
Provenance-based Intrusion Detection: Opportunities
and Challenges

Xueyuan Han
Harvard University

Thomas Pasquier
University of Cambridge

Margo Seltzer
Harvard University

Abstract
Intrusion detection is an arms race; attackers evade intru-
sion detection systems by developing new attack vectors to
sidestep known defense mechanisms. Provenance provides
a detailed, structured history of the interactions of digital
objects within a system. It is ideal for intrusion detection,
because it offers a holistic, attack-vector-agnostic view of
system execution. As such, provenance graph analysis fun-
damentally strengthens detection robustness. We discuss the
opportunities and challenges associated with provenance-
based intrusion detection and provide insights based on our
experience building such systems.

1 Introduction
System security continues to be an arms race between in-
truders and defenders. In this arms race, attackers adapt in
response to defense mechanisms and always win. Defeating
attackers requires rethinking traditional defeat- and exploit-
based mitigation techniques, which lack complete security
coverage [16]. We propose taking a holistic, attack-vector-
agnostic view of system execution.
We claim that provenance is the ideal data to use for such

a task and that provenance graph-based analysis is the ul-
timate means towards achieving complete security coverage.
Provenance refers to meta-data describing how digital ob-
jects came to be in their current state. It provides a complete,
structured view of what happened on the system [4] by pre-
senting complex dependencies and causality relationships
between digital objects as a directed acyclic graph (DAG).
As such, it is well suited for intrusion detection. An intru-
sion manifests in anomalous interdependencies among data
objects that deviate from those found in non-malicious exe-
cution. In fact, in attack causality analysis [10], provenance
has long been used to explain intrusions (§ 3).

Provenance graph analysis strengthens adversarial robust-
ness, because the graphs exhibit long-range correlations

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
TaPP 2018, July 11 - 12, 2018, London, UK
© 2018 Copyright held by the owner/author(s).

and dependencies allowing for causal reasoning about intru-
sions [2] (§ 2). Such causal reasoning enables detection of
sophisticated attacks, such as network attacks, that remain
undetected for long periods of time. In prior work [8], we
reduced a host-based intrusion detection problem to a graph-
based anomaly detection problem, in which graph analysis
identified structured execution traces that represented an in-
trusion. However, intrusion detection on provenance graphs
requires analyzing dynamic, attributed, streaming graphs,
which are rarely studied in the literature. Given the devel-
opment of fine-grained, whole-system provenance capture
systems [15], this task becomes even more challening as the
graphs rapidly become extraordinarily large [4]. However,
we can use domain-specific knowledge of provenance graphs
to simplify the challenge of identifying anomalies, making it
an easier problem than general-purpose graph analysis sug-
gests. For example, since execution history is immutable, we
can assume that provenance graphs only increase in size (i.e.,
there are never deletions). This property allows us to incre-
mentally and progressively reason about causality without
needing to look backwards.
2 Applicability
Data provenance has seen use in areas such as databases and
computational sciences. While it now also appears as part of
real-time security analysis [4], most approaches are varia-
tions of dynamic taint analysis of provenance data. While
simple and effective on their own merits, they are limited to
constraining information flows within a system (e.g., data
loss prevention, access control, and regulatory compliance);
little work has been done to detect intrusions from outside
the system [8, 15].

Host-based anomaly detection systems define some base-
line normal behavior and then classify as abnormal any
behavior that significantly deviates from the baseline. The
approach is predicated on the assumption that intrusions
are highly correlated to abnormal behavior. Many existing
systems use unstructured collections of multidimensional
data (e.g., audit logs) to detect outlying points in a high-
dimensional feature space, formulating intrusion detection
as point-based outlier detection to leverage various learn-
ing and data mining techniques. Provenance, however, is
structured graph data that represents relationships between
a digital item (i.e., data entity), a transformation on that item
(i.e., activity), and agents (i.e., persons and organizations) as-
sociated with the item and the transformation. Hence, unlike

TaPP 2018, July 11 - 12, 2018, London, UK Han et al.

the prior work, we formulate the host-based intrusion detec-
tion problem as a graph-based anomaly detection problem
defined as follows [2]:

Definition 1. The graph-based intrusion detection prob-
lem is to identify components of the graph that are sig-
nificantly different from those in a learned model of the
graph.
Using a provenance graph-based approach to intrusion

detection is suitable for various reasons:
● Provenance captures complete access to security-sensitive ker-
nel objects: State-of-the-art provenance whole-system cap-
ture systems leverage the Linux Security Module (LSM) in-
terface to record provenance for every security-related in-
teraction, rather than intercepting system calls. They can
be extended to verifiably monitor all information flows in a
system [7].
● Provenance makes explicit the relationships among objects:
One powerful feature of provenance is its native graphical
representation to show system execution as interactions be-
tween data objects. However, such interdependencies are
innate to every execution trace, even in seemingly unstruc-
tured audit data from logging systems such as auditd. In
fact, there exist frameworks that reconstruct graph-based
provenance from flat audit data to allow for reasoning about
system execution [6]. However, this post hoc approach comes
with a caveat: it is harder to ensure completeness or correct-
ness of the graph built from flat audit data [17].
● Intrusions result from unexpected interactions: The entry
point to a victim system may be a single, isolated event, but
its effects must propagate for an intrusion to be fruitful to
an attacker. For example, consider an insider attacker who
wishes to steal sensitive information from a data server un-
der his control. He first installs a malicious BASH script that
discovers and collects all documents (i.e., a single entry point
to the server). However, to successfully steal the information,
he needs to either transfer it to a foreign machine or write
it to an external storage device. The key to detecting the
data leak is to connect the collection of the data to the trans-
mission of the data, which in a provenance graph is clearly
represented as a chain of dependencies between processes,
files, and sockets.
● Graph representation improves robustness: graphs are gener-
ally more adversarially robust, i.e., it is harder for an attacker
to camouflage her behavior to fit into the reference graph
structures [2]. In fact, we claim that the provenance graph of
an intrusion must differ from that of a valid execution when we
use an LSM-based whole-system provenance capture system.
As LSM places hooks on any execution path that generates
an information flow [2], if the capture system records prove-
nance on every such path, violations of security policies
will be evident from the provenance graph. Moreover, the
attacker must also have the knowledge of the substructures

that are referenced by the IDS, which alone requires sig-
nificant effort. For example, the attacker from the previous
example may evade detection if each step is allowed when
performed in isolation. An advanced attacker can even fake
the IP address of the foreign machine. However, when con-
sidering the chain of actions as a whole (i.e., an abnormal
graph substructure), we can identify the intrusion.
3 Opportunities and Challenges
Analyzing dynamic, attributed graphs is difficult. Graph
anomaly detection in this setting requires detecting changes
over time, which in turn requires a formal notion of simi-
larity defined specifically for the target domain [2]. With
attributed vertices and edges, changes can occur both struc-
turally and in labels. Provenance graphs further complicate
the matter as each vertex and edge usually has a set of at-
tributes (instead of a single type attribute), and the number
of attributes varies depending on the type of the vertex/edge.
To enable online intrusion detection, one also receives the
provenance graph in a streaming fashion and must perform
the analysis in realtime. However, provenance graphs are
acyclic, thus having a topological ordering that simplifies
computation. Events therefore can be partially ordered as
they are streamed for analysis [15]. We can then efficiently
reason over the vast amount of information contained in
vertex and edge labels, which, combined with structural in-
formation, reflects various aspects of system execution. In
the following sections, we discuss the main opportunities
and challenges associated with provenance-based intrusion
detection.

