Provenance for the Cloud

Kiran-Kumar Muniswamy-Reddy, Peter Macko, and Margo Seltzer
Harvard School of Engineering and Applied Sciences

Abstract

The cloud is poised to become the next computing en-
vironment for both data storage and computation due
to its pay-as-you-go and provision-as-you-go models.
Cloud storage is already being used to back up desktop
user data, host shared scientific data, store web applica-
tion data, and to serve web pages. Today’s cloud stores,
however, are missing an important ingredient: prove-
nance.

Provenance is metadata that describes the history of
an object. We make the case that provenance is crucial
for data stored on the cloud and identify the properties of
provenance that enable its utility. We then examine cur-
rent cloud offerings and design and implement three pro-
tocols for maintaining data/provenance in current cloud
stores. The protocols represent different points in the de-
sign space and satisfy different subsets of the provenance
properties. Our evaluation indicates that the overheads
of all three protocols are comparable to each other and
reasonable in absolute terms. Thus, one can select a
protocol based upon the properties it provides without
sacrificing performance. While it is feasible to provide
provenance as a layer on top of today’s cloud offerings,
we conclude by presenting the case for incorporating
provenance as a core cloud feature, discussing the is-
sues in doing so.

1 Introduction

Data is information, and as such has two critical compo-
nents: what it is (its contents) and where it came from
(its ancestry). Traditional work in storage and file sys-
tems addresses the former: storing information and mak-
ing it available to users. Provenance addresses the lat-
ter. Provenance, sometimes called lineage, is metadata
detailing the derivation of an object. If it were possi-
ble to fully capture provenance for digital documents
and transactions, detecting insider trading, reproducing
research results, and identifying the source of system
break-ins would be easy. Unfortunately, the state of the
art falls short of this ideal.

Current research has demonstrated the feasibility of
automatically capturing provenance at all levels of a
system, from the operating system [18, 30] to applica-
tions [27]. Our goal is to extend provenance to the cloud.

Provenance is particularly crucial in the cloud, be-
cause data in the cloud can be shared widely and anony-

mously; without provenance, data consumers have no
means to verify its authenticity or identity. The web
has taught us that widely shared, easy-to-publish data
are useful, but it has also taught us to be skeptical con-
sumers; it is impossible to know exactly how updated
or trustworthy data on the web are. We should solve
the problem now while cloud services are still new and
evolving. For example, Amazon’s “Public Data Sets on
AWS” provides free storage for public data sets such as
GenBank [2], US census data, and PubChem [1]. If re-
searchers are to make the most of these data sources,
they must be able to accurately identify the process used
to generate the data. Provenance, bound to the data it de-
scribes, provides the necessary information for verifying
the process used to generate the data. Similarly, prove-
nance can be used to debug experimental results and to
improve search quality. We discuss these use cases in
Section 2.2.

As both automatic provenance collection and cloud
storage are relatively new developments, it is not obvi-
ous how to best record provenance in the cloud. We be-
gin by identifying four properties crucial for provenance
systems. First, provenance data-coupling states that
when a system records data and provenance, they match
— the provenance accurately describes the data recorded.
Second, multi-object causal ordering states that ances-
tors described in an object’s provenance exist, i.e., the
objects from which another object is derived. This en-
sures that there are no dangling provenance pointers.
Third, data-independent persistence states that prove-
nance must persist even after the object it describes is
removed. Fourth, efficient query states the system sup-
ports queries on provenance across multiple objects. We
discuss these properties and the implications of violating
them in Section 3.

Using these properties as a metric, we designed three
alternative protocols for storing provenance using cur-
rent cloud services. The protocols vary in complexity,
the guarantees they make, and the distributed cloud com-
ponents they involve. The first protocol is the simplest
and uses only a cloud store. In turn, it is the weakest
of the protocols. The second protocol satisfies a larger
subset of the properties and uses a cloud store and a
cloud database. The third protocol uses a cloud store,
a cloud database, and a distributed cloud queuing ser-
vice and satisfies all the properties. The database and

queue have the same availability, reliability, and scala-
bility properties as the store. We discuss the protocols
and the properties they satisfy in Section 4.3. We use
a Provenance Aware Storage System (PASS) [30] aug-
mented to use Amazon Web Services (AWS) [5] as the
backend to build and evaluate the protocols for storing
provenance. Based on our experience designing and im-
plementing protocols for storing provenance on current
cloud offerings, we discuss research challenges for pro-
viding native provenance support on the cloud.

The contributions of this paper are:

1. Definition of properties that provenance systems
must exhibit.

2. Design and implementation of three protocols for
storing provenance and data on the cloud, evaluat-
ing each protocol with respect to the properties we
established.

3. Evaluation and comparison of the cost and perfor-
mance of our three provenance storage protocols.

The rest of the paper is organized as follows. In the
next section, we provide background on provenance and
our provenance collection substrate, discuss use cases
for provenance in the cloud, and introduce the cloud ser-
vices that are most pertinent to this work. In Section 3,
we present the desirable properties for storing prove-
nance in the cloud. In section 4, we discuss the chal-
lenges unique to storing provenance on the cloud and
present the architecture and implementation of our three
provenance recording protocols. In section 5, we evalu-
ate the protocols for overhead, throughput, and cost. We
discuss related work in section 6. We discuss the chal-
lenges for providing native support for provenance in the
cloud in section 7, and we conclude in section 8.

2 Background

Provenance can be abstractly defined as a directed
acyclic graph (DAG). The DAG structure is fundamen-
tal and holds for all provenance systems irrespective
of the software abstraction layer at which they operate.
The nodes in the DAG represent objects such as files,
processes, tuples, data sets, etc. The edges between
two nodes indicates a dependency between the objects.
Nodes can have attributes. For example, a process node
has attributes such as the the command line arguments,
version number, etc. A file node has name and version
attributes. Each version of a file or process is represented
by a distinct node in the DAG. The provenance graph, by
definition, is acyclic as the presence of cycles would in-
dicate that an object was its own ancestor.

2.1 Provenance Aware Storage System
(PASS)

We use our PASS [30] system to collect provenance.
PASS is a storage system that transparently and au-
tomatically collects provenance for objects stored on
it. It observes application system calls to construct the
provenance graph. For example, when a process issues
a read system call, PASS creates a provenance edge
recording the fact that the process depends upon the file
being read. When that process then issues a write sys-
tem call, PASS creates an edge stating that the file writ-
ten depends upon the process that wrote it, thus tran-
sitively recording the dependency between the file read
and the file written. For processes, PASS records sev-
eral attributes: command line arguments, environment
variables, process name, process id, execution start time,
the file being executed, and a reference to the parent
of the process. For all other objects (files, pipes, etc.),
PASS records the name of the object (pipes do not have
names). Prior to this work, PASS used local file sys-
tems and network attached storage as its storage back-
end; this work leverages PASS as a provenance collec-
tion substrate and extends its reach to using the cloud as
the storage backend.

2.2 Cloud Provenance Use Cases

The following use cases illustrate the utility and need for
provenance in the cloud.

Debug Experimental Results: The Sloan Digital Sky
Survey (SDSS) [20] is an online digital astronomy
archive consisting of raw data from various sources (e.g.,
imaging camera, photometric telescope, etc.). It also
provides an environment for researchers to process and
store data in personal databases. Since researchers use of
the environment is bursty, one can imagine using cloud
stores and virtual machines to provide this service. Con-
sider a scenario where SDSS administrators upgrade the
software distribution on the compute node images unbe-
knownst to the users. Suppose further that when users
run their scripts, the resulting output is flawed. Without
provenance, users are left to manually search for clues
explaining the change in behavior. With provenance,
users can compare the provenance of newly generated
output with the provenance of older output to determine
what has changed between invocations. For example, if
anew JVM had been introduced, the difference in JVMs
would be readily apparent in the provenance output.

