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Abstract

A Provenance-Aware Storage System (PASS) is a storage
system that automatically collects and maintains prove-
nance or lineage, the complete history or ancestry of an
item. We discuss the advantages of treating provenance
as meta-data collected and maintained by the storage sys-
tem, rather than as manual annotations stored in a sepa-
rately administered database. We describe a PASS imple-
mentation, discussing the challenges it presents, perfor-
mance cost it incurs, and the new functionality it enables.
We show that with reasonable overhead, we can provide
useful functionality not available in today’s file systems
or provenance management systems.

1 Introduction

Provenance is traditionally the ownership history of an
object. In digital systems, ownership history includes
a description of how the object was derived [4]. In
software development, build rules express provenance
and source code control systems track it. Archivists
maintain provenance meta-data to support document vi-
ability, renderability, understandability, authenticity, and
identity in preservation contexts [21]. Scientific repro-
ducibility requires provenance to identify precisely in-
put data sets, experimental procedures, and parameteri-
zation. The business community uses “lineage” to refer
to the history of a document. In all of these domains
provenance increases an object’s value.

Digital provenance is typically stored in standalone
database systems, maintained in parallel with the data to
which it refers [2, 6, 25]. Separating provenance from its
data introduces problems such as: ensuring consistency
between the provenance and the data, enforcing prove-
nance maintenance, and preserving provenance during
backup, restoration, copies, etc.

Provenance should be maintained by the storage sys-
tem, since provenance is merely meta-data and storage

systems manage meta-data. Managing provenance in the
storage system provides many advantages:

e The storage system can generate system-level
provenance automatically, freeing users from man-
ually tracking provenance and tool designers from
constructing provenance-aware applications.

e Provenance collection and management are trans-
parent. Users take no special actions, so provenance
collection is the norm rather than the exception.

e The tight coupling between data and provenance
provided by the storage system avoids provenance
loss both during normal activity and during man-
agement procedures such as backup, restoration, or
data migration.

e System-level provenance produces a level of meta-
data completeness difficult or impossible to achieve
with application-level solutions.

A provenance-aware storage system (PASS) is a stor-
age system that automatically collects, stores, manages,
and provides search for provenance. Provenance-aware
storage offers functionality unavailable in conventional
systems. For example, comparing the provenance of two
pieces of derived data, such as simulation results, can
reveal changes between two program invocations. We
can use provenance to identify the particular workflow
that produced a document; this provides a tight cou-
pling between workflow management and information
life-cycle management (ILM). Searchable provenance
enables queries like “Who is using my dataset?” or “On
whose data am I depending when I run this experiment?”
System-level provenance enables identification of con-
figuration changes that affect applications.

We present the design and evaluation of a prototype
PASS. A PASS is both a provenance solution and sub-
strate upon which we can support other provenance sys-
tems. Domains characterized by command-line invoca-



tion of data transformations are well served by PASS
and may not require any domain-specific solution. Do-
mains that require GUI-driven applications or applica-
tion environments still derive benefit from integration
with provenance-aware storage. This paper contributes:
An approach to automatic provenance collection and
maintenance; a prototype that demonstrates the efficacy
and practicality of the PASS concept; an evaluation of
PASS functionality and overhead; and a research agenda
for future work on PASS.

The rest of this paper is organized as follows. In Sec-
tion 2, we present several novel use cases that PASS en-
ables. In Section 3, we compare PASS to existing prove-
nance systems. In Section 4, we outline the requirements
for PASS and explain how PASS interacts with existing
provenance systems and file system utilities. In Sec-
tion 5, we describe our PASS implementation. In Sec-
tion 6, we quantify the overheads PASS introduces. We
conclude in Section 7 with a discussion of open research
issues and the long-term PASS agenda.

2 Novel Functionality

PASS provides novel features not available in other sys-
tems. In this section, we present use cases and examples
that demonstrate the power of provenance-aware storage.

2.1 Script Generation

Early PASS users were most excited by PASS’s poten-
tial to create scripts that reproduce a file originally cre-
ated through trial and error. We find this one of the most
compelling features of PASS.

Recently one of the authors was preparing a paper and
discovered that a PostScript figure was being generated
with the wrong bounding box, producing a tiny figure
surrounded by blank space. After several hours of exper-
imental tinkering as the submission deadline approached,
he discovered that creating a huge bitmap, cropping it
with an image-manipulation tool, and then converting
it to a different format for incorporation into the paper
solved the problem. Discovering the precise solution was
an iterative multistage process. When the figure finally
displayed properly, its provenance allowed automating
the processing. Currently, we generate scripts to repro-
duce a particular object; generalizing these scripts so that
they transform objects of one type into objects of another
type is a future project.

2.2 Detecting System Changes

Because we collect provenance at the system level, we
know the operating system, library versions, and the en-
vironment present when an object was created. For ex-

ample, the output of the sort utility depends on the
value of the environment variable LC_COLLATE. Ex-
amining the provenance of files produced by sort ex-
plains why two seemingly identical invocations of the
same command on the same input produce different re-
sults. Because we record the process’ environment in the
provenance, it becomes easy to identify what differs be-
tween the two invocations. Tracking changes in libraries
and tools is similarly straightforward. The provenance
that PASS collects reveals changes in the environment,
libraries, operating system, or tools.

2.3 Intrusion Detection

Since a PASS collects provenance inside the operating
system and file system, it provides a detailed record of
how objects change. This feature can be used in some
cases both for intrusion detection and subsequent foren-
sic analysis.

One of the authors uses a UNIX version of the Win-
dows trash bin, aliasing rm (remove) to

mv !+ " /etc/garbage

which moves the target files to a garbage directory.
Quite unexpectedly, several recently deleted files ap-
peared in ~/public_html. This happened on a non-
PASS system, so it took nearly a half hour to discover
that ~/etc/garbage had been symbolically linked to
~/public_html. Had this occurred on a PASS, the
provenance of the files in ~/public_html would have
revealed that they had been explicitly moved from their
original locations. Had the shell provided application-
specific provenance, the rm alias would have been read-
ily apparent.