3.1 Opportunities
Opportunity 1: Provenance graph structures and labels
encode the complete, historical context of system exe-
cution. A useful intrusion detection system learns detailed
normal behavior from the past. Given flat audit data with
no completeness guarantee, an IDS is limited by the data
recorded in the audit logs. It is also difficult to obtain higher-
order dependencies [18]. In some cases, the type of informa-
tion it learns from is determined empirically by the attack
vectors it is designed to detect. Such an ad hoc approach
ultimately leads to the arms race described in § 1. In con-
trast, whole-system provenance provides a complete view of
information flow that natively reflects higher-order correla-
tions and long-range dependencies. Its graph structure also
allows for graph-based analysis. We illustrate its benefits by
describing the following principles that provenance analysis
embodies.
● Principle 1: Identify semantically meaningful substructures.
Provenance graphs can become large, obfuscating impor-
tant events that require special attention. Complex system
interactions within a task and between tasks further cloud

Provenance-based Intrusion Detection: Opportunities and Challenges TaPP 2018, July 11 - 12, 2018, London, UK

understanding. Therefore, it is important to identify sub-
structures/subgraphs that are semantically coherent (e.g., de-
scribing a single task within a program). Macko et al. [13] de-
veloped two centrality metrics to perform local clustering on
provenance graphs for task separation. Generic metrics used
to discover communities are also applicable, albeit expensive
in certain cases. Significant changes in those structures usu-
ally imply intrusions. For example, most control-data attacks
alter the control flow of a program to execute injected mali-
cious code. They typically start a new shell with the privilege
of the victim process [5], which inevitably introduces unex-
pected vertices and edges in the provenance graph. Akoglu
et al. [2] summarized various distance measures to detect
structural anomalies in dynamic graphs.
● Principle 2: Incorporate time. The rate of provenance event
creation is proportional to kernel object access rate. As each
access to security-sensitive kernel object results in (at least)
one edge in the graph, provenance graphs reflect this rate
through the number of vertices and/or edges per unit of
time. Although some benign workloads exhibit a high rate of
provenance generation (e.g., building a kernel [15]), bursts
of intense provenance generation frequently indicate an at-
tack. For example, attackers exploit race conditions to de-
ploy Time-of-Check-to-Time-of-Use (TOCTOU) attacks. The
fairly recent Dirty COW attack(CVE-2016-5195), in which
the Linux kernel’s memory subsystem incorrectly handled
copy-on-write (COW), granting write access to private read-
only memory mappings, used two threads simultaneously
bombarding the system with madvise and write system
calls. These calls produce elements of the provenance graph
at a rate rarely observed during normal behavior.
● Principle 3: Keep history in mind.Advanced persistent threat
(APT) attacks are usually a set of continuous, long-running
processes that permeate the victim system. Noticing such
attacks requires a holistic understanding of system execu-
tion starting from its initialization. In fact, any intrusion
that requires retrospective analysis on previously processed
portion of the graph can be discovered only if the detection
system “remembers” history. However, the sheer volume of
provenance data renders any attempt at a complete review
impractical. One way to mitigate this needle-in-a-haystack
problem is to incrementally build a concise yet comprehen-
sive model that memorizes the historical context of the graph.
For example, Lemay et al. [11] designed regular grammars
for provenance DAGs to succinctly summarize the graph
structure.
Opportunity 2: Provenance graphs are topologically
andpartially ordered.This property follows naturally from
the fact that provenance graphs are DAGs and that they
truthfully reflect the causal relationships of events that oc-
curred on the system. We took advantage of this property
and designed a real-time provenance analysis framework to
enable semantically rich security services [8]. In particular, a
vertex-centric graph framework facilitates provenance graph

analysis with its correctness guaranteed by the two partial
ordering properties: 1) once an outgoing edge to a vertex
arrives, we know that we have observed all incoming edges
to that vertex; 2) we receive all edges and vertices along a
path in order.
Opportunity 3: Provenance graphs enrich attack attri-
bution and sense-making.Attribution is an important fea-
ture that allows system administrators to quickly understand
the source of an intrusion so that they can remedy the is-
sue in a timely fashion and effectively control the damage.
Many intrusion detection systems suffer from a high false
positive rate. Attribution helps administrators quickly reject
false positive alarms, effectively making the IDS more us-
able. Provenance graphs are causality graphs that naturally
allow for sense-making, providing a causal chain of events
for reasoning. For example, King et al. [9] designed a system
that structures OS-level audit logs to automatically identify
sequences of steps that occurred in an intrusion, starting
from a single detection point.