Detect and Avoid Faulty Data Propagation: The
SDSS processed data is produced by a pipeline of data
reduction operations. A scientist using the data might
want to ensure that she is using an appropriately cali-
brated data set. Without provenance, the scientist has
no means to verify that she is using data processed by

the correct software. With provenance, the scientist can
examine the data’s provenance to verify that appropriate
versions of the tools were used to process the data. In
addition, provenance enables users to discover how far
faulty data has propagated throughout a data processing
pipeline.

Improving Text Search Results: Shah et. al. [39]
showed that provenance can improve desktop search re-
sults. The provenance graph provides dependency links
between files, similar to hyperlinks between webpages,
that can be used to improve the quality of search results.
Shah’s scheme first uses a pure content-based search to
compute an initial set of documents. Then, they tra-
verse the provenance DAG of the initial document set
P times. At each iteration of the traversal, they update
the weight for each node based on the number of incom-
ing/outgoing edges. After P runs, they re-rank the files
and include new files to the list based on the weights
computed.

Similarly, provenance can be used to improve search
quality for data stored on the cloud. For example,
consider a scenario where a user archives data on the
cloud. Without any content-based indexing, search-
ing that archived data requires downloading each file to
the user’s desktop. Content-based indexing reduces the
number of files the user needs to download. Content-
based indexing refined by provenance, such as inter-file
dependencies, inputs, or command-line arguments from
the program that generated the data, further reduces the
effort required to locate a particular file.

2.3 Cloud Services

We next provide a brief description of the cloud services
that are most pertinent to this work.

Object Store Service: A cloud object service allows
users to store and retrieve data objects. Service providers
generally provide a REST-based interface for accessing
objects, with each object identified by a unique URL
The service allows users to PUT, GET, COPY, and
DELETE objects. The PUT operation overwrites any
previous versions of an object. With each object, clients
can store some metadata, represented as <name,value>
pairs. The PUT operation supports atomic updates to
both data and metadata. The cost of using such services
is based on the number of bytes transferred (both to and
from), the storage space utilization, and the number of
operations performed. Amazon Simple Storage Service
(S3) [37] and Microsoft Azure Blob [6] are examples of
object store services.

Database Service: A cloud database service provides
index and query functionality. The data model is semi-
structured, i.e., it consists of a set of rows (called items),
with each row having a unique itemid and each item

having a set of attribute-value pairs. The attribute-value
pairs present in one item need not be present in another,
and an item can have multiple attributes with the same
name. For example, an item can have two phone at-
tributes with different values. The database service pro-
vides the same reliability and availability guarantees as
the data store. Amazon’s SimpleDB [38] and Microsoft
Azure’s Table [8] are examples of such services. Sim-
pleDB supports attribute names and values up to 1 KB,
while Azure allows them to be up to 64KB. SimpleDB
provides a traditional SELECT query interface, whereas
Azure provides a LINQ [25] query interface.

Messaging Service: Distributed messaging systems
provide a queuing abstraction allowing users to ex-
change messages between distributed components in
their systems. Queues are typically identified by a
unique URL. Users can perform operations such as
SendMessage, ReceiveMessage, and DeleteMessage.
The messaging service provides similar guarantees to
that of the corresponding cloud store. Message deliv-
ery is generally best-effort, in-order message delivery.
Amazon’s Simple Queueing Service (SQS) [41] and Mi-
crosoft Azure Queue [7] are examples of such Messag-
ing systems. Both SQS and Queue enforce an 8KB limit
on messages.

2.3.1 Eventual Consistency

As with other distributed systems, building highly scal-
able cloud services involves making various choices in
the design space. A number of recent systems that oper-
ate at the cloud scale have chosen to be provide high per-
formance and high availability while providing a weaker
form of data consistency, called eventual consistency.
AWS is an example of an eventually consistent service
suite. This implies that, for example, a client perform-
ing a GET operation on an S3 object immediately af-
ter a PUT on that object might receive an older copy of
the object as S3 might service that request from a node
that has not yet received the latest update. If two clients
update the same object concurrently via a PUT, the last
writer wins, but for a non-deterministic period of time
after a PUT, a subsequent GET operation might return
either of the two writes to the client. Azure services, on
the other hand, are strictly consistent; a client is guaran-
teed to receive the latest version of an object. Eventual
consistency dictates that clients must design appropriate
mechanisms to detect inconsistencies between objects.
We designed our protocols assuming eventual consis-
tency, as it is the weaker form of concurrency; anything
that works with eventual consistency will work trivially
with stronger models.

3 Provenance System Properties

There are four properties of provenance systems that
make their provenance truly useful. We motivate and
introduce these properties.

Provenance Data Coupling The data-coupling prop-
erty states that an object and its provenance must match
— that is, the provenance must accurately and com-
pletely describe the data. This property allows users
to make accurate decisions using provenance. Without
data-coupling, a client might use old data based on new
provenance or might use new data based on old prove-
nance. In both of these cases, the user relying on the
provenance is misled into using invalid data.

Systems that do not provide data-coupling during
writes can detect data-coupling violations on access and
withhold or explicitly identify objects without accurate
provenance. For example, if the provenance includes
a hash of the data, we can compute the hash of a data
item to determine if its provenance refers to this version
of that data. Detection is, at best, a mediocre replace-
ment for data-coupling, because although users will not
be misled, they cannot safely use available data when its
provenance is wrong.

Given the eventual consistency model of existing
cloud services and the fact that we cannot modify ex-
isting cloud services, we find a weaker form of the prop-
erty, Eventual data-coupling practical. In eventual data-
coupling, the data and its provenance might not be con-
sistent at a particular instant, but are guaranteed to be
eventually match. With eventual data-coupling, a sys-
tem requires detection, since there may exist intervals
during which an object and its provenance do not match.

Multi-object Causal Ordering This property ac-
knowledges the causal relationship among objects. If an
object, O, is the result of transforming input data P, then
the provenance of O is the super-set of the provenance
of P. Thus, a system must ensure that an object’s ances-
tors (and their provenance) are persistent before making
the object itself persistent. Multi-object Causal Ordering
violations occur when the system writes an object to per-
sistent store before writing all its ancestors, and the sys-
tem crashes before recording those ancestors and their
provenance. These violations produce dangling pointers
in the DAG. Similar to eventual data-coupling, a weaker
form of the property Eventual Causal Ordering is realiz-
able. A system still requires detection to account for the
intervals during which an object’s provenance may be
incomplete, because its ancestors and their provenance
are not yet persistent or not available due to eventual
consistency.

Data-Independent Persistence This property ensures
that a system retains an object’s provenance, even if the

object is removed. As in the last section, assume that P is
an ancestor of O. If P were removed, O’s provenance still
includes the provenance of P, so a system must make
sure to retain P’s provenance, even if P no longer exists.
If P’s provenance is deleted when P is deleted, parts of
the provenance DAG will become disconnected. If P had
no descendants, then a system might choose to remove
its provenance, since it would no longer be accessible via
any provenance chain. Another approach to solving this
problem is to copy and propagate an ancestor’s prove-
nance to its descendants. This is inefficient in terms of
space and can quickly become unwieldy.