2.4 Retrieving Compile-Time Flags

A common approach to understanding software perfor-
mance is to recompile with different functionality se-
lected via macros defined on the compiler command line.
However, in order to interpret the results, one must keep
track of which macros were defined for each program
run. Often, users neglect to record this information; then,
once the details have been forgotten, it becomes nec-
essary to redo the work. PASS automatically records
command-line arguments, as well as the relationship be-
tween the various versions of the program and the per-
formance results. It is thus possible to recover the macro
arguments and functionality choices.

2.5 Build Debugging

Large build environments are often missing elements of
their dependency lists. These become apparent when a



build repeatedly produces a flawed executable. The tra-
ditional solution (suggested explicitly for the Linux ker-
nel) is to make clean after any change.

PASS easily identifies an inconsistent build: in nearly
all build environments, it is incorrect for two different
versions of the same source or intermediate file to simul-
taneously be ancestors of the same output. Examining
the complete ancestry of an obsolete file reveals immedi-
ately the intermediate file that should have been rebuilt,
identifying the missing dependency.

2.6 Understanding System Dependencies

Early experimentation with PASS presented some sur-
prising results. We found that some objects we created
unexpectedly included /bin/mount in their prove-
nance. This was baffling, since we were executing rel-
atively simple commands such as sort a > b.

We discovered that the Linux C library frequently
reads the mount table, /et c/mtab, to determine where
procfs is mounted before using it. mount and
umount update /etc/mtab, so these programs quite
correctly appeared in our sorted file’s ancestry. These
files also appear in the provenance of any process that
reads the mount table to find proc£s.

This behavior is either good or bad, depending on per-
spective. For a system designer, such information is use-
ful; to a user, it is distracting. To preserve the infor-
mation for some without burdening others, we provide
a provenance truncation utility, pt runc, that removes
/etc/mtab’s (or any file’s) ancestry.

3 Provenance Solutions

Provenance is pervasive in scientific computing, busi-
ness, and archival. Simmhan et al. categorize prove-
nance solutions in terms of their architecture: database-
oriented, service-oriented, and “other” [29]. We bor-
row and enrich this taxonomy. We extend database-
oriented approaches to include file and file-system-
oriented approaches such as PASS. The service-oriented
architecture encompasses myriad grid-based solutions.
Simmhan’s “other” category refers to scripting architec-
tures; we treat software development tools, i.e., source
code control and build systems, as a specific instance of
a scripting architecture. To these three categories, we
add “environment architectures” where users perform all
tasks in a unified environment that tracks provenance.

3.1 File, File System and Database
Approaches

One obvious approach to provenance maintenance is
to include provenance inside the corresponding data

file. Astronomy’s Flexible Image Transport (FITS)
format [18] and the Spatial Data Transfer Standard
(SDTS) [23] are examples of this approach. A FITS file
header consists of a collection of tagged attribute/value
pairs, some of which are provenance. Whenever a file
is transformed, additional provenance is added to this
header. This approach addresses the challenge of mak-
ing the provenance and data inseparable, but it introduces
other disadvantages. It is expensive to search the at-
tribute space to find objects meeting some criteria. Tools
that operate on such files must read and write the headers
and be provenance-aware. The validity and complete-
ness of the provenance is entirely dependent upon the
tools that process the data. Worse yet, there is no way to
determine if provenance is complete or accurate.

The Lineage File System (LinFS) [15] is most similar
to PASS. LinFS is a file system that automatically tracks
provenance at the file system level, focusing on executa-
bles, command lines and input files as the only source
of provenance, ignoring the hardware and software en-
vironment in which such processes run. As shown in
Section 2, complete system-level provenance provides
functionality unavailable in other systems. A second,
and perhaps more important, difference is that LinFS de-
lays provenance collection, performing it at user-level
by writing it to an external database. In contrast, PASS
manages its provenance database directly in the kernel,
providing greater synchronicity between data and prove-
nance; PASTA, our provenance-aware file system, man-
ages both the data and provenance producing a tighter
coupling than provided by a separate user-level database.

Trio [27] is to databases what a PASS is to file systems.
Trio is a database system that incorporates uncertainty,
managing both data and its provenance. It extends SQL
to support lineage and accuracy information when re-
quested by a user or application. Trio and PASS are com-
plimentary. Trio focuses on the formalism to describe
uncertainty via lineage and operates on tuples within a
database framework; PASS focuses on a less structured
environment and operates on files.

3.2 Service-oriented Architectures

Many of the computational sciences use provenance sys-
tems designed for grid environments since provenance
facilitates scientific verification, reproducibility, and col-
laboration. Most of these systems use a directed-acyclic-
graph (DAG) representation to describe workflows. The
tools that understand these workflows collect provenance
and transmit it to a grid provenance service. For exam-
ple, Globus [7] is used widely by high-energy physicists
and includes the Metadata Catalog Service (MCS) [6]
that stores metadata for logical data objects. MCS in-
cludes a set of common attributes and permits inclusion



of domain- or application-specific attributes. San Diego
SuperComputer’s Storage Request Broker [2, 26] has a
Metadata Catalog similar to the MCS.

Chimera [8] is a virtual data system providing a virtual
data language (VDL) and a virtual data catalog (VDC).
The VDC implements a virtual data schema defining the
objects and relations used to capture descriptions of pro-
gram invocations and to record these invocations. The
VDL is used for defining and manipulating data deriva-
tion procedures stored in the VDC. Chimera can be used
to generate Grid workflows from the derivations.

