
Research Issues in No-Futz Computing

David A. Holland, William Josephson,
Kostas Magoutis, Margo I. Seltzer, Christopher A. Stein

Harvard University
Ada Lim

University of New South Wales

Abstract
At the 1999 Workshop on Hot Topics in Operating Systems
(HotOS VII), the attendees reached consensus that the most
important issue facing the OS research community was
“No-Futz” computing; eliminating the ongoing “futzing”
that characterizes most systems today. To date, little research
has been accomplished in this area. Our goal in writing this
paper is to focus the research community on the challenges
we face if we are to design systems that are truly futz-free, or
even low-futz.

1 Introduction
The high cost of system administration is well known.

In addition to the official costs (such as salaries for system
administrators), countless additional dollars are wasted as
individual users tinker with the systems on their desktops.
The goal of “no-futz” computing is to slash these costs and
reduce the day-to-day frustration that futzing causes users
and administrators.

We define “futz” to mean “tinkering or fiddling experi-
mentally with something.” That is, futzing refers specifically
to making changes to the state of the system, while observ-
ing the resulting behavior in order to determine how these
relate and what combination of state values is needed to
achieve the desired behavior. When we refer to “no-futz”
computing, we mean that futzing should be allowed, but
should never be required. We interpret “low-futz” in this way
as well.

It should be noted that reducing futz is not the same as
making a system easy to use. It is also not the same as hiding
or reducing complexity: it is aboutmanagingcomplexity and
managingdifficulty. Computer systems involve intrinsically
complex and difficult things. These are not going to go away.
The goal is to make it as easy as possible to cope with that
complexity and difficulty.

Systems can be easy to use but still require unnecessary
futzing: TCP/IP configuration on older Macintoshes was
easy to adjust, but was difficult to set properly. One can also
imagine a (purely hypothetical) system that hides all its com-
plexity: it appears to need almost no futzing at all, until it
breaks. Then, extensive futzing is required, to figure out
what happened.

The goal of No-Futz computing is to eliminate the futz-
ing due to poor design or poor presentation, not to try to find
a silver bullet for software complexity; no-futz computing
attacks areas that are needlessly complicated, not those that

are inherently complicated.
Let’s begin with an example of a good, hi-tech, low-futz

device, and understand its basic characteristics. While read-
ing the rest of this section, keep in mind the computer sys-
tems you use regularly (particularly the ones you dislike) and
how they differ from the example.

Our Xerox 256ST copier is a no-futz device. It performs
just about every function imaginable for a copier: it collates,
staples, copies between different sizes of paper, will copy
single-sided originals to double-sided copies and vice versa,
etc., and it even sits on the network and accepts print jobs
like a printer. However, it demands no futzing. It has instruc-
tions printed on the case that describe how to accomplish
common tasks. Its user interface makes it impossible to ask it
to do something it cannot. It keeps track of its operating
state, continuously monitoring itself, and communicates in a
simple fashion with its operators. When there is a problem it
can diagnose, it displays a clear message on its console. (For
example, “Paper tray 2 is empty.”) When it detects a problem
it cannot diagnose, it begins a question-and-answer dialog
with the operator to diagnose the problem and determine an
appropriate course of action - and then, in most cases, it
guides the operator through that course of action. The ques-
tions it asks are simple, and can be answered by a novice,
such as “Did paper come out when you tried to copy?” The
key factors that make this device no-futz are:

• Ease of use: The user documentation and user
interface are organized in terms of the user’s tasks, not
in terms of the system’s internal characteristics.

• It is unusual to encounter a situation where it is not
clear what to do next, even in the presence of various
failures.

• Self-diagnostics: When a failure occurs, the copier
diagnoses it and offers instructions for fixing things.

• Simple, clear communication: It never asks the user a
question that the user cannot answer.

