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Abstract

Digital provenance is meta-data that describes the ances-
try or history of a digital object. Most work on prove-
nance focuses on how provenance increases the value of
data to consumers. However, provenance is also valuable
to storage providers. For example, provenance can pro-
vide hints on access patterns, detect anomalous behav-
ior, and provide enhanced user search capabilities. As
the next generation storage providers, cloud vendors are
in the unique position to capitalize on this opportunity to
incorporate provenance as a fundamental storage system
primitive. To date, cloud offerings have not yet done so.
We provide motivation for providers to treat provenance
as first class data in the cloud and based on our experi-
ence with provenance in a local storage system, suggest
a set of requirements that make provenance feasible and
attractive.

1 Introduction

Provenance is meta-data that describes the history of an
object. In digital systems, this translates to a description
of how the object was derived. Provenance is crucial in a
number of areas such as scientific computation, security,
regulatory compliance, and data archival. Scientists use
provenance for experimental reproducibility or to deter-
mine what changed between two runs of an experiment.
Provenance is useful for security as it can be used to
verify how a virus spread through a system. The busi-
ness community uses provenance to prove facts about
information disclosure. Archivists maintain provenance
meta-data to support document viability, renderability,
understandability, authenticity, and identity in preserva-
tion contexts [20].

Provenance can be abstractly defined as a directed
acyclic graph (DAG) 1. The nodes in the DAG repre-
sent objects such as files, processes, tuples, data sets,
etc. These nodes are further annotated with attributes.

1The Open Provenance Model (OPM) [16] is a draft standard for
provenance. The draft is under community review and significant work
remains to be done before it will be useful to all systems.

For example, a process node might be annotated with at-
tributes such as the executable path, the environment, and
the command line arguments. A file node is annotated
with its name and version. The edge between two nodes
indicates a dependency between the objects. For exam-
ple, an edge from an object A to an object B indicates
that B was derived from A. The provenance graph, by
definition, is acyclic as the presence of cycles indicates
that objects are their own ancestors.

Provenance increases the value of data on the cloud, as
it does in other domains. For example, Amazon’s “Pub-
lic Data Sets on AWS” provides free storage for public
data sets such as GenBank [2], US census data, and Pub-
Chem [1]. Provenance can help validate the processes
that were used to generate these data sets and hence
can help researchers decide if they want to use the data-
sets. Alternately, hardware and software sometimes have
bugs, and data released on the cloud may have been pro-
duced by such faulty hardware or software. For exam-
ple, computations performed on cloud services, such as
EC2 (Amazon’s virtual machine service), make use of
machines whose hardware, operating system, and library
configurations are frequently updated. Provenance can
help identify if a data set was tainted by faulty hardware
or software.

While provenance is useful to storage users, it also
provides valuable hints about data to the cloud storage
providers. For example, a cloud store can use the prove-
nance graph to drive prefetching decisions as subsets of
objects in the graph might be accessed together. Simi-
larly, providers can let users set access control policies
on their data via predicates on the provenance. Access
policies based on provenance are succinct and less error
prone. We discuss these use cases in detail in Section 2.

Most cloud storage services are not designed to con-
veniently store meta-data, let alone provenance. Hence,
users currently have to store provenance in a separate ser-
vice. As provenance is neither generated nor maintained
as a core part of the storage service, storage providers
cannot connect provenance to its corresponding data and
thus cannot exploit information inherent in provenance.
Not only is this inconvenient to users as they have to de-
velop additional tools to record provenance, but it is also
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a missed opportunity for cloud service providers. Provid-
ing strong support for provenance is a win-win situation
for cloud providers; it reduces the development effort for
cloud users and provides information of high value to
cloud providers

We restrict the focus of the paper to object or file based
cloud stores. In the future, we plan to explore provenance
for database and structured cell based cloud stores such
as Google BigTable [6]. We can plan to build on prior
work [25, 5] that has explored issues in provenance for
database systems.

The contributions of this paper are:

1. We demonstrate the utility of provenance to cloud
storage providers.

2. We illustrate how current cloud meta-data support
is insufficient for provenance.

3. We present a set of requirements that will make
provenance accessible to users and useful to cloud
providers.

The rest of the paper is organised as follows. In Sec-
tion 2, we present use cases that illustrate how cloud
providers can exploit provenance. In Section 3, we
present background on some of the current cloud services
and discuss how their interfaces are inadequate for prove-
nance storage and management. In Section 4, we present
the requirements that cloud storage providers have to sat-
isfy in order to treat provenance as a first class citizen.
We conclude in Section 5.

2 Why Cloud Store Providers
Should Care About Provenance

Provenance provides information about an application
and its structure that enables providers to enhance their
service. In this section, we describe use cases that
demonstrate how cloud storage providers can exploit
provenance to more effectively manage their storage and
enhance the value of the services they provide. We also
present our thoughts on the privacy concerns that users
might have regarding storing provenance on the cloud
and trust issues that cloud providers have to address.