These systems place the responsibility for provenance
maintenance with the grid tools, storing provenance in
a system parallel to the data storage. They create and
maintain provenance only for data that is processed by
provenance-aware tools, so there is no mechanism to
capture provenance for local experimentation or opera-
tions issued outside the bounds of these tools. PASS pro-
vides capabilities not found in these systems and is com-
plimentary to their approaches. A grid-accessible PASS
provides the advantages of both worlds.

3.3 Scripting Architectures

Software developers manage provenance manually us-
ing source code control and build systems. Though
powerful, these systems rely more on manual interven-
tion than PASS does. Build systems maintain depen-
dencies after those dependencies have been specified;
PASS derives dependencies based upon program exe-
cution. Source code control systems track differences
between manually-declared versions, but a manually-
entered commit message is typically the only conceptual
expression of the transformation between those two ver-
sions. Thus, the quality of provenance in these systems
depends on the quality of commit messages and build
configuration files. For example, makefiles that track in-
clude dependencies properly are considerably more use-
ful than those that do not.

The source code control systems most similar to PASS
are ClearCase (and its predecessor DSEE) and Vesta.
ClearCase [5] is a source code control system, and like
PASS, it is based on a custom file system. The file system
serves as the source code repository, and the build system
relies on the standard make utility. The custom file sys-
tem tracks and maintains system dependencies to avoid
work in future builds and to trigger rebuilds. PASS also
captures these dependencies. As is the case with all build
systems of which we are aware, ClearCase requires that
critical dependencies be specified a priori; PASS derives
dependencies by observation.

Vesta [12] is a second generation build system devel-
oped at DEC Systems Research Center (SRC). The key
design goals were making builds repeatable, consistent,

and incremental. As with DSEE, Vesta relies on a cus-
tom build environment that monitors the build process to
extract dependencies and record complete environment
information to facilitate repeatable builds. Like DSEE
and other source code control systems, it relies on an a
priori description of the derivation process. As a result,
while extraordinarily useful for software development, it
ignores the central PASS challenge: automatically gen-
erating the derivation rules as a system runs.

3.4 Environment Architectures

Other domains have environments that track work and
record provenance as Vesta does for software develop-
ment. GenePattern [10] is an environment for com-
putational biologists, the Collaboratory for Multi-scale
Chemical Sciences (CMCS) [20] is an environment for
chemists, and the Earth System Science Workbench
(ESSW) [9] is an environment for earth scientists. As
long as a user modifies data exclusively in one of these
environments, the environment can effectively track
provenance. However, operating on data outside the en-
vironment or moving data between two different envi-
ronments breaks the provenance chain. Traditional file
system utilities, such as backup and restore, or regular
utilities, such as remove and rename, can also break the
provenance chain. The semantic information these en-
vironments provide is powerful; we propose PASS as a
substrate under such environments. This hybrid architec-
ture avoids disruptions in provenance and adds the abil-
ity to augment an environment’s provenance with prove-
nance about the operating system, libraries, and other
system-level information.

3.5 Summary

Provenance-aware storage provides functionality not
found in today’s provenance solutions while compati-
ble with most of them. Ultimately, end-to-end prove-
nance requires multiple approaches working in concert.
As shown by our evaluation, using PASS as a substrate
for the end-to-end solution provides significant benefits.

4 The PASS Vision

PASS collects and maintains provenance for all the ob-
jects stored in it. We define provenance to be a descrip-
tion of the execution history that produced a persistent
object (file). We represent provenance as a collection
of attribute/value pairs, referenced by a unique identifier
called a pnode number. Provenance can contain refer-
ences to objects that are themselves provenanced, i.e.,
have provenance. Therefore, complete provenance is the
transitive closure over all such references.



In both service-oriented architectures and PASS,
provenance is captured in a DAG. PASS automatically
generates the DAG describing the relationship between
processes running on it and the files stored in it. Our pro-
totype tracks provenance at a file granularity, but this is
not an inherent property of PASS; a system could track
provenance at finer or coarser granularities [16] (e.g.,
bytes, lines, directories or whole volumes).

Data on a PASS is considered to be either new data or
the output of some process. The provenance of a process’
output must include:

e A unique reference to the particular instance of the
executable that created it.

e References to all input files.

e A complete description of the hardware platform on
which the output was produced.

e A complete description of the operating system and
system libraries that produced the output.

e The command line.
e The process environment.

e Parameters to the process (frequently encapsulated
in the command line or input files)

e Other data (e.g., the random number generator seed)
necessary to make pseudo-random computation re-
peatable.

Collecting all the information listed above poses chal-
lenges, but is possible. However, it is not possi-
ble to automatically collect provenance that the system
never sees; we call such provenance opaque provenance.
Opaque provenance arises when data originates from a
non-PASS source, such as a user, another computer, or
another file system that is not provenance-aware.

There are three approaches to opaque data. First, a
PASS records any provenance it can deduce about an in-
put, such as its creator, create time, its source (expressed
as the global name for a networked object or the full path
for a local, non-PASS object) and a unique fingerprint
of the source (e.g., a hash value). Second, a PASS per-
mits users to add annotations to files. Annotations pro-
vide either provenance for opaque data or semantic in-
formation, invisible to the system. Third, a PASS allows
storage and retrieval of application-specific provenance.
Application-specific provenance records are like annota-
tions, but are provided programmatically from, for ex-
ample, a driver for a remote data-producing device (e.g.,
a driver taking data from a telescope) or an application
environment such as GenePattern [10]. A PASS distin-
guishes between internally-collected provenance, anno-
tations, and application-generated provenance so queries
can specify which attribute types to consider.

Field Value

FILE /b

ARGV sort a

NAME /bin/sort,/bin/cat

INPUT (pnode number of a)

OPENNAME /lib/i686/libc.s0.6,
/usr/share/locale/locale.alias,
/etc/mtab,/proc/meminfo
#prov.mtab

ENV PWD=/pass USER=root ...