Efficient Query Since provenance is created more fre-
quently than it is queried, efficient provenance recording
is essential. However, efficient query is also important
as provenance must be accessible to users who want to
access or verify provenance properties of their data. In
scenarios where the number of objects are few or users
already know the objects whose provenance they want
to access, efficiency is not an issue. Efficiency mat-
ters, however, when the number of objects is sizeable
and users are unsure of the objects they want to access.
For example, users might want to retrieve objects whose
provenance matches certain criteria. In scenarios such as
this, if a system stores provenance, but that provenance
is not easily queried, the provenance is of reduced value.

4 Protocol Design and Implementation

We begin this section by presenting the challenges
unique to the cloud that guided our protocol design.
Next, we present a high level architectural overview and
implementation of our system. Finally, we describe each
of our three protocols in detail. For each protocol, we
discuss its advantages and limitations. For the rest of the
paper, we use AWS as the cloud backend as it is the most
mature product on the market.

4.1 Challenges

The cloud presents a completely different environment
from the ones addressed by previous provenance sys-
tems. The cloud is designed to be highly available and
scalable. None of the existing provenance solutions,
however, account for availability or scalability in their
design. The cloud is also not extensible, while all exist-
ing solutions required making changes to the operating
system, the workflow engine, the application, or some
other piece of software. Further, the long latency be-
tween users and the cloud presents different update and
error models. These properties make managing prove-
nance in the cloud different from managing it on local
storage.

Extensibility: Most existing provenance systems as-
sume the ability to modify system components. For ex-

ample, PASS uses either a file system or an NFS service
as the storage backend. PASS defined new extensions to
the VFS interface to couple data and provenance [28].
The Virtual Data Grid [17] and myGrid [42] workflow
engines integrate provenance collection into the work-
flow execution environment. The PASOA [34] frame-
work for recording provenance in service oriented ar-
chitectures assumes the existence of a custom designed
provenance recording service. In the case of the cloud,
however, modifying or extending existing services is not
possible.

Availability: One can imagine building a wrapper ser-
vice that acts as a front to the cloud services and pro-
vides a cloud provenance storage service that satisfies
the properties we identified. For the approach to be
viable, however, the wrapper service has to match the
availability of the cloud. If not, the overall availability is
reduced to the availability of the wrapper service. Build-
ing such a highly available wrapper service is counter-
productive as it requires a great deal of effort and infras-
tructure investment, defeating the very purpose of mov-
ing to the cloud. Hence, we design protocols that lever-
age existing services while satisfying the properties.

Scalability: In order to make the provenance
queryable, most systems store provenance in a database.
Hence, we considered storing the provenance in a
database backed by an S3 object (e.g., a MySQL or
Berkeley DB database stored in the S3 object). The
provenance would then be queryable, but this approach
would not scale. First, to avoid corrupting the database,
clients need to synchronize updates between each other.
A single global lock is a scalability bottleneck, and a
distributed lock service would introduce the potential
for distributed deadlock. Second, due to the update
granularity of cloud stores, clients need to download
the database object for every update, which also does
not scale. One can, of course, use more sophisticated
parallel database solutions. This is, however, expensive
and hard to maintain and is against the pay-as-you-use
model of the cloud. All this points to using a scalable
cloud service such as SimpleDB to store provenance,
as we do in two of our protocols (Section 4.3.2 and
Section 4.3.3). Storing the provenance in a separate
service opens the issue of coordinating updates between
the database service and object store service, which we
address while describing the protocols.

Some of the properties of the cloud, on the other hand,
make storing provenance easier. For example, NFS and
the file system have to ensure consistency in the face of
partial object writes, while cloud stores deal only with
complete objects. Hence cloud provenance does not
have to consider partial write failures.

4.2 Architecture Overview

Client

Application
Syscall
v

Boundary

<

Local Cache

WAL Queue

Figure 1: Architecture: The figure shows how prove-
nance is collected and the cloud is used as a backend.

Figure 1 shows our system architecture. The system
is composed of the client (compute node) and the cloud.
The client is in turn composed of PASS and PA-S3fs.
PASS monitors system calls, generating provenance and
sending both provenance and data to Provenance Aware
S3fs (PA-S3fs). PA-S3fs, a user-level provenance-aware
file system interface for Amazon’s S3 storage service,
caches data and provenance on the client to reduce traffic
to S3. PA-S3fs caches data in a local temporary direc-
tory and the provenance in memory. On certain events,
such as file close or flush, it sends both the data and
the provenance to the cloud using one of the protocols
P1, P2, or P3, which we discuss in the next subsections.
Further, PASS has algorithms built into it that preserve
causality by carefully creating logical versions of objects
when they are simultaneously updated by multiple pro-
cesses at the same client [29]. The provenance recorded
in the cloud by the protocols reflects this versioning.

Implementation PA-S3fs is derived from S3fs [36], a
user-level FUSE [19] file system that provides a file sys-
tem interface to S3. PA-S3fs extends S3fs by interfac-
ing it to PASS, our collection infrastructure. PASS inter-
nally uses the Disclosed Provenance API (DPAPI) [28]
to satisfy the properties specified in Section 3 and even-
tually stores the provenance on a backend that exports
the DPAPI. Hence, extending S3fs to PA-S3fs translates
to extending S3fs and FUSE to export the DPAPI.

4.3 Protocols

Property P1|P2|P3
Provenance Data-Coupling X % v
Multi-object Causal Ordering | ¢/ | ¢/ | V/
Efficient Query X v Vv

Table 1: Properties Comparison. A check mark indicates that
the property is supported, otherwise it is not.

Client S3
Clien

PUT: Provenance
—EUL (Prov> 1KB) |
|

t S3
PUT: (Prov > 1 KB)

SimpleDB
% BatchPUTAttributes: Prov
OK
PUT: Data s3
PUT: (Data)
I ——
e —

(a) (b)

Client s3

PUT: (Temp data copy)
OK
sQs
SendMessage: Prov
commitd
OK
RecvM
w} s3
PUT (prov > 1KB)
—
SimpleDB

BatchPUTAttributes

OK
S3

OPY(data)

y

OK

ELETE(temp)

)

DeleteMessage
4‘

(©)

Figure 2: Protocol 1 (a): Both provenance and data are recorded in a cloud object store (S3). Protocol 2 (b): Provenance is
stored in a cloud database (SimpleDB) and data is stored in a cloud store (S3). Protocol 3 (c): Provenance is stored in a cloud
database (SimpleDB) and data is stored in a cloud store (S3). A cloud messaging service (SQS) is used to provide data-coupling

and multi-object causal ordering.

Table 1 summarizes our three protocols with respect
to the properties in Section 3. Although we discuss the
protocols in the context of moving data from users to
the cloud, they can also be used while replicating data
and provenance across different cloud service providers.
Further, while our implementation is based on extending

the file system interface to the cloud, the protocols are
independent of the storage model and applicable when-
ever provenance has to be stored on the cloud.

o)}

4.3.1 P1: Standalone Cloud Store

Storage Scheme: We map each file to an S3 object and
store the object’s provenance as a separate S3 object. It
might seem attractive to record provenance as metadata
of the object, but that introduces two problems. First,
removing the object removes its provenance, violating
provenance persistence. Second, most systems impose a
hard limit on the size of an object’s metadata. To address
the deletion issue, one could truncate the data in the ob-
ject and rename the object to a shadow directory on dele-
tion. To address the metadata limit, one could store the
extra provenance in the first n bytes of the object itself
and on deletion, truncate the data part of the object. In-
stead, we create a primary S3 object containing the data
and a second, provenance S3 object, named with a uuid
and containing the primary object’s provenance plus an
additional provenance record containing the name of the
primary S3 object. In the primary S3 object’s metadata,
we record a version number and the uuid, thus linking
the data and its provenance. For objects that are not per-
sistent, such as pipes and processes, we record only the
provenance object with no primary object. For prove-
nance queries, this scheme requires us to lookup the pri-
mary object and then retrieve the provenance whereas
the previous scheme can avoid this. On deletions, how-
ever, the previous scheme requires the system to update
all provenance referring to the object to point to the new
name assigned on deletion. We chose to store prove-
nance in a separate object, because provenance queries
are infrequent relative to object operations, and updating
provenance pointers on every delete can be expensive.

