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Abstract

Provenance describes how an object came to be in its
present state. Intelligence dossiers, medical records and
corporate financial reports capture provenance informa-
tion. Many of these applications call for security, but
existing security models are not up to the task.

Provenance is a causality graph with annotations. The
causality graph connects the various participating objects
describing the process that produced an object’s present
state. Each node represents an object and each edge rep-
resents a relationship between two objects. This graph
is an immutable directed acyclic graph (DAG). Existing
security models do not apply to DAGs nor do they eas-
ily extend to DAGs. Any model to control access to the
structure of the graph must integrate with existing secu-
rity models for the objects. We need to develop an access
control model tailored to provenance and study how it
interacts with existing access control models. This paper
frames the problem and identifies issues requiring further
research.

1 Introduction

Provenance is meta-data that represents the ancestry of
an object. In theory, provenance begins at the Big Bang
and describes all operations that brought an object to its
current state. In practice, we lack full provenance from
the beginning of time, so we speak about provenance in
terms of a specified starting state and a collection of tran-
sitions through intermediary states that eventually bring
it to the state being discussed.

Provenance exists in many applications today and is
fundamental to many of them. For example, the ac-
counting transactions reconciled to form a financial re-
port, a lab notebook, the sources supporting an intelli-
gence dossier and patient logs from a medical trial are all
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comprised of provenance. Typically, each of these exam-
ples supports a process whose end result is a concise re-
port. Provenance tracking systems capture the processes
leading to these concise reports. The benefits are nu-
merous. Provenance allows scientists to express the pro-
cesses used to produce results completely and accurately.
Executives gain a more transparent view of their orga-
nization’s financial controls, and investigators are better
able to audit those records if they can track the process.

Provenance is often sensitive. Many of the applica-
tions described above operate on sensitive data. Com-
panies maintain protections on much of their financial
accounting process. Double blind medical trials prevent
the doctor from knowing whether a participant is receiv-
ing the investigational treatment or is part of the con-
trol group. The intelligence community often guards its
sources and methods even more securely than the data
they produce.

Provenance differs from data and most other meta-
data in that it forms a directed acyclic graph (DAG).
It is a graph where each node represents an entity and
each edge represents a causal relationship between two
entities. Examples of an entity include a file on a file-
system, a process, a doctor or an experiment. Relation-
ships capture information flow from inputs to outputs.
Since time always moves forward, cycles are nonsensi-
cal. We may not know whether the chicken preceded the
egg but clearly one came first. Provenance is not a tree
because an entity may have multiple inputs.

Unlike most data, provenance is immutable. It records
history, and history does not change. While provenance
describes data — which is presumably changing — the
provenance itself is immutable. Commentary on history
is often valuable. In addition to the causal graph we have
attributes that describe the nodes and edges. Such entities
usually have names and other properties. Relationships
may also have attributes. Attributes are key value pairs
that describe a node or an edge. Annotations may be
added but the relationships should not change. This jux-
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Figure 1: Cathy’s performance review. Susan emails
Alice and Bob requesting feedback for Cathy’s review.
Alice and Bob’s input are combined to form the review.
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Figure 2: Cathy’s college application. Cathy emails Al
and Betty requesting a letter of recommendation from
each of them. They send their letters, which are com-
bined to form Cathy’s application.

taposition of mutable data with an immutable description
leads to interesting challenges in designing an appropri-
ate security model.

Provenance is valuable because it allows us to track a
result back to its sources. Regardless of how this ancestry
is recorded, each relationship reveals information about
both parties in the relationship. As we show later, data
ancestry can be more or less sensitive than the data itself.
Thus provenance security cannot be trivially subsumed
by existing security systems.

The remainder of this paper is organized as follows.
Section 2 explains why provenance needs its own secu-
rity model. We then describe the components of a prove-
nance security model in Section 3 and the challenges of
interactions between provenance security and data secu-
rity are discussed in Section 4. Section 5 presents related
work followed by our conclusions in Section 6.

2 Provenance needs its own security model

Provenance has particular characteristics that differenti-
ate it from data typically considered by secure systems.
We use the term fraditional data to mean data tradition-
ally considered by secure systems. This includes data
stored in file-systems and databases. The sensitivity of
provenance and the data it describes may be different.
Specifically, it is possible for the data to be more sen-
sitive than the provenance or vice versa. The following
examples illustrate this.

An employee’s performance review is an example
where the provenance is more sensitive than the data (see
Figure 1). Such a performance review provides feedback
on an employee’s work over the previous year. The data
in this case is the performance review document. Gener-
ally employees are permitted — and usually encouraged
— to read their performance review. Thus they are able

to read the data. However, the employee is not told who
had input in writing the review. Thus the employee can
see the data but not all of the provenance of that data.