KERNEL Linux 2.4.29+autoprov #17 ...

MODULE pasta,kbdb,autofs4,3c59x,...

Table 1: Provenance of sort a > b. The FILE

record is relative to the root of the PASS volume.

4.1 Requirements

PASS must automatically collect provenance and also
provide the functionality outlined in this section.

PASS must support application-generated prove-
nance, so that PASS can be used as a substrate for
domain-specific provenance solutions. Applications that
currently write to domain-specific provenance systems
can instead write into a PASS’s provenance database,
producing an integrated view of application and system
provenance. Our implementation uses a simple, low-
level data representation that is easily mapped to XML,
a relational schema, or any other data format used by an
existing provenance solution.

PASS must provide security for provenance. Prove-
nance requires access controls different from the data it
describes. Consider an employee performance review
that includes input from others: while the review itself
must be readable by the employee, the provenance must
not [15]. We conducted user studies to gather require-
ments for a provenance security model and determined
that the security model for provenance can be divided
into two pieces: one that protects access to ancestors and
descendants and one that protects access to attributes.
We are designing a security model for provenance, but
its details are beyond the scope of this paper [3].

Finally, PASS must provide support for queries on
provenance. Collecting provenance on data is not useful
unless that provenance is easily accessed. Provenance
queries fall into two categories: conventional attribute
lookup and computation of transitive closures of ancestry
(or descendancy) information. The latter are particularly
challenging for most data management systems.
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1. Create a new process via fork. 10. Read a’s inode into the inode cache.

2. Materialize a task_struct structure for the new process. 11. Read from a.

3. Open output file b as stdout. 12. Add file a’ s provenance to the current process.
4. Place b’s inode into the inode cache. 13. Write output to b.

5. Exec sort 14. Transfer process’ provenance to b.

6. Create provenance records for the process. 15. Close a.

7. Load the executable; place its inode in the inode cache.  16. Close b.

8. Associate the executable’s inode to the running process. 17. Write provenance to database.

9. Open input file a.

Figure 1: Provenance Collection Example: We show the relevant system calls and provenance collection and mainte-
nance steps for a simple command.



5 Implementation

We implemented PASS in Linux 2.4.29. To provide a
framework for the implementation discussion, we be-
gin with an example describing how PASS collects and
maintains provenance. We then present an overview of
provenance collection followed by the details of its im-
plementation. We conclude this section by evaluating our
prototype relative to the requirements presented in the
previous section.

Throughout the rest of this section, we use the ex-
ample command line “sort a > b” to describe how
PASS collects and stores provenance. Table 1 shows
the records that are added to the database, and Figure 1
shows the sequence of important system calls and the
provenance collection steps performed while the com-
mand executes.

With this structure in mind, we present the details of
our implementation in four parts. First, we present an
overview of provenance collection. Second, we discuss
the collector, which implements the activity shown in the
the syscall layer in the figure. Third, we discuss our
provenance-aware file system, which resides below the
VES layer. Last, we present our query system, which is
not shown in the figure.

5.1 Overview

The system maintains provenance information both in
memory and on disk, but the two representations do not
map one-to-one. On disk, file ancestry can be expressed
as cross-references to other files. In memory, however,
PASS must account for processes and for other objects
such as pipes or sockets that play important roles in
provenance collection and derivation, but are not mate-
rialized in the file system.

Processes are provenanced objects, because processes
produce files that must incorporate their creating pro-
cess’ provenance. For example, in Figure 1, the process’
provenance is the collection of records that are attached
to the task structure. Since our implementation does not
track explicit data flow within a process, all data a pro-
cess accesses can potentially affect the process’ outputs
and must be included in its provenance.

In memory, the system maintains an ancestry graph in
which files reference processes, and processes reference
PASS files, pipes, non-PASS files, and (transitively) even
other processes. Many of these objects are never materi-
alized on disk, and some that are written to disk cannot
be readily cross-referenced. When provenance is written
to disk, in-memory references to persistent objects are
recorded in the database as references while the prove-
nance of a non-persistent referenced object (e.g., a pipe)
is copied directly into the referring object’s provenance.

Therefore, each object on disk may correspond to several
in-memory objects, and in-memory non-persistent ob-
jects may have their provenance recorded multiple times
on disk if they are ancestors of multiple files.

The system collects provenance for every process, be-
cause it cannot know in advance which processes might
ultimately write to a PASS volume. It also collects prove-
nance for non-PASS files, which is retained as long as
their inodes are kept in memory.

5.2 The Collector

One of the key challenges in PASS is translating a se-
quence of low-level events into a sequence of meaning-
ful provenance entries; the collector performs this trans-
lation. It intercepts system calls, translating them into
in-memory provenance records, which are then attached
to key kernel data structures. Figure 1 shows how the
collector translates some system calls into provenance
records. For example, the exec system call (step 5) trig-
gers creation of the ENV, ARGV, NAME, KERNEL, and
MODULES provenance records in step 6. It also main-
tains the ancestry graph for in-memory objects. The final
job of the collector is to map the in-memory graph to the
on-disk provenance that is passed to the storage layer,
shown as step 17 in Figure 1. We refer to on-disk prove-
nance of an object via a unique pnode number.

In the sort example, the collector’s work is relatively
simple. The collector generates a provenance record for
each provenance-related system call and binds the record
to the appropriate structure. Table 2 summarizes the sys-
tem calls that the collector intercepts, the provenance
records generated, and the structures to which records
are attached.