Protocol: Figure 2a depicts protocol P1. On a file
close (or flush), we perform the following operations:

1. Extract the provenance of the file (cached by PA-
S3fs). PUT the provenance into the S3 provenance
object. If the provenance object already exists,
GET the existing object, append the new prove-
nance to it, and then issue a PUT.

2. PUT the data object with metadata attributes con-
taining the name of the provenance object and the
current version.

Before sending the provenance and data of an object,
we need to identify the ancestors of the object and send
any unrecorded ancestors and their provenance to ensure
multi-object causal ordering. A client can, at best, assure
a consistency model comparable to that of the under-
lying system; that is if the underlying system supports
eventual consistency, then the best P1 can do is ensure
eventual multi-object causal ordering. A reading client
that wants to check multi-object causal ordering must
use Merkle hash trees or some similar scheme to verify
the property. If the property is not satisfied, the client
should try refreshing the data until the objects do meet

the multi-object causal ordering property.

Discussion: This protocol does not support data-
coupling, but using version numbers stored both in the
provenance object and the primary object’s metadata,
clients can detect provenance decoupled from data. P1
achieves eventual multi-object causal ordering if it sends
all the ancestors of an object and their provenance to S3
before sending the object’s provenance to S3. However,
such an implementation can suffer from high latency.
Querying is inefficient as we cannot retrieve objects by
their individual provenance attributes; we can only re-
trieve all of an object’s provenance via a GET call. If
we do not know the exact object whose provenance we
seek, then we need to iterate over the provenance of ev-
ery object in the repository, which is so inefficient as to
be impractical.

4.3.2 P2: Cloud
Database

Store with a Cloud

Storage Scheme: This scheme, which is already in-
dependently in use by some cloud users [13], stores
each file as an S3 object and the corresponding prove-
nance in SimpleDB. We store the provenance of a ver-
sion of an object as one SimpleDB item (row in tradi-
tional databases). As in P1, we reference the provenance
of an object by uuid assigned to the object at creation
time. For example, assume that an object named foo has
uuid ’uuidl’, its version is 2, and it has two provenance
records: (input, bar_2) and (type, file). P2 stores this in
SimpleDB as:

ItemName=uuidl_2

attribute—-name=name, attribute-value=foo
attribute—-name=input,attribute-value=bar_2
attribute-name=type, attribute-value=file

The name attribute allows us to find an object from its
provenance. We chose this one-row-per-version scheme
instead of storing the provenance of all versions of an
object as one SimpleDB item, as it allows users to distin-
guish the version to which the provenance belongs. We
store provenance values larger than the 1KB SimpleDB
limit as separate S3 objects, referenced from items in
SimpleDB. As in P1, we store the object’s current ver-
sion number and uuid in its metadata.

Protocol: Figure 2b shows the second protocol. On a
file close, we extract the provenance cached in memory
and convert it to attribute-value pairs. We then group the
attribute-value pairs by file version, construct one item
for the provenance of each version of the file, and per-
form the following actions:

1. If any of the values are larger than 1KB, store them
as S3 objects and update the attribute-value pair to
contain a pointer to that object.

2. Store the provenance in SimpleDB by issuing
BatchPutAttributes calls. SimpleDB allows us
batch up to 25 items per call, hence we issue as
many calls as necessary to store all the items.

3. PUT the data object with metadata attributes con-
taining the name of the provenance object and the
current version.

As in P1, P2 enforces multi-object causal ordering by
recording ancestors and their provenance before sending
the provenance and data of the new object.

Discussion: P2 is an improvement over P1 in that it
provides efficient provenance queries, because we can
retrieve indexed provenance from SimpleDB. Like P1,
P2 does not provide data-coupling but can detect cou-
pling violations and exhibits high latency to ensure
multi-object causal ordering. Due to eventual consis-
tency, we can encounter a scenario in which SimpleDB
returns old versions of provenance when S3 returns more
recent data (and vice versa). We detect this by compar-
ing the version of the object in S3 and the version re-
turned in the provenance. If they are not consistent, we
can request the specific version of the provenance we
need from SimpleDB.

4.3.3 P3: Cloud store with Cloud Database
and Messaging Service

Storage Scheme and Overview: P3 uses the same
S3/SimpleDB storage scheme as P2, but differs from
P2 in its use of a cloud messaging service (SQS) and
transactions to ensure provenance data-coupling. Each
client has an SQS queue that it uses as a write-ahead log
(WAL) and a separate daemon, the commit daemon, that
reads the log records and assembles all the records be-
longing to a transaction. Once it has all the records for
a transaction, the daemon pushes data in the records to
S3 and provenance to SimpleDB. If the client crashes be-
fore it can log all the packets of a transaction to the WAL
queue, the commit daemon ignores these records. One
might be tempted to use a local log instead of an SQS
queue, but such an arrangement leads to data-coupling
violations when a client crashes before the commit dae-
mon has completely committed a transaction. By using
SQS as the log, if the client running the commit daemon
crashes during a commit, another machine can commit
the partially completed transaction.

Messages on SQS (and Azure) cannot exceed 8KB,
hence we cannot directly record large data items in the
WAL queue. Instead, we store large objects as tempo-
rary S3 objects, recording a pointer to the temporary
object in the WAL queue. The commit daemon, while
processing the WAL queue entries, copies a temporary
object to its real object and then deletes the temporary
object. Both S3 and Azure do not currently support a re-

name operation. Hence the object has to be copied from
the temporary name to the real object. One thousand
copy operations cost 0.01 USD for S3 and 0.001 USD
for Azure with no charge for the data transfer required
to perform the copy. Hence the copy operation has mini-
mal cost from a user’s perspective. Once items are in the
WAL queue, they are guaranteed to eventually be stored
in S3 or SimpleDB, so the order in which we process the
records does not matter.

We must, however, garbage collect state left over by
uncommitted transactions. SQS automatically deletes
messages older than four days, so we do not need to per-
form any additional reclamation (unless the 4-day win-
dow becomes too large) on the queue. However, tempo-
rary objects that have been stored on S3 must be explic-
itly removed if they belong to uncommitted transactions.
We use a cleaner daemon to remove temporary objects
that have not been accessed for 4 days.

Protocol: Figure 2c shows our final protocol. We di-
vide the protocol into two phases: log and commit. The
log phase begins when an application issues a close or
flush on a file and consists of the following actions.

1. Store a copy of the data file with a temporary name
on S3.

2. Allocate a uuid as a transaction id. Extract the
provenance of the object. Group the provenance
records into chunks of 8KB and store each of
these chunks as log records (messages) in the WAL
queue. The first bytes of each message contain the
transaction id and a packet sequence number. The
first message has the following additional records:
A record indicating the total number of packets
in the transaction, a record that has a pointer to
the temporary object, and a record tagged with the
transaction id and the object version.

In the commit phase, the commit daemon assembles the
packets belonging to transactions and once it receives
all the packets of a transaction, performs the following
actions.

1. Store any provenance record larger than 1KB into
a separate S3 object and update the attribute-value
pair to contain a pointer to the S3 object.

2. Store the provenance in SimpleDB by issuing
BatchPutAttributes calls. SimpleDB allows us
batch up to 25 items per call, hence we issue as
many calls as necessary to store all the items.