What makes this such an interesting example is that only
a decade ago, photocopiers required much futzing, mostly by
expert servicemen, and were extremely frustrating for all
concerned. Since then, not only have copiers become vastly
faster and more powerful, but both the use and maintenance
of them has become vastly easier. Today’s copiers have
one-tenth the components of their predecessors, significantly
more functionality, and dramatically reduced futzing [6].
How can we make similar strides forward in computing?

That which works for a photocopier may not be suffi-



cient for computers: the copier is a relatively straightforward
device with well-defined function and state, whereas gen-
eral-purpose computer systems have a wide variety of func-
tions, have essentially infinitely mutable state, and are
subjected to complicated and often ill-understood intercon-
nections both within themselves and with other computers.

In the rest of this paper, we first discuss some current
approaches to futz reduction, arguing that these do not attack
the problem directly and have negative side-effects. We then
discuss how futz arises in computer systems and describe
what we believe is the key to a real solution: understanding
and managing system state. Then we outline some directions
for future research, discuss briefly some existing related work,
and conclude.

2 Current Approaches to Futz Reduction
The cost and frustration associated with futzing has led to

three common approaches to futz reduction: (1) limiting the
scope of functionality, (2) homogeneity, and (3) centraliza-
tion. These approaches are not mutually exclusive and are fre-
quently used together.

The copier described above is an example of the first
approach: it is a special-purpose device. Relative to a gen-
eral-purpose computer, its functionality is quite limited. In
this context, it has addressed the futz problem quite well.
Since futzing involves state changes, special purpose systems,
which have relatively limited state spaces, can offer corre-
spondingly reduced futz. Other low-futz, limited scope
devices include dedicated file servers (e.g., Network Appli-
ance’s filers) and special purpose web or mail servers (e.g.,
Sun’s Cobalt servers) among others.

Homogeneity is the second approach to futz avoidance.
This approach is most often seen in large installations. In
order to reduce total installation-wide futzing, a single stan-
dard machine configuration is deployed everywhere. If there
is a problem, any machine can be replaced with any other
machine. Systems can be reinstalled quickly from a master
copy. Maintenance requirements are reduced drastically. Cus-
tom management tools need only interact with one kind of
system, and are thus much cheaper to build. The administra-
tors see the same problems over and over again and can pre-
pare solutions in advance; nobody besides the administrators
needs to futz with anything.

This approach can reduce global futz drastically; how-
ever, it does not address the underlying problem: the amount
of futzing required by a single machine is constant. Further-
more, it has other flaws: first, it is inherently incompatible
with letting users control their computers. While this is fine or
even desirable in some environments (e.g., the terminals bank
tellers use), it is unacceptable in others (e.g., research labs).
Second, it is a security risk. The same homogeneity that
makes system administration easier also makes break-ins and
virus propagation easier: if you can get into one system, you
can get into all of them the same way [1]. Third, most organi-
zations grow incrementally. Adding new computers to a col-

lection of identical existing ones is difficult: the new ones are
rarely truly identical, which inevitably cuts into the economy
of scale.

The third approach to futz reduction is centralization.
Centralization moves state and its accompanying require-
ments for futzing, away from the systems with which people
interact directly and into places where it is more conveniently
managed. This gives administrators tight and efficient control
over each system. This makes it more convenient for system
administrators to futz and lets system administrators do more
of the futzing and users less of it. While this does reduce cost,
there is no actual reduction in total futz. For that, another
approach is required.

These three approaches are capable of reducing the futz
of, or at least the cost of maintenance for, computer systems
and networks. However, all of them are limiting and/or have
negative consequences. This is a result of attempting to
reduce the total futzable state, instead of the futz problem
directly. We advocate the direct attack.

3 The Source of Futz
One definition of “futz” is in terms of state manipulation.

Thus, the more state there is to manipulate, the more futzing a
system allows. Mandatory futzing arises when it is not clear
by inspection or documentation what manipulations are
required or when the supposedly correct manipulations fail to
produce the correct result. At this point, one must experiment
(or call for help).