3.2 Challenges
Challenge 1: It is difficult to obtain a good graph sum-
mary. From Opportunity 1 (§ 3.1), we see that a good graph
summary should at least adhere to all the principles dis-
cussed. For principles that do not consider graph structures,
we can learn trends via applications of machine learning or
empirically, e.g., by finding and setting a threshold. However,
the streaming nature of provenance data for online intrusion
detection makes graph analysis challenging. One approach
is to segment the graph using a time window, though one
needs to determine an appropriate window size.
Challenge 2: Online intrusion detection requires effi-
cient computation. Even with the framework described in
§ 3.1, the computation itself (e.g., to generate a good graph
summary) must be efficient enough to detect an intrusion
before it wreaks havoc on the system. Many intrusion detec-
tion systems require training on known datasets, which is
often performed offline [3]. Efficiency therefore is usually
a primary concern during deployment. Complicated graph
algorithms, such as subgraph isomorphism, are often NP-
complete and are suitable only for small graphs. Machine
learning and data mining approaches on graphs, e.g., graph
kernels, offer alternatives with polynomial or even linear
time complexity.
Challenge 3: The complexity of the systemmakes prove-
nance graphs difficult to understand.There exists a trade-
off between the completeness of provenance and the succinct-
ness of the resulting graph. With whole-system provenance
capture, this trade-off becomes even clearer as a large num-
ber of underlying system dependencies are captured. For
example, Liu et al. [12] showed that a simple sshd command
can trigger a massive number of Linux commands that are
used to update Linux environment variables, which results
in a large provenance subgraph describing these activities.

TaPP 2018, July 11 - 12, 2018, London, UK Han et al.

However, they also proposed an algorithm that takes into
account factors, such as rareness and dataflow termination,
to determine the priority of events during backward and
forward tracking of a provenance graph.
4 Experience
In prior work [8], we presented a provenance-based intrusion
detection system. As we refined our system [15], we identi-
fied idiosyncrasies that differentiate intrustion detection via
provenance and via audit logs. In addition to the properties
already discussed, provenance captures interactions across
applications that are invaluable in intrusion detection.
Based on our prior experience, we identify the following

keys to provenance-based intrusion detection:
● Understand the provenance capturemechanism and the graph
it produces: It is important to understand what information
is captured, how it is captured, and at what level of granu-
larity. These all affect graph interpretation. For example, we
have worked with capture systems that record both thread-
level details [15] and process-only details [6]. They have
fundamentally different underlying capture mechanisms,
and therefore, we need to make different assumptions about
the provenance graphs they generate, even when they are
capturing provenance of the same system execution. More
importantly, we need to make correct assumptions, which
is fundamental to the correctness of any provenance graph
analysis. Consequently, it is essential to specify the formal-
ization of the graphs from different capture mechanisms, not
to generalize.

Sometimes, existing provenance capture systems may not
fulfill the needs of an IDS; jointly developing a provenance
capture system and a provenance-based IDS is most likely
to improve the performance of both systems.
● Build datasets to benchmark IDSes: The lack of labeled
datasets is a serious obstacle to work in this area. As prove-
nance capture mechanisms evolve, a plug-and-play system
that can automatically rerun experiments is valuable. We
use Vagrant to generate experimental data in a virtual envi-
ronment [1]. However, labeling datasets is tricky [14]. One
cannot simply label an entire provenance graph as an “in-
trusion”, since an IDS could mistakenly interpret a benign
subgraph as an intrusion entry point. On the other hand, a
provenance graph of seemingly normal system execution
might contain unexpected execution errors, which, though
not part of an intrusion, still deviate from specified normal
behavior. This difficulty leads to misleading comparison met-
rics, such as precision, recall, and F-measure. Benchmarking
IDSes remains an important open problem.
5 Conclusion
We propose to realize robust, attack-vector-agnostic intru-
sion detection through analysis on provenance graphs and
identify opportunities and challenges specific towhole-system,
provenance-based intrusion detection. While the concept of

OS-level provenance is almost a decade old, formalization
and theoretical studies of its graphs have not yet material-
ized. Applying whole-system provenance to intrusion de-
tection [8] requires a formal understanding of provenance.
We invite fellow researchers in both theory and provenance
communities to continue this exploration with us.
References
[1] [n. d.]. Provenance datasets. ([n. d.]). https://github.com/

crimson-unicorn/dataset/tree/master/vulnerabilities.
[2] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph

based anomaly detection and description: a survey. Data Mining and
Knowledge Discovery. Springer 29, 3 (2015), 626–688.