3. Execute an S3 COPY method to copy the temporary
S3 object to its permanent S3 object, updating the
version as part of the COPY.

4. Delete the temporary S3 object using the S3
DELETE method. Delete all the messages related
to the transaction from the WAL queue using the
SQS DeleteMessage command.

We include all not-yet-written ancestors of an object
in the object’s transaction in order to obtain multi-object
causal ordering. This ensures that we maintain multi-
object causal ordering even if we send packets in parallel
to SQS. In contrast, the previous protocols required that
we carefully order ancestors and their descendants.

Discussion: The protocol satisfies eventual prove-
nance data-coupling. We cannot provide a stronger guar-
antee due to the eventual consistency model of the ser-
vices and due to the fact that we cannot modify the
underlying services. Applications that are sensitive to
provenance data-coupling can detect inconsistency and
can retry again on detecting inconsistency. In prior
work, we discuss provenance-aware read and write
system calls [28], which provide an interface that can
perform these checks on behalf of the application. Sim-
ilar to the previous protocols, this protocol maintains
eventual multi-object causal ordering, but provides bet-
ter throughput. Further, queries are executed efficiently
as SimpleDB provides rapid, indexed lookup.

5 Evaluation

The goal of our evaluation is to understand the relative
merits of the different protocols and their feasibility in
practice. To that end, our evaluation has three parts:
first, we quantify the storage utilization and data transfer
of the protocols independent of the provenance collec-
tion framework (Section 5.1), second, we evaluate the
efficacy, performance, and cost of the protocols under
various workloads (Section 5.2), and third, we evaluate
the query performance of the protocols (Section 5.3).

We used the following software configurations for the
evaluation:

e S3fs: S3fs on a vanilla Linux 2.6.23.17 kernel.

e P1: Provenance-Aware S3fs on a PASS kernel (Linux
2.6.23.17 kernel with appropriate modifications), with
both provenance and data being recorded on S3.

e P2: Provenance-Aware S3fs on a PASS kernel with
provenance stored on SimpleDB.

e P3: Provenance-Aware S3fs on a PASS kernel with
provenance on SimpleDB, with an SQS queue used
as a log.

To maximize performance, we implemented the proto-
cols to upload the data objects, their provenance, and
ancestral data and provenance in parallel (this violates
multi-object causal ordering for P1 and P2).

We used Amazon EC2 Medium [15] instances running
Fedora 8 to run the benchmarks. The medium instance
configuration at the time we ran the experiments was a
32-bit platform with 1.7 GB of memory, 5 EC2 Com-
pute Units (2 virtual cores with 2.5 EC2 Compute Units

each), and 350 GB of instance storage. Since one can-
not install a custom kernel on EC2 instances, we run the
workload benchmarks (Section 5.2) that use the vanilla
Linux kernel and the PASS kernel as User Mode Linux
(UML) [14] instances with 512MB of RAM on EC2 ma-
chines. We had to use medium EC2 machines as the
small instances proved to be insufficient to run the PASS
kernel as a UML instance. We also ran the benchmarks
from one of our local machines. Both the usage models,
i.e, running the workloads on local machine and storing
data and provenance on the cloud or running the work-
loads on EC2 machines and storing the data and prove-
nance on the cloud are valid as our protocols are agnostic
to the usage model.

We used the following three workloads in our evalua-
tion. Each of the three workloads represents provenance
trees of different depths.

CVSROOT nightly backup This workload simulates
nightly backups of a CVS repository by extracting
nightly snapshots from 30 days of our own repository,
creating a tarball for each night, and uploading the
30 snapshots to AWS. The provenance tree for this work-
load is nearly flat with just the program cp as the ances-
tor of the stored archives. The workload is 1O intensive,
has negligible compute time, and S3fs performs 240 op-
erations under this workload.

Blast This is a biological workload representative of
scientific computing workloads. Blast is a tool used to
find protein sequences that are closely related in two dif-
ferent species. This workload simulates the typical Blast
job observed at NIH [12]. The provenance tree of the
workload has a depth of five. The workload has a mix
of compute and IO operations and S3fs performs 10,773
operations under this workload.

Challenge This is the workload used in the first and
second provenance challenge [35]. The workload sim-
ulates an experiment in fMRI imaging. The inputs to
the workload are a set of new brain images and a single
reference brain image. First, the workload normalizes
the images with respect to the reference image. Sec-
ond, it transforms the image into a new image. Third, it
averages all the transformed images into one single im-
age. Fourth, it slices the average image in each of three
dimensions to produce a two-dimensional atlas along
a plane in the third dimension. Last, it converts the
atlas data set into a graphical atlas image. The chal-
lenge workload graph is the deepest with maximum path
length of eleven. Similar to blast, the workload has a mix
of compute and IO operations and S3fs performs 6,179
operations.

We ran each workload at least 5 times for each con-
figuration. The elapsed times we present do not include
the commit daemon times for P3 as it operates asyn-

chronously, thus not affecting the elapsed times.

Our evaluation results are AWS-specific as it is cur-
rently the only mature cloud service that also provides
all the services we need (Note that SimpleDB, as of Jan-
vary 2010, is in public beta). Further, we find that AWS
performance is highly variable due to a variety of fac-
tors that are not under our control, such as the load on
the services, WAN network latencies, and the version of
the software used for the service. Further, upgrades to
the services seem to continually improve performance
over time, thus making reproducibility harder. Due to
the variance, we find that results from different days are
not comparable. We found that we needed to execute
the benchmarks at the same time or within a short time
period for the results to be comparable. Even so, we
find that at a given time, any of the protocols can per-
form well due factors such as relative load on the ser-
vice, proximity of the replica chosen to service requests,
etc. We have run a large number of experiments between
August 2009 and January 2010. The results we present
are those that are most representative of the behavior we
observed and best illustrate the trends that we observed
repeatedly.

5.1 Microbenchmarks

250
200
150
100

Time (Seconds)

50 -

UML

Figure 3: Elapsed times for the microbenchmark on an EC2
instance and on an UML machine running on an EC2 instance.

Our microbenchmarks quantify the throughput ob-
tained by each protocol relative to S3fs. To isolate
the protocol throughput from the application and prove-
nance collection overheads, we ran the Blast benchmark
on a unmodified PASS system and captured the prove-
nance. We then built a tool that uploaded the data ob-
jects and their provenance to the cloud using each pro-
tocol. We ran the microbenchmark on an EC2 instance.
Further, to demonstrate that the results in the following
section are not an artifact of using UML, we also ran the
microbenchmark on a UML instance running on EC2.
Figure 3 shows the microbenchmark results.

On EC2, P3, the protocol that best satisfies our prop-
erties, also exhibits the lowest overhead (32.6%) and P1
dominates P2. As there is no application time in this mi-
crobenchmark, the overheads are relatively high for all
the protocols, ranging from 32% for P3 to 78.9% for P2.

10

The UML microbenchmark results follow the pattern we
see in the EC2 microbenchmark results, indicating that
UML does not change the relative performance of the
protocols.

S3
324.7

SimpleDB
537.1

SQS
36.2

Time (s)

Table 2: Time taken to upload 50MB of provenance to each
of the services

To understand why the protocols exhibit this relative
performance, we ran another benchmark where we up-
loaded, in parallel, the first SOMB of provenance gener-
ated during a Linux compile to each of S3, SimpleDB,
and SQS. Table 2 shows the results of this experiment.
We find that SQS is dramatically faster than either S3 or
SimpleDB and that S3 is significantly faster than Sim-
pleDB. We tried to find the maximum possible through-
put by varying the number of concurrent connections to
each service. We found that S3 and SQS scaled well
as the number of connections increased (we stopped at
150) while SimpleDB peaked at around 40 concurrent
connections from a single client host. The numbers in
Table 2 used 150 concurrent connections for S3 and SQS
and 40 concurrent connections for SimpleDB. Thus, P1
leverages the better parallelism in S3 relative to Sim-
pleDB and outperforms P2. P3 exhibits the best perfor-
mance as it bundles all its provenance into 8KB chunks
uploading them to SQS, the fastest service.