Letters of recommendation — such as those provided
in applications to universities — are an example where
the data is more sensitive than the provenance (see Fig-
ure 2). Students often select who will write letters on
their behalf. In some cases the student may even receive
the sealed envelope and send it. Thus the student has
access to their application’s provenance, including who
wrote the letter, when it was sent and where it was sent.
Students generally cannot read the contents of the letter.
In this case, the data is more sensitive than the prove-
nance of that data.

Clearly we need different security settings for the data
and the provenance. Our initial idea was to treat prove-
nance just like traditional data. As we shall see, that does
not work. Our next thought was to use two instances of
traditional security models: one for the data and one for
the provenance. This too appears to be problematic.

Provenance is poorly served by traditional data se-
curity models, because they focus on individual data
items whereas provenance focuses on the relationships
between those items. We need to secure the edges in
the graph. These relationships form a graph and it is the
structure of that graph that is our focus.

Since provenance forms a DAG, our model does not
need to deal with cyclic graphs. However, models that
are limited to trees are probably not expressive enough.
Provenance queries include path traversal both up and
down the graph. One node can have multiple ancestors
and multiple descendants. To represent this in a tree, we
would need one tree to store the ancestors and another
for the descendants. Maintaining duplicate copies of all
the data and keeping permissions consistent across both
copies is fraught with difficulty. As a result there is no



obvious way to adapt existing tree based models for use
with provenance.

One option would be to translate the DAG into a tree
by copying the subgraphs rather than having junctions
(see Figure 3 and Figure 4). Thus if Alice and Bob pro-
vide data to Cathy, make two copies of Cathy, one as a
child of Alice and one as a child of Bob. This would in-
troduce exponential growth, which is incompatible with
the desire for a long running recording of history. The
security implications are also problematic as the security
system would need to consider the various copies as one
object.

Since provenance is not a tree, a rooted path is not a
unique identifier for a node. Our experience with prove-
nance has shown that paths are important. While paths
are a collection of individual edges, it is not clear if they
can be secured as such collections or if more complex
capabilities are needed.

Another distinguishing feature of provenance is that
it is immutable. Additions are likely. In the medical
records context, a patient we have not seen in a long time
may undergo additional treatment. Annotations can also
be added later. These additions are valid. It is not valid to
modify the treatments a patient underwent after the fact.
We should be able to take advantage of the immutable
nature of provenance when designing the security model.

Provenance is often created as a side-effect whereas
most models assume that the data is created explicitly
by the user. While it is not clear what impact, if any,
this has on the model, it likely means that default per-
missions become important. We will likely want to have
a rich method for specifying the initial permissions for
new nodes and edges.

As we have described, provenance is about relation-
ships and while there has been much work on securing
data items, there is significantly less on securing rela-
tionships between multiple items. While it is tempting to
think of a provenance security model as additional con-
trols that interact with a traditional security model, it is
not clear how to effect such a composition. Nonetheless,
we will explore the idea of multiple coexisting models in
the next section.

3 Data, ancestry and attributes

Provenance consists of an annotated ancestry graph that
records the history of some data. A system to secure
provenance conceptually consists of three subsystems.
Figure 5 represents this graphically.

We assume the data is already protected using an exist-
ing access control system. Such a system may be either
mandatory or discretionary. Options include role-based
access control (RBAC) [4] and the various database se-
curity models. Another option is to use the UNIX file-
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Figure 5: The system consists of “traditional data” and
provenance. The provenance is further broken down into
attributes and relationships. Relationships are the edges
in the causal graph and therefore capture the structure.

system security model, as is done in the PASS project
(Section 5). While there may be repercussions to choos-
ing a specific option, our focus is on how provenance
security interacts with data security.

Attributes that describe the provenance entities can be
protected using traditional means. The access rights to
the attributes will likely differ from those of the data. We
view attributes as key-value pairs. So while they may
need their own set of policies, attributes can be protected
by traditional data security models. Thus the models de-
scribed in the previous paragraph ought to apply here.

It is less clear how we can go about securing the graph
itself. Going back to the employee performance review,
the manager should know which employees had input
into the review but the employee being reviewed should
not. Human resources and higher level managers may
or may not be granted access to this information. It is
not clear how to express these limitations or even what
primitives are necessary.

4 Putting it back together

In addition to securing the provenance causality graph,
there are other challenges we need to address. In de-
scribing the provenance security model it was convenient
to divide the system into three parts. It is less clear how
to put the pieces back together again. So far we are un-
able to fully express these interactions. Instead we have a
few examples to demonstrate that interactions do, in fact,
exist.