Duplicate Elimination In the example, sort might
issue many read system calls if its input file is large.
The simple-minded collector creates a new INPUT
provenance record for each read, even though the sub-
sequent provenance records are exact duplicates of the
first. Our collector tests for and eliminates duplicates
at two points. It drops a new record when that record
exactly duplicates an existing record already attached to
the same kernel object. This does not eliminate all du-
plicates, however. Consider the shell command (sort
a; sort a) > b, which writes two sorted copies of
a into b. Both sort processes read a and have a as an
ancestor. When the collector traverses the in-memory
graph to write provenance for b, two references to a ap-
pear, so the collector also suppresses duplicates during
this traversal. This duplicate elimination removes iden-
tical ancestors (e.g., the two occurrences of a), but since
the two sort processes have different process ids, the



System Call Record Type Description Where attached
execve ENV environment current process
ARGV command line arguments current process
NAME process name current process
PID process id current process
KERNEL kernel version current process
MODULES kernel modules loaded current process
INPUT reference to program current process
open OPENNAME pathname of file (non-PASS files only) target file’s inode
read INPUT reference to file current process
write INPUT reference to current process target file’s inode

Table 2: Basic provenance collection by system call.

provenance still reveals that there were two invocations
of sort.

Versions Suppose that we executed sort a > b but
b already existed. The system would truncate b and write
new data to it, logically creating a new version of b. The
system needs to ensure that there is a new version for
the provenance of b, as the new b may have no relation-
ship whatsoever to the old. Creating a new provenance
version allocates a new pnode number. The collector in-
tercepts the t runcate operation to make sure this hap-
pens at the right time.

Because we are not running on a versioning file sys-
tem, the data in the old b is lost. However, our file sys-
tem does retain old versions of provenance, because the
old b could be an ancestor of an important file, and we
cannot remove that file’s provenance.

In this example, it was easy to determine when to cre-
ate new versions. However, declaring a new version is
more complicated in the general case. Consider a se-
quence of write system calls. Does each write create a
new version? What if a process closes and re-opens the
file after each write?

The simple approach of declaring a new version for ev-
ery write suffers from provenance explosion, the creation
of too much provenance and it does not suggest when to
create new versions for processes. The collector must be
able to group multiple writes together into a single ver-
sion. In the simple case, it is sufficient to declare a new
version on a file’s last close and on any sync. The
next section discusses the solution for more complicated
cases.

Cycles Ideally, only meaningful versions should be
given new pnode numbers. Versions generated by the
system as a result of the way the application is written
or as a result of properties of the collector implemen-

tation should be minimized. However, as the workload
increases in complexity, reducing the number of ver-
sions introduces an even more daunting challenge: cy-
cles. Provenance cycles are problematic, because they
represent violations of causality (i.e., an object depend-
ing on the existence of its children). Consider the pro-
gram that does:

read a
write a

This program reads a, becoming a descendant of a.
Then it writes a, making itself also an ancestor of a. This
produces a cycle unless the write to a creates a new ver-
sion that is not an ancestor of the process.

This particular case is easily suppressed; however, the
problem is considerably broader than this. Consider two
processes P and Q:

P Q
read a
read b
write b
write a
close a close a
close b close b

If no new versions are created until close, Q’s write
of a creates a cycle; Q is an ancestor of a, which is an
ancestor of P, which is an ancestor of b, which is an an-
cestor of Q. More complex examples include dozens of
processes and intervening files.

Since we want to avoid creating a new version on ev-
ery write, there are at least three possible approaches:

1. Ignore it. Let cycles appear in the database and
make the query tools deal with them. We consider
this approach unacceptable.

2. Declare a new version only on writes that add new
provenance information. This approach generates a
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Figure 2: Cycle breaking by node merging.

large number of versions, and in our current system,
versions are too expensive to allow this, but we are
pursuing more efficient version management in our
next design that might allow this approach.

3. Detect and break cycles. This is our current solu-
tion.

Before adding an in-memory provenance record, the
collector checks the in-memory ancestry graph for cy-
cles. If the new record would create a cycle, the collector
invokes a cycle-breaking algorithm.

The simplest way to break a cycle is to start a new
version for the object that would create the cycle. (If a
process were about to read from a file that was its own
descendant, we would create a new version for the pro-
cess; if a process were about to write a file that was its
own ancestor, we would create a new version for the file.)
This solution has two problems. First, the target might be
a file, and creating extraneous versions of files is unde-
sirable. Second, when data flows in a loop, it is often
because of a circular operation (e.g., recompiling your
compiler) and it is likely to repeat more than once. Cre-
ating a new version on every iteration causes a form of
provenance explosion that we refer to as version pump-
ing.

We developed node-merging to avoid these problems.
Node-merging treats a set of processes that cycle data
among themselves as a single entity for provenance pur-
poses. The provenance of this shared entity is the union
of the provenance of the processes that form it. Figure 2
illustrates this approach.

Specifically, if the cycle contains processes P; and
files F}, the collector starts a new version for each F;,
and merges all those new versions into a single “process”
P, c,. The files F; are then made descendants of Fcy,.

Implementation Details The implementation of the
collector is approximately 4850 lines of code, plus ap-
proximately 250 lines of code to intercept system calls.

Each provenanced object within the kernel points to
a “virtual pnode” structure (vpnode). This structure
holds the in-memory provenance records and the graph
edges used for cycle detection. Both persistent and non-
persistent objects (such as pipes) use the same data struc-
tures.

Capturing provenance for data flowing through pipes
requires no special effort: a pipe has an inode structure in
the kernel just like a file, and this has a vpnode attached
to it. Writing to a pipe creates an ancestry reference from
the pipe to the source process; reading the data out again
creates an ancestry reference from the sink process back
to the pipe. Since the pipe is non-persistent, these refer-
ences are traversed when provenance is written. Entire
pipelines can be captured this way.