Data Transmitted (MB) | Operations
S3fs | 713.09 617
P1 | 715.31(0.31%) 2287 (270.7%)
P2 | 716.11 (0.42%) 1235 (100.2%)
P3 | 716.32(0.45%) 1337 (116.7%)

Table 3: Data transfer and operation overheads for the pro-
tocols. The overheads, shown in parentheses, are relative to
S3fs. Protocol P3 numbers do not include the commit daemon.
The operation count in the microbenchmark are reduced as we
only upload the final results of the computation.

Table 3 shows the data and operation overheads. The
data overheads are negligible — all under 1%. In con-
trast, the overhead in terms of number of operations is
quite large, because all the protocols are at least dou-
bling their work, writing both provenance and data. But,
as we will see in the next section, operations are not very
expensive.

5.2 Workload Overheads

Figure 4 shows the elapsed times for the workload
benchmarks run from EC2 instances and from a local
machine. We present results collected during Septem-

2000

—— S3fs
P1
P2
1500 P3
8
=4
Q
3
@ 1000 H
Q
E
. 500 H
0
BLAST NIGHTLY CHALL BLAST NIGHTLY CHALL
()
2000 T T
C—— S3fs
P1
B P2
_. 1500 p3
8
c
o
o
a 1000 q
[
E
T 500

BLAST NIGHTLY

CHALL

(b)

BLAST NIGHTLY CHALL

Figure 4: Elapsed times for workload benchmarks. Figure 4a shows the results for the benchmarks from September 2009.

Figure 4b shows the results for the benchmarks from December 2009/January 2010. In both graphs, the left half shows elapsed

times when the benchmark runs on EC2 instances. The right half shows the elapsed time when running on a local machine.

ber 2009 (Figure 4a) and during December and January
2009-2010 (4b). The Figure consists of 12 sets of re-
sults, with each set consisting of 3 individual results
that measure the individual protocol overhead relative to
S3fs.

Overall, we observe that the overheads are reason-
able — less than 10% for 29 of the 36 individual results
shown above. Of the remaining 7 results, 5 of them have
an overhead less than 20%. The maximum overhead is
36% for P2 for the challenge workload benchmark run
in December/January on EC2. For the same scenario in
September, P2 has an overhead of 24.3%.

Incorporating application time into the equation re-
veals that the relative performance of the different pro-
tocols is comparable. At first blush, P3 seems to be the
fastest protocol as it performs the best in 8 out of the 12
result sets. However, the error bars on the graphs indi-
cate that the difference is not statistically significant.

We expected the elapsed time for the benchmarks to
be greater in the local machine case than in the EC2
case. This was borne out for the nightly backup and
challenge workloads. However, the Blast workload ran
faster on the local machine than on EC2. We hypoth-
esized that this was caused by an interaction between
Blast’s memory accesses and the UML’s small 512MB
memory (512MB is the maximum UML instance mem-

11

ory). We confirmed this by running Blast and the nightly
backup benchmark on a native (not UML) EC2 instance.
The I/0 time for the nightly benchmark increased from
419s on a raw EC2 machine to 528s on a UML EC2 in-
stance. For Blast, the corresponding number increases
from 650s to 1322s. The dramatic difference between
native EC2 and UML EC2 for the Blast workload was
highly suggestive.

Finally, we observe that the elapsed times for all
benchmarks except for the nightly local case, have re-
duced between 4% to 44.5% from September 09 to De-
cember 09/January 10. We also observe that P1’s perfor-
mance approaches that of P3 in many of the application
benchmarks. As we stated earlier, this is due to various
factors that are beyond our control.

Nightly | Blast | Challenge
S3fs | $1.05 |$0.37 $0.27
P1 $1.05 |$0.39| $0.29
P2 $1.05 | $0.38 $0.29
P3 $1.06 [$0.40| $0.30

Table 4: Cost for each benchmark (includes commit daemon
cost).

Table 4 shows the cost in USD for each protocol.

Overall, we observe the following relationship between
protocols: P3 > P1 >= P2 >= S3fs. The extra
cost required to store provenance in each of the pro-
tocols is minimal (compared to S3fs). As expected,
P3 is the most expensive due to the operations it per-
forms to log provenance on SQS and then upload prove-
nance to SimpleDB. The cost for P1 and P2 are similar
for Nightly and Challenge workloads. For Blast, P2 is
cheaper than P1, because P1 needed more operations to
store the provenance on S3 than P2 required to store the
same provenance on SimpleDB.

5.3 Query performance

To evaluate query performance, we ran the following
four queries on the Blast workload provenance:

Q.1 Retrieve all the provenance ever recorded.

Q.2 Given an object, retrieve the provenance of all ver-
sions of the object.

Q.3 Find all the files that were directly output by Blast.

Q.4 Find all the descendants of files derived from Blast.

We chose these queries as they represent varying lev-
els of complexity. The first query is a simple dump of all
the provenance. The second query uses an object handle
to retrieve all of its provenance but requires no search.
The third involves a lookup and a single-level descen-
dant query. The fourth is a full descendant query. Table 5
shows the query results. There are only two different
sets of results as P1 uses S3 objects to store provenance,
and P2 and P3 use SimpleDB to store provenance, thus
having identical query capabilities and performance.

We implement Q.1 in S3 by fetching the list of all
S3 provenance objects and then performing a GET for
each. Since there are no ordering constraints on when
the GET requests are executed, i.e., it is not necessary for
any GET to wait for the completion of another request,
parallelizing these operations greatly improves perfor-
mance (as we can see in the Table 5).

In SimpleDB, we execute “SELECT *” to retrieve all
the provenance. We implement this as a single request
that, due to the limits imposed by SimpleDB, has to be
decomposed into several sequential operations, where
one operation has to complete before the next one can
start, so this request cannot be parallelized. However,
the number of SimpleDB round-trips is smaller than in
S3, and the query thus executes much more quickly.

In Q.2, the performance is comparable for both S3
and SimpleDB. We implement this query by first issuing
a HEAD operation on the object to determine the uuid
used to reference its provenance. In S3, we then issue a
GET on the provenance object, while in SimpleDB we
perform an appropriate SELECT operation. Note that
these two operations must be performed sequentially, so
the query cannot benefit from parallelism. Because both

12

S3 and SimpleDB perform the HEAD operation, the per-
formance is comparable.

In Q.3 and Q.4, we need to first find records (items)
of processes that correspond to the multiple executions
of Blast. This translates into looking up all items that
satisfy a certain property. In S3, this requires a scan
of all provenance objects. We implemented these two
queries in S3 by retrieving all provenance objects and
then processing the query locally. SimpleDB is more ef-
ficient for Q.3 and Q.4 as it indexes all the attributes in
the database. Hence, for Q.3 and Q.4 in SimpleDB, we
first issue a SELECT to find all items corresponding to
Blast. We then issue a set of SELECT queries to find
the names of all the items that reference the Blast items
retrieved in the previous call. For Q.4, we have to re-
peat the second step recursively until we have located all
the descendants. As we can see from the results, Sim-
pleDB is an order of magnitude faster as it can retrieve
data more selectively. Further, the performance gap be-
tween S3 and SimpleDB is bound to grow larger as more
objects are involved.