2.1 Detect Application Anomalies
The pay-as-you-go business model of the cloud presents
an interesting dynamic. Consider an application that fails
to shut down appropriately, thereby consuming more re-
sources than intended. On one hand, it might be in a
cloud provider’s best interest to allow such behavior, be-
cause they can charge for the unintended resource con-
sumption. On the other hand, it is in the provider’s best

interest to earn the good will of customers, alerting them
to anomalous behavior (especially behavior that might be
costing them money).

Provenance can help providers in this endeavor.
Provenance provides a detailed representation of the
“normal” behavior or use of programs or objects.
Changes in the structure of the provenance are a rea-
sonably good indication of unusual behaviour. Prior
work [12, 24] in security uses information similar to
provenance to detect that a system is behaving in an
anomalous fashion. These systems use runtime data to
construct a model of “normalcy.” Using these models,
they detect applications behaving in unusual ways and
take appropriate corrective actions.

Similarly, cloud stores can use provenance to build
models of both applications and users. Just as credit
card companies alert customers when their card usage
patterns appear anomalous, cloud providers could simi-
larly alert their customers of unusual behavior 2.

For example, data generated by a video-encoder
application might be write-once, read-mostly. If, for
some reason, a bug in the application is triggered that re-
peatedly over-writes the same file, the cloud could detect
this behaviour and notify the user.

2.2 Content-Based Search

As users store more shared data on the cloud, cloud
providers will need to provide content-based search to
help users find data of interest. The cloud search problem
is synonymous to web search in many ways. Web search
engines have a centralized location with large compute
and storage power to index the web. Similarly, the cloud
is centralized with a large amount of compute and stor-
age power. One major difference between the cloud and
the web is that cloud data lacks the explicit link structure
present in the web; this link structure plays an important
role in improving the efficacy of web search.

Provenance, however, forms its own graph and can
play a similarly important role in enhancing data search
in the cloud. Shah et. al. [23] showed that provenance
can be used to improve desktop search. Shah’s scheme
computes an initial seed of search results using content-
based search and then enhances the results using the
provenance dependency links of the files in the result.
Similarly, cloud stores can compute search results based
on the content and then further refine the results using
provenance that describes inter-file dependencies.

2We acknowledge that building accurate models of application be-
haviour remains an open research area and that there can be false neg-
atives. Even so, provenance can augment existing anomaly detection
mechanisms or can provide data to explain why anomalies occur.
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2.3 Provenance as Access Control

Currently, cloud stores provide access control via Access
Control List (ACL). Since access control in every cloud
offering varies in the details, we use Amazon’s Simple
Storage service (S3) [21] as an example for the rest of
this section. In S3, users either specify explicit ACLs
for each object they wish to share or make them publicly
available to all Amazon Web Services (AWS) users or
all internet users. Restricting access is tedious and error
prone as it is easy for users to inadvertently forget to set
permissions or to set them incorrectly. Another alterna-
tive is for users to group data into containers called buck-
ets and set the appropriate access control for the buckets.
However, such a re-organization of data is tedious and
requires that users organize data logically in a way that
matches their security requirements.

Often the process used to produce an object provides
hints about appropriate access control for that object.
For example, data derived from confidential data prob-
ably needs to remain confidential, while data derived by
“blessed” aggregating processes can probably be made
public. Hence, if cloud providers treat provenance as a
first-class entity, they can allow users to specify access
control policies as a function of the provenance. For ex-
ample, a user can specify a policy that states all data de-
rived from a file named “top-secret” should be available
only to a specified set of users and that all files gener-
ated by an “aggregator” program can be accessible to
all users. Compared to simple ACLs, this is easier to
specify and manage due to its succinctness. This is also
a finer-grained approach relative to more sophisticated
ACL systems, such as ones based on file-name exten-
sions. Provenance based access control can also be used
to provide reasonable defaults for access controls.

Further, the succinctness of the provenance model
makes it easier to change access policies. In the ACL
model, a change in policy requires a careful review and
modification of all the affected objects and users. In con-
trast, in the provenance model, policy changes only re-
quire reviewing and updating the relevant high level poli-
cies. Such a change is much easier to reason about and
review.

2.4 Object Clustering/Pre-fetching

A number of research projects have explored the issue of
identifying clusters of related objects [14, 13, 8] for ap-
plications ranging from hoarding objects to pre-fetching
objects. These projects were conducted in the context of
local file systems and in the context of mobile computers
operating while disconnected. One can imagine adapting
these algorithms for the cloud to derive similar benefits.