The collector communicates with the storage layer via
five new VES calls:

1. getpnid - returns a file’s on-disk pnode number
2. thaw - begin a new version of a file
3. freeze - end a file version

4. write_prov_string - transforms a non-
reference in-memory provenance record into a
persistent provenance record

5. write_prov_xref - transform an in-memory file
reference into a persistent provenance record

5.3 The Storage Layer

The storage layer is composed of a stackable file system,
called PASTA, that uses an in-kernel database engine to
store its meta-data. Pasta uses the FiST [30] toolkit for
Linux to layer itself on top of any conventional file sys-
tem. We use ext 2 fs as our underlying file system.

We use an in-kernel port of the Berkeley DB embed-
ded database library [19], called KBDB [14], to store
and index provenance. Berkeley DB provides fast, in-
dexed lookup and storage for key/value pairs. Berke-
ley DB does not provide a schema in the traditional
sense. Instead, applications define their schema by creat-
ing indexed databases (tables in relational parlance), sec-
ondary indexes, and relationships between the tables. An
entry in a Berkeley DB database consists of an indexed
key and an opaque data item. The application determines
how data items are interpreted.

We store provenance in five Berkeley DB databases,
summarized in Table 3. The PROVENANCE database
is the primary repository of provenance records. The
record types stored in the PROVENANCE database are
shown in Table 2. The MAP database maps inode num-
bers to pnode numbers. A file’s pnode number changes



Database Key Values Query Functionality Use cases
MAP inode number pnode number MAKEFILE show script to recreate a file 2.1, 2.4,
PROVENANCE  pnode number, provenance data GENERATION 2.5

record type DuMmP ALL show all provenance records 2.2, 2.6,
ARGDATA sequence number  command line text for a file 2.3
ARGREVERSE  command line text  sequence number COMMAND- find files modified by a pro- 2.4
ARGINDEX words from argv ~ pnode number LINE LOOKUP cess given matching com-

Table 3: Provenance databases.

each time it is thawed. Command lines and environ-
ments are large relative to other provenance and are often
repeated. The ARGDATA database implements an opti-
mization, assigning (via Berkeley DB) a sequence num-
ber to each unique command line and environment. The
ARGREVERSE database maps instances of an environ-
ment or command line to the sequence number assigned
by ARGDATA. The ARGINDEX database is another sec-
ondary index, mapping components of command lines
and environments (e.g., individual environment variables
and their values) to pnode numbers.

User annotations to a file are stored in the PROVE-
NANCE database with record type ANNOTATION. We
provide an annotation ioctl that is used to record an-
notations to a file. This ioctl takes the annotation
name and a string value as input and records them in the
database. Annotations do not pass through the collector
and are stored directly into the database.

5.4 The Query Tools

We make the provenance database accessible to users as
a standard set of Berkeley DB databases. Making the
provenance accessible as standard Berkeley DB files pro-
vides many advantages. We can use a variety of program-
ming languages for building query tools (e.g., Python,
Perl, Tcl, Java, C), and the standard Berkeley DB utili-
ties (e.g., dump, load) also work.

As we discuss in greater detail in Section 7.1, our pro-
totype does not meet the security requirements identified
earlier, but it does allow us to gain experience with PASS,
deploy it in constrained situations, and extract as much
information as possible to drive development of our later
prototypes.

We built an easy-to-use query tool atop the Berkeley
DB databases. The query tool has a built-in file system
browser, the Provenance Explorer. Users navigate to the
file of interest and run queries using the Provenance Ex-
plorer. The MAKEFILE GENERATION query generates a
set of commands corresponding to the sequence of events
that led to the file’s current state. Users can set various
filters to, for example, remove commands that occurred
before or after a given point in time. Another query,

mand line arguments
show all user-defined anno- -
tations to a file

LIST ANNO-
TATIONS

Table 4: Query tool summary. The last column maps the
query to the example use cases mentioned in Section 2.

DUMP ALL, retrieves the complete provenance for a se-
lected file. The Provenance Explorer also allows users
to add or retrieve file annotations. We also support the
command-line argument lookup query that allows users
to search for files based on arguments to the processes
that modified them. For example, a computational physi-
cist can look up files that were modified by a process with
an argument, particle, set to a particular value. The
query capabilities are summarized in Table 4.

The Provenance Explorer is written in Java and uses
JNI to access the Berkeley DB databases. To facilitate
scripting, we also built command-line utilities that pro-
vide functionality equivalent to the Provenance Explorer.

5.5 Prototype versus Requirements

Our prototype has been a source of insight and future
challenges despite its limitations. We now analyze these
limitations in light of the vision we outlined in Section 4.

The prototype accurately collects and maintains
provenance. The provenance it collects for computations
that are encapsulated in a process is complete. To the
best of our knowledge, this is the first system that cap-
tures such information automatically and makes it gener-
ally accessible. Unlike many existing systems, it does so
without requiring a priori specification of the workflow
or DAG.

Although we create reasonable provenance for files
copied from non-PASS file systems on the local ma-
chine, we do not yet create provenance for files that are
transmitted across the net. Users and applications can
add annotations and application-specific provenance, but
for the long-term, we will implement network adapters
that observe network activity and create provenanced in-
memory objects corresponding to the networked object.

A complete provenance solution requires provenance-
aware applications, which are not yet commonly avail-
able. However, as we demonstrated in Section 2, the
functionality we currently provide does not exist in cur-



rent systems and is complementary to domain-specific
solutions. There are existing APIs for provenance-aware
applications [11], and the interfaces we have defined for
kernel provenance collection offer an alternative. Mak-
ing an application provenance-aware requires that a pro-
grammer identify and then express the dependencies be-
tween the objects that an application manipulates. Given
the existence of provenance-aware environments[10] and
the level of activity in this area, we do not anticipate
significant obstacles. Building several provenance-aware
applications is part of our next generation design process
and will undoubtedly inform the future API.

We have not yet implemented security. This function-
ality was not important to our first generation users. We
wholeheartedly believe that we cannot add security to an
already existing system, so we are intentionally design-
ing our next generation PASS from scratch, incorporat-
ing what we have learned about provenance collection as
well as what we have ascertained about appropriate se-
curity models for PASS [3].