If one can manipulate the system state without resorting
to experimentation, futzing has not occurred. For instance,
seasoned Unix administrators do not have to futz to add
accounts to their systems. But beginners generally do. And
even seasoned administrators usually have to futz to get print-
ing to work.

Note that the degree of futz depends on the level of
expertise of the user. A premise of no-futz computing, how-
ever, is that one should not have to be an expert, or the cost of
being an expert should be quite low. Unix systems are already
quite low-futz for hard-core experts, but it takes years and
years of apprenticeship to reach that level. Reducing futz for a
select few is not a solution, so we need to examine sources of
futz as they appear to a casual user.

The mutable state of a computer system can be broken
down into the following categories (this may not be a com-
plete list):

• Derived state:State automatically derived or generated
from other state.

• Policy state: Configuration state that reflects policy of a
site or user.

• Autoconfig data: Data to be served in some manner by
the system in order to enable autoconfiguration for
other systems. For example, /etc/bootptab.

• Cached state: Cached results from autoconfiguration
protocols.



• Manual config state: Configuration state that reflects
the setup of the operating environment or hardware, and
needs to be set manually.

• OS file state: files (programs or data) that are part of
the operating system, as well as their organizational
meta-data.

• Application file state: files (programs or data) that are
part of installed applications, as well as their
organizational meta-data.

• User file state: user files and their organizational
meta-data. For example, a secretary’s word processor
files, or web pages.

• Application context: persistent saved application state
that is not user data. For instance, many environments
try to automatically recreate on startup where you were
when you left the last time.

• System context: persistent OS state that is not in any of
the above categories. For example, file system
meta-data.

• Cryptographic keys.

Policy state is a source of futz: the system acts on its pol-
icy settings, and if it acts incorrectly, somebody needs to
tinker with the settings until it behaves properly. Unfortu-
nately, policy state cannot be avoided in a general-purpose
computer system: policy decisions need to be made by
humans and the computer needs to know what they were. One
can reduce futz in this area by cutting back the amount of
state, and building special-purpose systems, but that inher-
ently reduces the amount of functionality as well. Reducing
futz in this area without cutting back functionality is feasible
as we outline in the next section.

Autoconfig data is another source of futz. This category
reflects futz that has been “centralized away” from other sys-
tems. It is not necessarily the case that all autoconfig mecha-
nisms require a server to serve data, but many of the existing
ones do. It is not unreasonable to suppose that development of
more sophisticated autoconfiguration can reduce or eliminate
most of the state and thus the futz in this category.

Cached state is not normally a source of futz. Cached
results can be purged or updated as necessary without any
manual intervention. Similarly, derived state is a solved prob-
lem: if it goes out of date, it needs only to be regenerated. The
Unix make utility is already routinely used for this.

Manual config state is a tremendous source of futz in
most systems today. Worse, it is the most difficult kind of futz
possible: unlike policy state, where various alternatives work
but may not be desired, most of the questions answered by
manual config state have only one or two right answers and
plenty of wrong answers, and wrong answers generally render
the system or components of it completely inoperative. Ulti-
mately, this is the category of futz that is most seriously in
need of reduction. Fortunately, it is possible to accomplish
this: to the extent that there are right answers, in almost all
cases, with sufficient engineering of components, those right
answers can be probed or determined from context. For

instance, the only reason we need video card and monitor
information in /etc/XF86Config is that on PC-based systems it
is not possible in many cases to safely or reliably interrogate
the hardware to find out what it is. In a hypothetical world
where you could query this hardware, which is easy to imag-
ine, this major source of futz could be abolished.

OS file state and application file state are an area in which
many current systems fall down: it is quite easy, in general, to
install new application software that breaks the system, or to
update the system and thereby break applications. It is also
possible to delete or rename important files inadvertently (or
lose in a power failure) thereby breaking the system. At
present, recovering from these problems is generally quite dif-
ficult. In this area, for most people, futzing at all tends to
equate to reinstallation.