[3] Stefan Axelsson. 2000. Intrusion detection systems: A survey and taxon-
omy. Technical Report. Technical report.

[4] Adam M Bates, Dave Tian, Kevin RB Butler, and Thomas Moyer.
2015. Trustworthy Whole-System Provenance for the Linux Kernel..
In USENIX Security Symposium. 319–334.

[5] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K
Iyer. 2005. Non-Control-Data Attacks Are Realistic Threats.. InUSENIX
Security Symposium, Vol. 5.

[6] Ashish Gehani and Dawood Tariq. 2012. SPADE: support for prove-
nance auditing in distributed environments. In International Middle-
ware Conference. ACM/IFIP/USENIX, 101–120.

[7] Laurent Georget, Mathieu Jaume, Frédéric Tronel, Guillaume Piolle,
and Valérie Viet Triem Tong. 2017. Verifying the reliability of operating
system-level information flow control systems in linux. InWorkshop
on Formal Methods in Software Engineering (FormaliSE’17). IEEE/ACM,
10–16.

[8] Xueyuan Han, Thomas Pasquier, Tanvi Ranjan, Mark Goldstein, and
Margo Seltzer. 2017. FRAPpuccino: Fault-detection through Runtime
Analysis of Provenance. InWorkshop on Hot Topics in Cloud Computing
(HotCloud ’17). USENIX.

[9] Samuel T King and Peter M Chen. 2003. Backtracking intrusions. ACM
SIGOPS Operating Systems Review 37, 5 (2003), 223–236.

[10] Samuel T King, Zhuoqing Morley Mao, Dominic G Lucchetti, and
Peter M Chen. 2005. Enriching Intrusion Alerts Through Multi-Host
Causality.. In NDSS.

[11] Mark Lemay, Wajih Ul Hassan, Thomas Moyer, and Nabil Schear War-
ren Smith. 2017. Automated Provenance Analytics: A Regular Gram-
mar Based Approach with Applications in Security. In Workshop on
the Theory and Practice of Provenance (TaPP’17). USENIX.

[12] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu
Wu, Junghwan Rhee, and Prateek Mittal. 2018. Towards a Timely
Causality Analysis for Enterprise Security. (2018).

[13] Peter Macko, Daniel Margo, and Margo Seltzer. 2013. Local clustering
in provenance graphs. In Proceedings of the 22nd ACM international
conference on Information & Knowledge Management. ACM, 835–840.

[14] FedericoMaggi,MatteoMatteucci, and Stefano Zanero. 2010. Detecting
intrusions through system call sequence and argument analysis. IEEE
Transactions on Dependable and Secure Computing 7, 4 (2010), 381–395.

[15] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer,
David Eyers, Margo Seltzer, and Jean Bacon. 2017. Practical whole-
system provenance capture. In Symposium on Cloud Computing. ACM,
405–418.

[16] Jonathan Pincus and Brandon Baker. 2004. Mitigations for low-level
coding vulnerabilities: Incomparability and limitations. (2004).

[17] Devin J Pohly, Stephen McLaughlin, Patrick McDaniel, and Kevin
Butler. 2012. Hi-Fi: collecting high-fidelity whole-system provenance.
In Annual Computer Security Applications Conference. ACM, 259–268.

[18] Nong Ye et al. 2000. A markov chain model of temporal behavior
for anomaly detection. In Systems, Man, and Cybernetics Information
Assurance and Security Workshop. IEEE.

https://github.com/crimson-unicorn/dataset/tree/master/vulnerabilities
https://github.com/crimson-unicorn/dataset/tree/master/vulnerabilities

	Abstract
	1 Introduction
	2 Applicability
	3 Opportunities and Challenges
	3.1 Opportunities
	3.2 Challenges

	4 Experience
	5 Conclusion
	References