The prototype provides simple query capabilities.
These capabilities can be extended in a number of ways,
but we provide the critical capabilities that we and our
users identified. Our current script generation is prim-
itive (it cannot reproduce pipelines without incurring
huge overheads), but does meet the needs of our current
users.

6 Evaluation

PASS requires in-kernel processing to track provenance,
and it produces additional data that is ultimately writ-
ten to disk. We describe our evaluation platform and
then present benchmark results illustrating both the disk-
space and time overheads of our prototype. We then
present query times for some sample queries run on the
output of a Linux build. Finally, we present a sample
application and its overhead.

6.1 Evaluation Platform

We evaluated our PASS prototype on a S00Mhz Pentium
IIT machine with 768MB of RAM, running Redhat 7.3.
We ran all experiments on a 40GB 7200 RPM Maxtor
DiamondMax Plus 8 ATA disk drive. To quantify the
overhead of our system, we took measurements on both a
PASS and a non-PASS system. We obtain results marked
“PASS” by running our modified Linux 2.4.29 kernel
(supporting provenance collection) and our provenance-
aware file system, PASTA, running on top of ext2fs.
We obtain non-PASS results, marked “Ext2”, running on
an unmodified Linux 2.4.29 kernel and ext2fs, without
PASTA.

To ensure a cold cache, we reformatted the file sys-
tem on which the experiments took place between test
runs. Creating the five provenance databases on a newly
reformatted file system introduces 160 KB space over-
head, which we consider negligible, given today’s enor-
mous file systems. We used Auto-pilot [28] to run all
our benchmarks. For all experiments, we measured sys-
tem, user, and elapsed times, as well as the amount of
disk space used for provenance. We compute wait time,
which usually represents I/O time, as the difference be-
tween elapsed time and the sum of system and user times.
We ran each experiment 10 times. In nearly all cases, the
standard deviations were less than 5%. We do not dis-
cuss user time as our code is in the kernel and does not
affect the user time.

6.2 Benchmark Performance

We begin with the large and small file microbenchmarks
frequently used to evaluate file system performance [24].
These benchmarks exercise the creat, read, write,
fsync, and unlink system calls for a large number of
files spread over a directory hierarchy.

Phase Ext2 PASS % Overhead
create 10420 12180 16.89
read 10420 12180 16.89
write 10420 13476 29.33
write-sync 10420 13892 33.32
delete 24 3486 14,466

Table 5: Space overhead (in KB) for the small file mi-
crobenchmark.

Phase Ext2 PASS % Overhead
create 091 3.02 232.41
read 0.71 1.51 111.90
write 1.62 4.42 172.09
write-sync  1.67 5.31 217.44
delete 1.13 1.22 7.56

Table 6: Time overhead (in seconds) for the small file
microbenchmark.

The small file test uses 2500 4 KB files with 25 files
per directory. Table 5 and 6 show that the overheads can
be large, but are acceptable for two reasons: First, the
absolute numbers are also quite small, so expressing the
overhead as a percentage is misleading. Second, this is
a particularly challenging benchmark for PASS, because
the files are small and the write phases of the benchmark



overwrite existing files. (Only the create phase writes
new files.) The overhead during the read phase is due to
duplicate elimination done by a PASS. Since the bench-
marking process has as many as 2,500 files open, check-
ing for duplicates introduces significant overhead. The
overheads during the create, write and write-sync phases
are higher than during the read phase, because they gen-
erate provenance records in addition to detecting dupli-
cates. The overhead during the delete phase is due to
the deletion of entries in the MAP database. The to-
tal data size remains unchanged while the provenance
grows, suggesting that provenance pruning, discussed in
Section 7.1, is an important area for further research.

Phase Ext2 PASS % Overhead
seq-write 6.16 7.11 15.47
seq-read 0.90 0.92 2.01
rand-write  6.20 7.04 13.58
rand-read 0.90 0.92 2.31
re-read 0.89 0.92 2.44

Table 7: Time overhead (in seconds) for the large file
microbenchmark.

The large file benchmark consists of five phases. First,
it creates a 100MB file by sequentially writing in units
of 256KB; second, it reads the file sequentially; third, it
writes 100MB in 256 KB units to random locations in
the existing file; fourth, it reads 100MB in 256KB units
from random locations in the file; last, it re-reads the file
again sequentially. The benchmark has virtually no space
overhead, since it uses one file and adds only 10 new
records to the provenance databases.

Table 7 shows the time overhead. As a proportion of
the running time, these are much better than the small
file results, because the “application” is doing more work
and the provenance collector proportionally less. The
write overheads are due to the stackable file system com-
ponent of our storage layer. As shown in the next sec-
tions the large file results are more indicative of the over-
heads on realistic workloads.

Makefile Dump All
elapsed time 1055.09 91.90
system time 190.98 26.37
user time 817.12 17.57
average elapsed time per file 0.065 0.006
average db lookups per file 485 36

Table 8: Query times, in seconds, for all files present
after a Linux build.

For our last benchmark, we built the vanilla Linux
2.4.29 kernel. This build generates 399 MB of data pro-
ducing 11% space overhead and 10.5% execution time
overhead (increasing from 2227 seconds to 2461 sec-
onds). The time overheads are due to the collector and
database computational overheads and the I/O time to
write the provenance to disk.

We then used the directory tree and files resulting from
the Linux compile to measure provenance query times.
For each file existing on PASS after the Linux build,
we issued two queries: a makefile generation query and
a dump_all query. The makefile generation query re-
trieves records from the PROVENANCE database. The
dump_all query retrieves records from the PROVENANCE
and ARGDATA databases. The PROVENANCE database
had 472,356 records and the ARGDATA database had
5,189 records. The makefile generation query bench-
mark retrieves 7,911,886 records in all and the maximum
ancestor depth is 15. The dump_-all query benchmark re-
trieves 587,494 records in all. Table 8 shows that the
queries are fast: even though a makefile query performs
nearly 500 lookups per file, it does so in only 65 ms due
to the index capabilities of Berkeley DB. However, the
writes to these indices contribute to the high write over-
heads in the small-file benchmark.

