overall increase in system load. All the results of the
profile analysis are then fed back into the off-line system,
which derives expected loads and thresholds for the next
day. The expected loads are based on the analysis of the
current day’s profile and the previous week’s and month’s
profile. The thresholds are based on the observed variances
in the reference profiles. Finally, the next day’s thresholds
and expected profiles are fed back into the online system.

4.2 Online Analysis

The online system is responsible for monitoring the
instantaneous resource utilization and the rate of change in
utilization. In addition, it maintains efficiency statistics
such as: hit rates for all the cached objects in the system,
contention rates in the locking system, disk queue lengths,
and voluntary and involuntary context switch counts.
Using the expected behavior and thresholds presented by
the off-line system, the online system is responsible for
detecting “red flag” conditions; cases where resource utili-
zation is outside the expected variance and still climbing.
When this condition is detected, the online system has two
options: it can select an adaptation heuristic or it can
install the appropriate trace-generating graft for the
resource in question, producing data for the off-line sys-
tem.

The former approach is effective when, as system
designers, we have an a priori

understanding of the types of algorithmic changes that
might be beneficial. These techniques are similar to other
dynamic operating system algorithms, such as multi-level
feedback scheduling and working set virtual memory man-
agement. We discuss these heuristics in Section 5.

The latter approach is the method of last resort, in
which we make an effort to develop new algorithms to
improve the performance of a particular workload. When
the system detects a red-flag condition and has no heuristic
to improve it, it generates a trace of the poorly performing
module and then signals the off-line system to analyze the
trace. The off-line system computes the optimal behavior
of the system under the imposed load and compares the
optimal behavior to the actual behavior. If the actual
behavior is within an acceptable margin of the optimal,
then the off-line system concludes that the module in ques-
tion cannot significantly improve performance alone, and
it invokes detailed system analysis to identify other sus-
pect modules.

If, however, the current algorithm is significantly less
effective than is optimally possible, our goal is for the off-
line system to suggest new heuristics to the online system.
Not surprisingly, this is one of the key areas for future
research in the development of this system.

5 Adaptation Heuristics

The typical goal of adaptation is to decrease the latency
of an application. As a rule, latency is caused by an appli-
cation waiting for the availability of some resource. Wait-
ing can be caused by the application blocking on user or
other input, which is outside the control of the system, or it
can be caused by the application blocking on a resource
that is unavailable due to an operating system policy deci-



sion. We call the former form of blocking compulsory and
the latter form needless. The goal of adaptation heuristics
is to reduce needless blocking.

In the rest of this section we discuss some causes of
needless blocking, heuristics for identifying the causes,
and methods for decreasing the amount of needless block-
ing in the system.

5.1 Paging

Techniques for dealing with high paging overhead have
been known for decades. In general, if an application is
paging, it is assumed that the working set of the applica-
tion is larger than the number of physical pages assigned
to it and that it should be given more physical memory.
When allocating additional pages to one application
reduces the number of pages for some other application
below its working set size, some application is swapped
out in order to increase the amount of physical memory
available.

Similar techniques can be used in our environment. If
an application is paging heavily, we generate a trace of the
pages faulted in by the application and the value of the
program counter for each page fault. We can collect more
detailed traces by unmapping all pages in the address
space, generating a full trace of page accesses. Although
this technique adds considerable overhead, it provides the
complete page access history.

Once we have page access traces, we look for simple,
well-known patterns: linear memory traversal or correla-
tion between function calls and page references. In the
former case, we perform simple prefetching, while in the
latter case, we perform slightly more complex prefetching,
faulting in appropriate data pages when the application
enters the function for which the data will be referenced.

5.2 Disk Wait

We can make similar system modifications to alleviate
disk waiting. When we detect an application that is spend-
ing time waiting for disk I/O, we generate the trace of disk
block requests, capturing both those that were satisfied in
the cache and those that required I/O operations. As in the
case of page faults, we then look for common patterns.

If the application is performing a linear pass over a file
(which is the most common case [1]), our normal read-
ahead policy should already be performing aggressive
read-ahead. If the application is spending less time pro-
cessing each page than it takes the system to read the page
from disk, read-ahead can reduce, but not eliminate, the
amount of time the application spends waiting for the disk.
In this case, we have found a compulsory component of
the disk waiting time that can not be removed.

If the application appears to be randomly accessing the
file, we compare the traces of multiple runs of the applica-
tion to determine if the blocks of the file are accessed in a
repeatable order. If so, we graft an application-specific
read-ahead policy that knows this ordering. Other patterns
for which we can easily construct application-specific
read-ahead policies include strided reads, common for sci-
entific applications, and clustered reads, where a seek is
followed by a fixed-size sequential read.

5.3 CPU-Bound Processes

Even if an application is simply CPU bound, there are
techniques we can use to improve its performance. Using
SUIF, we can gather information about branch mispredic-
tions. With on-chip counters, such as those on the Pen-
tium, we can gather information about L1 cache misses,
code and data TLB misses, and branch target buffer hits
and misses.

If we find that the application is suffering from a large
number of branch mispredictions or poor code layout, we
request recompilation of the poorly performing kernel
functions in the context of the particular application [14].
We then install this recompiled kernel segment as an appli-
cation-specific graft.

5.4 Interrupt Latency

While the time spent waiting for an interrupt to take
place is compulsory, the time between the occurrence of
the interrupt and when the application runs is needless.
Previous studies of latency point out that slow systems
irritate users [7]. By reducing this latency we can improve
not only overall application performance, but also overall
user satisfaction.

In order to measure this latency, we time-stamp inter-
rupts as they arrive, and compute the difference between
this time and when the process to which the interrupt is
delivered is scheduled. Our goal is to detect interrupt han-
dling latencies or variance across latencies that are percep-
tible to users. When we detect such cases, we try to
determine the cause and either modify the system behavior
appropriately or notify the application of potential areas
for improvement.

For example, if a process blocks too long behind higher
priority processes, we recommend raising the application’s
priority. If we find that the process typically faults imme-
diately upon being scheduled, this is a sign that the event
handling code is being paged out. In this case, we pin the
code pages of the event handler into memory. If the pro-
cess is not yet ready for the event (i.e., a mouse interrupt
arrives before the process performs a select() on the mouse



device), we recommend that the application be restruc-
tured to check for events more frequently.

5.5 Lock Contention

If a lock is highly contended (i.e., the queue of pro-
cesses waiting for the lock is long), there is a problem with
the structure of the applications using the lock. When we
detect processes waiting on unusually long lock queues,
we decrease the granularity of the locked resource (if pos-
sible), to reduce contention. Note that this reduction in
granularity is frequently possible when the resource in
question is a kernel resource whose structure we under-
stand, but may not be possible if the resource is an applica-
tion resource. In the latter case, we signal the application
that contention on the particular resource is abnormally
high.

6 Summary

In summary, we can construct a framework in which a
system becomes self-monitoring, so that it may adapt to
changes in the workload it supports, providing improved
service and functionality. We accomplish this by:

1. grafting the necessary components into the
VINO system to make it self monitoring,

2. designing and developing a system to collect and
analyze performance data,

3. developing heuristics and algorithms for adapt-
ing the system to changes in workload, and

4. using in situ simulation to compare competing
policy implementations.
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