Reducing this category of futz requires taking more care
in analyzing the dependencies among software components,
and improving the mechanisms with which software compo-
nents are bound to one another at runtime. We need several
things: automated analysis of runtime dependencies (a hard
problem), better systems for preventing accidental version
skew, and mechanisms for cross-checking that can be per-
formed at runtime to allow failures to occur gracefully. Rein-
stallation as a failure recovery mechanism is unacceptable.

User file state is inevitably a source of futz as things
become disorganized and users mislay their data. We see no
immediate prospects of cutting back on the futzing this
requires, although developing a good model for how applica-
tions should choose default save directories and the like
would be a good start. Content indexing techniques may be of
help as well.

Application context is normally automatically main-
tained, and only becomes a source of futz when it becomes
corrupted or saves an undesired application state. This prob-
lem is easily solved: check it for consistency when loaded, be
able to withstand it being deleted, and store it in a known
location so users can delete it if they so desire. In many cases,
simply not keeping such context is an adequate solution.

System context is essentially the same, except that it is
sometimes not possible (or meaningful) to erase it and start
over. It is much more important to check it for consistency
and repair any problems. With some engineering, failures that
require expert attention to repair can be made quite rare, as
they generally are with most Unix implementations of fsck.

Cryptographic keys are listed separately because they
have their own unique requirements for management, and
because they are mandatory for the use of secure autoconfigu-
ration protocols. In our experience, these are not large sources
of futz. Furthermore, a lot of attention has already been paid
to key management in the security literature.

All the above assumes that a user is changing state in
order to make some kind of desired configuration change,
either as ongoing maintenance or at system installation time.
There are two other cases in which one needs to interact in
intimate detail with the state of a system: to diagnose and



repair a system failure and to monitor the system for signs of
upcoming failure.

Properly speaking, as we have defined futzing, diagnosis
is not futzing; rather than experimentally adjusting state to
achieve a result, diagnosis properly involves analyzing exist-
ing state. Sometimes, however, one needs to experiment to
interpret the existing state. And additionally, a common
method for recovering from a system failure is to futz until the
obvious signs of the failure have disappeared and the system
appears to be working again. (Rebooting is a drastic example
of this technique, and it works because much system state is
not persistent across reboot.)

The reason this method works is that many system prob-
lems involve the failure of supposedly automatic state man-
agement mechanisms; tweaking the state tickles the state
management mechanism, and with some luck it will start
functioning again. The reason it is common is that actual
diagnosis by inspection usually amounts to debugging and
requires an extremely high level of expertise.

If the system can diagnose problems itself, like our copier
can, this futzing becomes unnecessary. Even if it can only
diagnose a small number of the most common problems, a
good deal of mandatory futzing can be eliminated. Self-diag-
nosis in software systems is an important research area. We
believe a good deal of progress is possible.

Monitoring for signs of upcoming failure, including mon-
itoring for security problems, does not, itself, involve futzing.
However, failure to perform monitoring can lead to huge
amounts of futzing later on - recovering from a server dying
can easily take as much futzing as installing a new one,
whether the death took place because of hardware failure or
because of hackers. Therefore, automatic monitoring is also
crucial to building true no-futz systems. This is another
important research area.

Ultimately, all of these things - monitoring, diagnosis,
and configuration - involve interaction with the system state.
We believe that research and engineering in the areas outlined
above can tame a good proportion of the typical system state
space. However, policy state, cryptographic keys, and proba-
bly some leftover bits of state in the other categories, are not
going away. More is required; we need to be able to manage
this state.

4 Futz and State Management
The less state a system has, the easier it is to organize and

present to users in a coherent manner.
As outlined in the previous section, one can design out

some state and automate the handling of a lot more. This will
take care of a good deal of futz. However, a great deal of state
remains, and it requires editing, and undoubtedly, futzing.
One cannot eliminate the editing. But one may be able to
eliminate the futzing.