5.4 Summary

All three protocols have low cost and data transfer over-
heads. The workload overheads were less than 10% over
S3fs for all protocols in the majority of the cases. Our
microbenchmarks show that P3, our most robust proto-
col, is the best performing. But, when application over-
heads are included, all protocols are within statistical er-
ror. Thus users can select the best protocol best suited
for their needs, without performance penalty.

6 Related Work

Provenance in distributed workflow-based and grid en-
vironments has been explored by several prior research
projects [11, 17, 21, 40]. There are also systems that
track application-specific data to be able to regenerate
data [23] or reproduce experiments [16]. All prior work
assumes the ability to alter the underlying system com-
ponents, as opposed to having to make due with a given
infrastructure as we do here. We develop a provenance
solution atop an infrastructure over which we have no
control. However, we complement this prior work, and
our protocols can be used to move the provenance col-
lected by the above frameworks to the cloud.

Branthner et. al. [9] explore using S3 as a backend
for a database. They use SQS as a log to ensure atomic
updates to the database, similar to the mechanism we use
in P3. While the mechanisms are similar, this work and
Branthner et. al. address different research questions.
Brantner et. al. use the mechanism to coordinate updates
to a single service. We use the mechanism to provide
consistency between two services, S3 and SimpleDB.

In prior work [31], we explored the challenges of stor-

S3 (P1) SimpleDB (P2, P3)
Query Time (s) Time (s)
Sequential | Parallel MB Transferred | Ops. Sequential | Parallel MB Transferred | Ops.
Q.1 48.57 7.04 2951671 0.83 - 2.05 13
Q.2 0.060 - 0.0015 2 0.037 - 0.008 2
Q3 48.57 7.04 2951671 0.82 0.34 0.11 37
Q4 48.57 7.04 2.95|1671 1.86 0.72 0.19 87

Table 5: Query performance. The table shows the time taken to complete the queries, the total data transferred, and the total
number of executed operations. The table shows the times for both sequential and parallel execution of the query. In both cases,
the number of operations and the data transferred was the same. For Q.2, the values shown are the average time taken per object.

ing provenance in the cloud, outlined protocols, and per-
formed a rudimentary analysis of the protocols. This
work follows on where that work left off, i.e., we im-
plement and evaluate the protocols. Some tweaks were
necessary to realize the protocols in practice. For ex-
ample, for P1, we had originally intended to store the
provenance as metadata of the S3 object, but this does
not satisfy the data independent persistence property.

Hasan et. al. [22] discuss cryptographic mechanisms
to protect provenance from tampering. Juels et. al [24]
and Ateniese et. al. [4] present schemes that allow users
to efficiently verify that a provider can produce a stored
file. These research projects are complementary to our
work and we can leverage them to verify that malicious
users and servers have not tampered provenance on the
cloud.

7 Native Cloud Provenance: Research

Challenges

This work has focused on storing and accessing prove-
nance on current cloud offerings. In the current scheme
where provenance and data are stored on separate ser-
vices, however, providers have no means to link the
provenance of an object to its data. Providing native sup-
port for provenance on cloud stores enables providers to
relate provenance to its data, allowing the providers to
leverage the provenance for their benefit [32]. For ex-
ample, the graph structure in provenance can provide
service providers with hints for object replication. As
more data moves to the cloud, providers will need to
provide search capabilities to users. As outlined previ-
ously (Section 2.2), provenance can play a crucial role
in improving search quality. Cloud providers could also
allow users to chose between storing data and regener-
ating data on demand, if the provenance of data were
available to them [3].

Building native support for the cloud presents a num-
ber of challenges in addition to the issues that arise in
building large scale distributed systems. We discuss
some of these research challenges next.

13

System Architecture A native provenance store has to
support both the object storage requirements of data and
the database functionality requirements of provenance.
The simplest approach is to obviously store the prove-
nance and the data in two separate services. However,
one needs to to co-ordinate updates across the two ser-
vices. To provide strong provenance data-coupling us-
ing an external co-ordination service, the underlying ser-
vices have to export a transactional interface. However,
a fully transactional system is not feasible at the scales
at which the cloud operates. Finding a middleground
between the two extremes and the cost of each approach
(the naive approach, fully transactional, and a possible
middleground) is an open research challenge.

Security Provenance can potentially contain sensitive
information. The fundamental issue is that provenance
and the data it describes do not necessarily share the
same access control. For example, consider a report gen-
erated by aggregating the health information of patients
suffering a certain ailment. While the report (the data)
can be accessible to the public, the files that were used to
generate the report (the provenance) must not be. Prove-
nance security is an open problem that is being explored
by multiple research groups [10]. Providers need to take
these issues into consideration while extending their ser-
vice to support provenance.

Provenance Storage The semi-structured data model,
imported by SimpleDB and Azure Table, is appropri-
ate for storing provenance graphs. These services, how-
ever, are not necessarily optimized to store provenance
graphs. Recently, databases such as Neo4j [33], have
been designed from the ground-up for storing graphs.
Exploring if a data service designed from the ground-
up for storing provenance is more efficient in terms of
performance and cost compared to a generic database
service is an interesting avenue for future work.

Learning Models As we stated above, cloud providers
can take advantage of provenance in a variety of ways.
However, for each particular application, a particular
subset of provenance has to be extracted or a particu-
lar type of generalization has to be made across all ob-

jects. For some applications, a simple pattern match-
ing approach might be sufficient and for other applica-
tions, sophisticated machine learning mechanisms might
be necessary. The models necessary to extract the nec-
essary data for each application is an open question.

Processing Provenance Graphs The models above
need to process the provenance graph to extract the
necessary information. However, there are currently
no general purpose graph processing systems available.
MapReduce is one mechanism that is generally used to
process graphs. Pregel [26], based on Bulk Synchronous
Parallel model, is another approach that is currently be-
ing developed. How the two mechanisms compare with
each other for graph workloads is a study worth under-
taking.

Transparent Provenance Collection This work ex-
pects and trusts users to supply provenance. The prove-
nance graph supplied by users is rich as it consists of
process information. Without support from users, the
cloud can automatically infer diluted provenance, i.e.,
provenance minus process information. In this prove-
nance graph, all the processes from a single host will be
represented by a single node representing the host. What
subset of the provenance applications can be driven by
this diluted graph?

Economics Providing native support for provenance
increases the cost to the provider in terms of storage,
CPU, and network bandwidth. Prior to embarking on
building a native cloud store, an economic analysis that
justifies that the extra cost of provenance is necessary.
To this end, we need to design appropriate economic
models and evaluate the cost of storing provenance.

8 Conclusions

The cloud is poised to become the next generation com-
puting environment, and we have shown that we can
add provenance to cloud storage in several ways. Our
evaluation shows that all three protocols have reason-
able overhead in terms of time to execute and minimal
financial overhead. Further, our most robust protocol,
which provides all the properties we outline, performs as
well, if not better, than the other protocols, making it one
of those rare occasions where we need not make com-
promises to achieve our objectives. We can construct a
fully functional and performant provenance system for
the cloud using off-the shelf cloud components.

The web, which is the most widely used medium for
sharing data, does not provide data provenance. The
cloud, however, is still in its infancy, and can easily in-
corporate provenance now. We can deploy these kinds of
services with systems today, but it is worth investigating
the cost, efficacy, and feasibility of offering provenance
as a native cloud service as well.