Provenance can play a central role in adapting the al-

gorithms. Dependency links readily provide hints on
how data are related to each other. For example, depen-
dency links might suggest that a particular set of objects
in a graph are regularly accessed sequentially and hence
it might be beneficial to prefetch them as soon as the first
one is requested. Further, decisions used to perform ob-
ject prefetching, can in turn drive object placement de-
cisions. For example, since objects are prefetched to-
gether, it might make sense to ensure that the objects re-
side on a disjoint set of hardware (nodes, routers, etc.).
Furthermore, since many clients store data on the cloud,
the cloud can build more robust models for clustering,
prefetching, and object placement by aggregating prove-
nance graphs/access patterns for similar data across mul-
tiple users.

Finally, cloud providers could use the provenance to
go one step further. Since provenance identifies the pro-
cess and inputs used to generate data and their access
patterns, providers can make explicit tradeoffs between
storing the actual data or re-generating it on demand [3].

2.5 Discussion

Privacy Issues: One can argue that some of the use
cases violate user or data privacy. Note, however, that
using provenance is no different from the email service
scenario. Sites like www.gmail.com mine the text of
email messages to show relevant advertisements to users.
In return users get free email service, providing good
search capabilities. Similarly, we believe that it is ethi-
cal for cloud storage providers to use provenance to pro-
vide improved service to users as long as cloud storage
providers do not exploit provenance in a malicious man-
ner.

Trust Issues: All the provenance has to be provided by
the clients to cloud providers. Malicious users might pro-
vide false provenance to exert control over the systems
behaviour. Preventing this is an open area of research.
Hasan et. al. [9] explore cryptographic mechanisms for
ensuring that adversaries cannot forge provenance. They,
however, do not solve the problem of entities that simply
fabricate false provenance. This is an important issue for
all provenance systems, and we expect to see progress in
this area as provenance becomes more ubiquitous. An-
other open issue is that of scale. Any scheme for provid-
ing trusted provenance has to efficiently scale.

3 Current Cloud Storage Services

Having described how cloud store providers can utilize
provenance, we now describe some of the current cloud
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services, the interfaces they provide, and how the inter-
faces they provide are inadequate for storing provenance.

3.1 Simple Storage Service (S3)
S3 is Amazon’s storage service [21]. It is an object
store capable of storing objects whose sizes range from 1
byte to 5GB. Each object is identified by a unique URI.
Clients access S3 objects using either SOAP- or REST-
based APIs. Users use the PUT operation to store an
object on S3, overwriting an object if it already exists.
With each object, clients can store up to 2KB of meta-
data, represented as <name,value> pairs. The meta-
data is also specified as a part of the PUT operation.
The GET operation retrieves both the data and the meta-
data. The HEAD operation retrieves only the meta-data
part of an object. There are two significant limitations
to storing provenance in the meta-data of an object on
S3. First, 2KB is insufficient in many cases to store
complete provenance. Second, one cannot query on the
meta-data. To lookup objects by meta-data, users need
to download the meta-data of all of their objects and ex-
amine them. This is undesirable and reduces the value
of provenance. Storing the provenance as a separate S3
object overcomes the 2KB limit, but does not overcome
the query limitation.

Users who want to record provenance of data that they
store on S3 use Amazon’s SimpleDB [22] service to store
provenance [7]. The SimpleDB service provides index
and query functionality necessary for provenance. Sim-
pleDB’s data model is semi-structured, i.e., it consists
of a set of rows (called items), with each row having a
unique itemid and each item having a set of attribute-
value pairs. SimpleDB provides a SELECT query inter-
face and a custom QUERY interface that users can use to
retrieve provenance.

3.2 Microsoft Azure Blob
Microsoft’s Azure Blob is a service similar to S3. While
the basic operations are the same in both services, they
differ in the details. For example, Blob imposes an 8KB
limit on the meta-data. S3 allows users to record objects
as large as 5GB in one PUT, while Blob limits a single
PUT to 64MB. To write larger objects in Blob, clients
write blocks of data using a PutBlock operation and then
issue a PutBlockList command that assembles an object
from its blocks and makes the object visible. Similar
to S3, Blob does not allow users to query the meta-data
recorded with the data.

As in the case of Amazon S3, users can use the Mi-
crosoft Azure Table service to store and retrieve prove-
nance for objects in the Blob. The Table service is mostly
similar to SimpleDB, with a major difference being that

Azure supports a LINQ [15] query interface in contrast
to SimpleDB’s query interface.