The leftover state consists mostly of policy state, manual
config state, and autoconfig state. This state can be thought of
as a list of configuration questions and their answers. The ulti-

mate goal is to allow a user to type in answers to these ques-
tions, or change the answers to suit changed circumstances,
without needing much training or specialized knowledge.

It should now be clear that question formulation is crucial
— not just their wording, although that is significant, but what
questions are asked, how interconnected they are with each
other, how they’re grouped, etc.

What this means is that, once all the easier issues are
addressed, the organization of the state space of the system is
the most significant factor determining how much futzing the
system will demand.

It is crucial to analyze this state space in detail and deter-
mine how to best decompose it into a set of variables (and
thus questions). In the best such decomposition, the variables
will be as simple and as orthogonal to each other as possible.
It will be clear what answering each question entails and who,
in any of several typical environments, ought to decide the
answer. Then the questions need to be written in such a man-
ner that the people who typically fill these roles can, in fact,
answer the questions without needing an excessive amount of
training, and the software needs to be written so that questions
will not be posed to the wrong people.

For example, in almost all cases, the person sitting at the
computer should be the one to choose the desktop back-
ground. However, it is not necessarily the case that this person
should be asked “What is the IP address of your web proxy?”
— this question may need to be posed, but if so it should be
posed in a context where it is clear that the answer is the local
network administrator’s responsibility.

We believe this is the key. It is not an easy problem; in the
absence of any useful decomposition theorems for state
spaces or state machines, it must be solved by manual inspec-
tion and ad-hoc heuristic analysis. Worse, one has to address
the complete state space of the entire system at once; if one
leaves some state out of the analysis and tacks it on later, it is
almost guaranteed to be a poor fit.

At first glance this might seem to mean that all applica-
tion software must be designed into the system. This is not the
case. However, whatis necessary is for the sorts of state appli-
cations may need to use to be anticipated; that is, one needs an
abstract model of what an application is and does. Such a
model should be reasonably general without going overboard:
applications that fail to fit will still work, but may require
increased amounts of futzing. Allowing for these applications
in the general design might result in even more futzing in the
common case. There will be a trade-off, and that trade-off will
need to be explored.

5 Research Directions in No-Futz Computing
If the systems community is to ever build no-futz sys-

tems, we must embark on a research program that addresses
the key issues in no-futz computing. This section defines
those areas.

The first step on the path to no-futz computing is deter-
mining how to measure a system’s futz. We wholeheartedly



endorse the term “FutzMark” coined at the last HotOS and
challenge researchers to define it.

We believe the central issue in no-futz computing is state
management. We must reduce system state to a manageable
level, isolate each state variable so that it is orthogonal to
other state variables, and make it impossible to specify invalid
states. Where possible, we should replace state with dynamic
discovery. Where possible, we should devise ways to turn
static state into dynamically discoverable state (e.g., autoconf
data, manual config state). Achieving orthogonality is perhaps
the most difficult aspect of this task, but also the most essen-
tial. Without orthogonality, the problems of management and
testing grow factorially. If we can achieve orthogonality, it
becomes a manageable linear problem.

In lieu of total orthogonality, we need better mechanisms
to identify inconsistent state and remedy it. We need to iden-
tify (or avoid) version skew among software components and
do more extensive runtime cross checking and analysis.

Coping with failure requires a great deal of futzing; thus
we need to achieve cleaner failure models. In the fault-toler-
ance community, “failstop” behavior (ceasing operation as
soon as a fault occurs) is considered desirable so that failing
systems do not corrupt state or data. In the context of no-futz,
failstop behavior could permit the precise identification of
failure causes. If systems can diagnose their own failures, it’s
conceivable that they can then direct users to perform recov-
ery, as our copier does. In general, we need to make progress
in the areas of self-diagnosis and automatic monitoring.