Next, we used the same tree to demonstrate how
provenance grows as files are modified. We chose "N’
files randomly, appending a comment to each one, and
then rebuilt the kernel. Table 9 shows how the prove-
nance grows for different values of *N’.

N Size % Files % Space % Record

(MB) changed growth growth
0 44 - - -
10 44 0.06 0 0.63
110 44 0.67 0 2.31
310 45 1.90 2.27 3.89
1310 49 8.03 11.36 17.18
3310 52 20.28 18.18 34.73
8310 61 50.93 38.64 72.16

Table 9: Provenance Growth benchmark results. where
N is the number of files modified and size is the total
provenance size after the compile.

The results indicate that provenance growth rate is rea-
sonable considering that changes to the files are small but
PASS still has to enter the same number of records into
its database irrespective of whether the changes are small
or large.



6.3 Application Performance

One of our early users was a computational biologist who
regularly uses blast [1] to find the protein sequences
in one species that are closely related to the protein se-
quences in another species. Typically, she starts with
two files containing the protein sequences of two differ-
ent species of bacteria. A program, formatdb, formats
the files and prepares them for blast. Then she runs
blast followed by a series of Perl scripts to produce a
list of the proteins in the two species that might be re-
lated to each other evolutionarily. When the output is
satisfactory, she uses the PASS query tools to generate a
script containing the precise sequence of commands that
produced the output file.

The time overhead for this real-world workload is min-
imal, 1.65% (from 309 seconds to 315 seconds), so the
new features incur no perceptible cost.

6.4 Evaluation Summary

PASS provides functionality unavailable in other systems
with moderate overhead. With the exception of the small
file microbenchmark, our time and space overheads are
small — typically less than 10% and always under 20%.
We and our users are satisfied with these overheads. In
addition, we found the system was useful in unantici-
pated ways such as its ability to generate scripts and its
ability to uncover system mysteries.

7 Conclusion

Provenance-aware storage is a new research area that ex-
poses myriad research challenges that we outline in the
following section.

7.1 PASS Research Challenges

As we developed our prototype, we encountered prob-
lems with our initial design as well as problems that the
design did not anticipate. Despite flaws in the prototype,
we continued development so we could learn as much as
possible before beginning the design of a second gener-
ation system. The current prototype has been deployed
to a few early adopters, but is not yet in heavy use. We
are designing a second prototype based on the experi-
ence we have gained. In the following sections, we out-
line what we have learned and where significant future
research challenges remain.

We began the PASS implementation with the sim-
plest and lowest-level schema that could meet our query
needs. In parallel with development of the prototype, we
undertook an evaluation comparing different provenance
storage solutions: our existing one, a relational data

model, an XML-based representation, and an LDAP-
based representation [13]. Results so far suggest that
the Berkeley DB-based implementation provides supe-
rior performance, but these results are not yet final [17].

We recognized the security challenges early in the
project and that they are a source of myriad research
opportunities. We conducted a low fidelity pilot user
study to gain insight into this area and identified the two-
pronged security model that separately addresses prove-
nance ancestry and attributes.

The cycle-breaking algorithm we described in Sec-
tion 5.2 is complicated and has been the single greatest
source of errors in the system. Cycle-free provenance
collection is an explicit goal for our next prototype, but
this remains a research challenge.

As currently implemented, the provenance databases
are append-only. This is dangerous, wasteful, and not
viable in the long-term. Some provenance pruning is
easy: deleting a file with no descendants should delete its
provenance. However, deleting items with descendants
may offer subtle opportunities for pruning, for example,
by compressing long chains of pnodes into equivalent
single pnodes. Tackling the general provenance prun-
ing problem requires synthesizing research in informa-
tion flow and garbage collection and applying this work
to this new domain.

Provenance-aware storage will be more broadly ac-
cepted once we demonstrate integration with existing
provenance solutions. Building provenance-aware appli-
cations is the first step in this direction. Discussions with
users suggests that building a provenance-aware R envi-
ronment [22] will make the platform attractive to biolo-
gists and social scientists. This is next on our agenda,
and we hope that others will select their favorite tools to
make provenance-aware.

Until all storage systems are provenance-capable, we
face interoperability challenges. Moving files through a
non-PASS system should not lose provenance, although
it may prove difficult. Extended attributes have been
in use for many years, yet there is still no safe way to
move files and their extended attributes among systems
with and without extended attribute support. Ultimately,
we must develop provenance-aware network protocols so
provenance can be atomically transmitted with data.

Finally, there remain difficult engineering issues. Our
current handling of mmap is primitive and needs im-
provement. The ptrunc utility mentioned earlier is
equally primitive; we prefer, instead, to allow a user or
administrator to designate files (e.g., /etc/mtab) that
should be ignored in provenance.

We built our PASS prototype to facilitate rapid im-
plementation and deployment, but requiring a particu-
lar operating system is not a long-term solution. In-
stead, we need to develop network-attached PASS imple-



mentations complete with client-side plug-ins for NFS
and CIFS clients. We will also build a versioning
provenance-aware file system; exploring the considera-
tions involved is another open research problem.
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7.3 In Closing ...

We presented provenance management as a task for stor-
age systems and described and evaluated our prototype
system that addresses this problem. It provides a sub-
strate offering significant provenance functionality and
lends itself to unifying system and application prove-
nance. We described several use cases where system
provenance provides new capabilities and demonstrated
that we can accomplish it with acceptable overhead.
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