4.1 Hiding participation

Often we want to hide the participation of an entity.
In the performance review we might not want Cathy to
know that Alice participated in her review. Clearly the
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Figure 4: Cathy’s performance review transformed into
a tree

data should not contain Alice’s name or other identify-
ing information. We may believe that it is acceptable for
Cathy to know that four people were involved in her re-
view. Of course, if Cathy has only four coworkers, even
revealing this number is problematic. Perhaps instead,
we only tell Cathy that at least three people participated
in her review. Constraints of this form are not typical in
“traditional data” but seem essential for provenance. It
may seem that revelation of some attributes is obviously
acceptable, but when those attributes interact with rela-
tionships, the situation becomes confusing. For example,
it seems that we should be able to tell Cathy when her re-
view was generated, that it is her review, and that her
manager produced it. However such revelation of dates
could reveal information about which of her coworkers
could have been involved in the review process. These
sorts of problems may involve composing multiple at-
tributes and therefore this is reminiscent of the work on
composition. As in those cases a piece of confidential
information may be inferred it from other data. Clearly
we must account for interactions among the models.

4.2 Identity

Each of the models have a different notion of identity.
From a data model perspective, there are multiple differ-
ent notions of the identity of a file including its contents
and its identifier. To further complicate matters, the iden-
tifier could be either the absolute path or the volume and
inode. Commonly used models, such as the UNIX file-
system model, have multiple notions of identity. Hard
links allow different absolute paths to refer to objects
with same identifier. If two objects have different con-
tents they are clearly different. However, if they have the
same contents but different identifiers are they the same
object?

In provenance identity is similarly ambiguous. Ob-
jects could be considered the same if their provenance

starts with the same inputs and follows the same set of
steps. Alternatively, the identity of an object could be
its specific instance in the provenance graph. Recreation
would lead to an object with a new identity.

Since each model expresses identity differently we
have a problem. If we have access to the file we would
want to be able to access the provenance entity that de-
scribes the file. It would also be useful to go in the other
direction, from a provenance entity to the file it describes.
Note that since provenance is immutable this may neces-
sitate a data store that supports versions. Problems arise
when we want to allow access to the data but not the
provenance or vice versa. If we want to control access
to the data when the provenance is accessible we could
make the data identifier simply an attribute of the node
and then limit access to this attribute. In the other case,
we may have access to the file but want to restrict access
to its provenance.

5 Related Work

This work is an extension of work done on PASS (Prove-
nance Aware Storage Systems) [9]. PASS is a mod-
ified Linux kernel that automatically and transparently
captures provenance by intercepting system calls in real
time. It tracks what files a process read and wrote and
records this information together with the data in the
same file system. We also draw on user studies we con-
ducted to determine what security capabilities users ex-
pect [2].

There are several projects that capture and repre-
sent provenance data. The first provenance challenge
brought together a collection of teams working on this
topic [7]. A related website provides information on the
approaches used by the participating teams [10]. Most
teams do not yet consider security. One noteworthy ex-
ception is PASOA [5]. While most of their discussion
focuses on authentication and non-repudiation, they do



highlight the need for access controls and mention that it
would likely be useful to operate in terms of groups of
records [11].

The authors have been unable to find any related work
on securing directed acyclic graphs. Security models for
XML such as XACML seem most closely related but
they are of limited applicability since they are limited
by XML'’s tree structure and therefore do not appear to
apply to general graphs [8]. There is work on combining
several existing security models [3] although it does not
seem to apply.

Databases generally provide security on a per cell ba-
sis. While this is useful and can be used to implement
security controls for relationships it does not instruct our
study as to how those controls should be set or how they
interact with attribute and data security.

Hippocratic databases use query rewriting to enforce
policies [1]. This approach is clearly different than that
used by traditional database systems. While this ap-
proach is appealing, it is still not clear how to repre-
sent policies on relationships nor how those relationships
interact with the attributes and “traditional data”. The
question changes from how to represent relationships to
how to represent query rewrite expressions on relation-
ships. This may be progress but it is still not clear how
to limit access to certain relationships.

Security for logs seems to be a related area. This area
is in desperate need of further investigation. The Na-
tional Institute of Standards and Technology (NIST) only
recently published a guide to log management [6]. This
guide is remarkable in that it took so long before such a
document was produced, and because it only considers
entire log files. There is little discussion about what log
files reveal about their source. Such a discussion would
presumably provide partial access to log files.

6 Conclusion

Provenance is a class of meta-data with security needs
that differ from those of “traditional data”. Since prove-
nance captures history it is immutable. The graph that
describes the provenance is directed and acyclic. There
are applications where this information needs to be se-
cured. We have argued that the security of the prove-
nance is different from that of the data it describes. How
should provenance be secured?

Provenance can be modeled as an annotated causal-
ity graph. Our discussion splits a security solution into
subsystems for the data, attributes and causality graph.
Each of these need access controls. Unlike the data and
attributes, it is not obvious how to represent security
permissions on the causality graph. Even with a secu-
rity model for the causality graph, there are interactions
among the three security subsystems. We have presented

some examples of interactions, but it is not clear how the
three subsystems should interact in general. Our chal-
lenge is to construct a security model for causal graphs
and study how that model interacts with security model
for the attributes and data.
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