14

Acknowledgments We thank Kim Keeton, Bill
Bolosky, Keith Smith, Erez Zadok, James Hamilton, and
Nick Murphy for their feedback on early drafts of the pa-
per. We thank Matt Welsh for discussions at early stages
of the project. We thank Jason Flinn, our shepherd, for
repeated careful and thoughtful reviews of our paper. We
thank Kurt Messersmith from Amazon Web Services for
providing us with credits to run the experiments in the
paper. We thank the FAST reviewers for the valuable
feedback they provided. This work was partially made
possible thanks to NSF grant CNS-0614784.

References

[1]
[2]

Pubchem. http://pubchem.ncbi.nlm.nih.gov/.

Genbank. Nucleic Acids Research 36 (Database Issue) (January
2008).

ADAMS, 1., LONG, D. D. E., MILLER, E. L., PASUPATHY, S.,
AND STORER, M. W. Maximizing efficiency by trading storage
for computation.

ATENIESE, G., BURNS, R., CURTMOLA, R., HERRING, J.,
KISSNER, L., PETERSON, Z., AND SONG, D. Provable data
possession at untrusted stores. In CCS ’07: Proceedings of the
14th ACM conference on Computer and communications secu-
rity (New York, NY, USA, 2007), ACM, pp. 598-609.

Amazon Web Services. http://aws.amazon.com.

Windows Azure Blob. http://go.microsoft.com/
fwlink/?LinkId=153400.

Windows Azure Queue. http://go.microsoft.com/
fwlink/?LinkId=153402.

Windows Azure Table. http://go.microsoft.com/
fwlink/?LinkId=153401.

BRANTNER, M., FLORESCU, D., GRAF, D., KOSSMANN, D.,
AND KRASKA, T. Building a database on S3. In SIGMOD
’08: Proceedings of the 2008 ACM SIGMOD international con-
ference on Management of data (New York, NY, USA, 2008),
ACM, pp. 251-264.

BRAUN, U., SHINNAR, A., AND SELTZER, M. Securing Prove-
nance. In Proceedings of HotSec 2008 (July 2008).

CHEN, Z., AND MOREAU, L. Implementation and evaluation of
a protocol for recording process documentation in the presence
of failures. In Proceedings of Second International Provenance
and Annotation Workshop (IPAW’08).

COULOURIS, G. Blast benchmarks. http://
fiehnlab.ucdavis.edu/staff/kind/Collector/
Benchmark/Blast_Benchmark.

DAGDIGIAN, C. Plenery Keynote: Bio.IT World. http://
blog.bioteam.net/wp-content/uploads/2009/
04/bioitworld-2009-keynote-cdagdigian.pdf.
DIKE, J. User-mode linux. In Proceedings of the 5th An-
nual Linux Showcase & Conference (Oakland, California, USA,
2001).

Amazon Elastic Compute Cloud (Amazon EC2).
aws.amazon.com/ec2.

EIDE, E., STOLLER, L., AND LEPREAU, J. An experimen-
tation workbench for replayable networking research. In 4th
USENIX Symposium on Networked Systems Design & Implemen-
tation (2007).

FOSTER, 1., VOECKLER, J., WILDE, M., AND ZHAO, Y. The
Virtual Data Grid: A New Model and Architecture for Data-
Intensive Collaboration. In CIDR (Asilomar, CA, Jan. 2003).
FREW, J., METZGER, D., AND SLAUGHTER, P. Automatic
capture and reconstruction of computational provenance. Con-

currency and Computation: Practice and Experience 20 (April
2008), 485-496.

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15] http://

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

Filesystem in userspace.
net/.

GRAY, J., SLUTZ, D., SZALAY, A., THAKAR, A., VANDEN-
BERG, J., KUNSZT, P., AND STOUGHTON, C. Data Mining the
SDSS SkyServer Database. Research Report MSR-TR-2002-01,
Microsoft Research, January 2002.

GROTH, P., MOREAU, L., AND LUCK, M. Formalising a proto-
col for recording provenance in grids. In Proceedings of the UK
OST e-Science Third All Hands Meeting 2004 (AHM’04) (Not-
tingham, UK, Sept. 2004). Accepted for publication.

HASAN, R., SION, R., AND WINSLETT, M. The Case of the
Fake Picasso: Preventing History Forgery with Secure Prove-
nance. In FAST (2009).

HEYDON, A., LEVIN, R., MANN, T., AND YU, Y. S{thware
Configuration Management Using Vesta. Monographs in Com-
puter Science, Springer, 2006.

JUELS, A., AND KALISKI, JR., B. S. Pors: proofs of retrievabil-
ity for large files. In CCS "07: Proceedings of the 14th ACM con-
ference on Computer and communications security (New York,
NY, USA, 2007), ACM, pp. 584-597.

The LINQ project. http://msdn.microsoft.com/
en-us/vcsharp/aa%904594.aspx.

MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHNERT,
J. C., HORN, I., LEISER, N., AND CZAJKOWSKI, G. Pregel: a
system for large-scale graph processing. In PODC ’09: Proceed-
ings of the 28th ACM symposium on Principles of distributed
computing (New York, NY, USA, 2009), ACM, pp. 6-6.
MARGO, D. W., AND SELTZER, M. The case for browser prove-
nance. In Ist Workshop on the Theory and Practice of Prove-
nance (2009).

MUNISWAMY-REDDY, K.-K., BRAUN, U., HOLLAND, D. A.,
MACKO, P., MACLEAN, D., MARGO, D., SELTZER, M., AND
SMOGOR, R. Layering in provenance systems. In Proceedings
of the 2009 USENIX Annual Technical Conference.
MUNISWAMY-REDDY, K.-K., AND HoOLLAND, D. A.
Causality-Based Versioning. In Proceedings of the 7th USENIX
Conference on File and Storage Technologies (Feb 2009).
MUNISWAMY-REDDY, K.-K., HOLLAND, D. A., BRAUN, U.,
AND SELTZER, M. Provenance-aware storage systems. In Pro-
ceedings of the 2006 USENIX Annual Technical Conference.
MUNISWAMY-REDDY, K.-K., MACKO, P., AND SELTZER, M.
Making a cloud provenance-aware. In 1st Workshop on the The-
ory and Practice of Provenance (2009).

MUNISWAMY-REDDY, K.-K., AND SELTZER, M. Provenance
as first-class cloud data. In 3rd ACM SIGOPS International
Workshop on Large Scale Distributed Systems and Middleware
(LADIS’09) (2009).

Neo4j, the graph database. http://neo4j.org/.

http://fuse.sourceforge.

Provenance aware service oriented architecture. http:
//twiki.pasoa.ecs.soton.ac.uk/bin/view/
PASOA/WebHome.

The First Provenance Challenge.
twiki.ipaw.info/bin/view/Challenge/
FirstProvenanceChallenge.

RizUN, R. S3fs: FUSE-based file system backed by Ama-
zon S3. http://code.google.com/p/s3fs/wiki/
FuseOverAmazon.

http://

Amazon Simple Storage Service (Amazon S3). http://aws.
amazon.com/s3.
Amazon SimpleDB.
simpledb.

SHAH, S., SOULES, C. A. N., GANGER, G. R., AND NOBLE,
B. D. Using provenance to aid in personal file search. In Pro-
ceedings of the USENIX Annual Technical Conference (2007).

http://aws.amazon.com/

15

[40]

[41]

[42]

SIMMHAN, Y. L., PLALE, B., AND GANNON, D. A framework
for collecting provenance in data-centric scientific workflows. In
ICWS ’06: Proceedings of the IEEE International Conference on
Web Services (2006).

Amazon Simple Queue Service (SQS).
amazon.com/sgs.

ZHAO, J., GOBLE, C.AND GREENWOOD, M., WROE, C., AND
STEVENS, R. Annotating, linking and browsing provenance logs
for e-science.

http://aws.