3.3 Nirvanix Internet Media File System
(IMFS)

IMFS [11] is a distributed clustered file system accessi-
ble over the Internet. As its name suggests, it is opti-
mized for storing media files. Like S3 and Blob, it is
meant to deal with large objects that are written rarely
and read often. It provides SOAP- and REST-based
APIs. Unlike the object interfaces of S3 and Blob, IMFS
provides a file system interface. IMFS is more advanced
in its meta-data management. It allows users to anno-
tate objects with <name,value> pair meta-data and tags.
Tags are strings that are set on objects. Further, IMFS
allows users to lookup objects based on meta-data or
tags. Objects matching meta-data can be looked up us-
ing the SearchMetadata method. The call takes a meta-
data search key and a value and looks for objects that
have matching meta-data on them. Similarly, objects
matching a tag can be looked up using the SearchTags
method. The method takes a search string to look for in
the tags. Hence users can record provenance as meta-
data attribute/value pairs, using the SetMetadata call.
They can perform rudimentary provenance queries us-
ing the SearchMetadata call3. However, there is no sup-
port for complex queries, and in particular, no support
for queries on paths (through a provenance DAG), which
are fundamental to many provenance applications [10].

3.4 Summary
None of the current services provide explicit support for
provenance. At best, users can treat provenance as meta-
data, storing it separately in a database/table-like service.
As a result, cloud stores cannot take advantage of the
provenance.

4 Provenance Requirements
We now discuss some of the requirements that cloud stor-
age providers must satisfy in order to make provenance a
first class citizen.

Co-ordination Between Storage and Compute Facil-
ities. Cloud vendors frequently provide both storage
and compute facilities. For example, Amazon offers the
EC2 virtual machine service that provides users with
on-demand compute power. EC2 users have to use

3Their documentation does not specify the limits on the size of the
meta-data and the number of <key,value> pairs that can be stored with
one object.
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Amazon’s storage services to persist their data. In sce-
narios such as this, the cloud provider, since it pro-
vides both storage and compute facilities, can provide
virtual machines that can infer the provenance of the
data being generated and transmit the provenance to
the storage service along with the data. One approach
to achieve this could be to provide virtual machine in-
stances that are installed with operating system kernels
such as Provenance-Aware Storage Systems [18] that au-
tomatically keep track of provenance.

Allow Customers to Record Provenance of their Ob-
jects. Customers might generate data locally on their
systems and store the data on the cloud. In this case, the
customer or the customer’s local system is responsible
for tracking provenance and providing it to the cloud for
storage. Hence the cloud should provide interfaces for
customers to record provenance for local computations.
If provenance is treated merely as data, then most current
cloud services meet this requirement. In this scenario,
the cloud becomes a provenance substrate and the users
are higher-level entities that can provide more detailed
provenance. Users can layer their provenance system on
top of the cloud using mechanisms we explored in previ-
ous work on layering provenance systems [17].

Provenance Data Consistency. Cloud providers
should ensure that provenance is consistent with the
data it describes. As the cloud is inherently a distributed
system, if the provenance and the data are recorded
using separate methods, the provenance can become
inconsistent with its data. For example, a system might
crash after updating the data but before updating its
provenance. The inconsistency can mislead both users
and providers that want to use the data.

Cloud stores should provide interfaces that store
provenance and data atomically, thus ensuring consis-
tency between provenance and data. The current S3 and
Blob interfaces already satisfy this requirement. How-
ever, as we discussed earlier, since their meta-data is not
searchable, users have to store provenance in a database
service such as SimpleDB or Table. This introduces the
provenance-data consistency problem. In prior work, we
discuss protocols for storing provenance in the database
service in a manner that retains consistentency [19].
IMFS, however, provides two separate methods for stor-
ing data and for storing meta-data, and hence does not
satisfy this requirement.

Long-Term Persistence. Provenance has to be re-
tained beyond the lifetime of the object it describes. The
provenance of an object might connect objects that are
otherwise unrelated. Hence removing the provenance

when an object is deleted can sever the provenance chain.
If an object had no descendants, then the cloud store can
choose to remove its provenance, since it cannot appear
in the provenance chain of any other object.

Expose Provenance for External Use. Providing the
right interface for storing provenance allows users to
store provenance and for the cloud to utilize it. However,
provenance is primarily of interest to the users who want
to use some data on the cloud. For example, provenance
must be accessible to users who want to verify properties
of their data or simply be aware of its lineage. If a system
stores provenance, but that provenance is not readily ac-
cessible, the provenance is of questionable value. Thus
the cloud must support efficient query and indexing of
provenance.

Provenance Security. Provenance can potentially con-
tain sensitive information. For example, consider a paper
review: the data (contents of the review) must clearly be
accessible to the authors, but the provenance (reviewers’
identities) must not be. Hence the cloud storage provider
should ensure appropriate security for provenance itself.
Provenance security is, however, an open problem as the
provenance and the data it describes do not necessarily
share the same access control [4].

5 Conclusions

In this paper, we argue that cloud stores should treat
provenance as a first class citizen. By treating prove-
nance as a first-class citizen, both the cloud store and the
users will benefit. The users will benefit as it reduces
the extra development effort needed to store provenance.
In turn, cloud providers can take advantage of the rich
information inherent in provenance for various applica-
tions ranging from security enforcement, to search, to
performance improvement.
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