Finally, there are areas outside of systems research where
progress is necessary. In particular, improvements in user
interfaces and data presentation will reduce futz. Collabora-
tive interfaces, which act as intermediaries between users and
their machines that enable them to work together, hold great
potential if applied to no-futz computing. Security manage-
ment is sometimes considered outside the realm of systems,
but insecurity is a major contributor to current futz and
improvement is needed. Improvements in content indexing
will reduce the futz associated with user data management.

6 Related Work
There have been a number of efforts to reduce futz in

computer systems. In a distributed setting, Sun’s Sunray [4],
as well as Microsoft’s Zero Administration initiative and the
associated IntelliMirror [7] product, are projects to centralize
futzing.

The Sunray system’s desktop machines are simple, state-
less I/O devices with no administration needs. Sunray relies
on modern off-the-shelf interconnection technology and a
simple display update protocol (SLIM) to support good inter-
active performance. In addition to eliminating client adminis-
tration, the Sunray model offers client mobility. Client session
state is entirely stored on the server and can be associated
with a smart card that can be inserted in any Sunray client
connected to the same server. Sunrays are anonymous com-

modities. However, this does not eliminate the administration
cost. Sunray servers are complicated systems and not easy to
administer: once, in our department, one of the junior system
administrators broke all the Sunrays for three days just by try-
ing to install a new utility on the Sunray server.

Microsoft’s Zero Administration initiative is an effort to
reduce the administration needs of Windows installations and
thus the cost of ownership. Central to Zero Administration is
the IntelliMirror product, which helps an administrator (a)
manage user data, (b) install and maintain software through-
out an organization, and (c) manage user settings. Manage-
ment of user data requires knowledge of properties and
locations of users’ files so that the data is available both
online and offline from any computer. Manual installation,
configuration, upgrades, repair and removal of software
across an organization requires large management effort.
IntelliMirror automates this: it offers remote OS installation, a
service allowing a computer connected on a LAN to request
installation of a fresh copy of the Windows OS, appropriately
configured with applications for that user and that computer.

Sun’s Jini [5] for Java is an example of a system that tries
to eliminate administration in a decentralized (“federated”)
manner. Jini provides a distributed infrastructure for services
to register with the network and clients to find and use them.

7 Conclusion
Leading systems researchers identified no-futz comput-

ing as an important research area two years ago [3], but to the
best of our knowledge, there has been no significant research
activity in this area. We believe one reason is that the problem
is enormously complex and may not be solvable within the
constraints of legacy systems. Regardless, until we identify
the important research questions, no progress can be made. In
this paper, we have identified some, if not all, of the important
areas in which research must be conducted if we are ever to
“solve” the problem of high-futz systems.

8 References
[1] Forrest, S., Somayaji, A., and Ackley, D., “Building diverse

computer systems,”In Sixth Workshop on Hot Topics in
Operating Systems, 1997.

[2] Dan Plastina, “Microsoft Zero Administration Windows”,
invited talk given at the 11th USENIX Systems Administra-
tion Conference (LISA ‘97), October 26-31, 1997, San
Diego, California, USA

[3] Satyanarayanan, M., “Digest of Proceedings”, Seventh
IEEE Workshop on Hot Topics in Operating Systems,
March 29-30 1999, Rio Rico, AZ, USA.

[4] Schmidt, B. et al., “The interactive performance of SLIM: a
stateless, thin-client architecture”, in Proceedings of the
17th SOSP, December 1999, Kiawah Island, SC, USA.

[5] Waldo, J., “The Jini Architecture for Network-centric Com-
puting” Communications of the ACM, pp 76-82, July 1999.

[6] Conversation with Xerox Technical Representative. January
18, 2001.

[7] http://www.microsoft.com/WINDOWS2000/library/howit-
works/management/intellimirror.asp as of April 23, 2001.


