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Abstract— Sensor network data has both historical and real- including a discussion of constructing such an index atop a dis-

time value. Making historical sensor data useful, in particular,
requires storage, naming, and indexing. Sensor data presents new
challenges in these areas. Such data is location-specific but also
distributed; it is collected in a particular physical location and
may be most useful there, but it has additional value when com-
bined with other sensor data collections in a larger distributed sys-
tem. Thus, arranging location-sensitive peer-to-peer storage is one
challenge. Sensor data sets do not have obvious hames, so naming
them in a globally useful fashion is another challenge. The last
challenge arises from the need to index these sensor data sets to
make them searchable. The key to sensor data identity igrove-
nance the full history or lineage of the data. We show how prove-
nance addresses the naming and indexing issues and then present a
research agenda for constructing distributed, indexed repositories

tributed system. We address three questions:
« What are the right attributes to index? We reason in Sec-

tion Il that sensor data must be indexed bypitsvenance
metadata: the history of how and when it came to be.

How will people use historical sensor data? That is, what
are the applications for which we are designing? We show
in Section Il that they will use data both near their source
and at a variety of sites elsewhere in the network. In par-
ticular, because sensor datalagale specificit may be
inappropriate to store it in arbitrary (or randomly chosen)
places; instead it should be stored near the network or its
primary users.

of sensor data. . . . .
« What storage architecture will make indexing provenance

metadata and serving locale specific clients feasible? In

. INTRODUCTION Section 1V, we propose a set of evaluation criteria and ex-

Readings and events emerging from a sensor network may amine how different models for distributed storage and in-
be consumed immediately or stored for later analysis. In many dexing fare under our requirements.

cases itis useful to combine data from distinct sensor network@e present our research agenda in Section V.
and often sensor data is still useful for historical analysis long
after it is collected. Il. HOW TO INDEX
For example, while traffic data from London’s Congestion : .
Before we can index anything, we must choose the granu-

Zone is useful immediately to ticket non-paying drivers, it is_. : : : : .
also useful in other ways: it could be aggregated over tmfaenty at which to index it. We could conceivably index every

to estimate the effects of changing Zone size, or it could ghsor reading, duple, individually. Howev_er, this appears in-
easible, due to the sheer number of readings, and also not nec-

combined geographically with data from other cities to gathera . T ) L .
broader picture of traffic. Even deeper insight might be gaineﬁsanly useful, as individual sensor readings in isolation have
; ?l le meaning. A better solution is to indexple setscollec-

by merging historical traffic data with historical weather data. . freadi db W tvpically ti =
Other existing sensor applications that exhibit some or djpns ot readings grouped by some property, typically time. For

of these properties include volcano monitoring [31], city-widgxample’ a tuple set might contain all the readmgs of a par-
structural monitoring [22], biological field research [8], suppl cu_Iar type over the span of one hour or one mmute._ To make
chain management [17], and military sensing [26]. etrieval practical, each such tuple set must have a unique name.
In this environment it becomes necessary to be able to name
and search for sensor data sets, whether in real-time or‘in Provenance as Name
archival storage. Traditional approaches to indexing massiveluple set names could be conventional, self-describing file-
quantities of distributed storage.(.,content indexes) are notnames, likevolcano _vesuvius _10.11_04. However, un-
terribly useful when that content is primarily a stream of sensstructured strings of this kind incur several problems:
readings. Clearly, any data set must also have a description, ane They require a complicated naming convention, to allow
the data itself may have annotations; for example, one might for all the possible things that could be named.
mark when individual sensors were replaced with newer mod-« Such naming conventions are equivalent to a hierarchical
els having slightly different properties, or when software on the  index. Section IV-B discusses the resulting problems.
sensor devices was upgraded. Such descriptions and annota- Strict adherence to the convention is necessary because no
tions must also be searchable. enforcement or cross-checking is possible.
These requirements have implications for the organization ofe To be fully descriptive, these names may become arbitrar-
storage systems for sensor data. This paper discusses the re-ily long. Without special support, handling these names
search challenges related to naming and indexing sensor data, becomes difficult, both for humans and for machines.



« Because the structure of the naming convention is not ex-Thus, the indexing structures in sensor data storage systems
posed, these names will be hard to index automaticallpust provide for efficient lookups in many dimensions, as well
They also cause problems for user-friendly query enginess efficient recursive or transitive queries. Simple relational or

« Additional important information about the data may noXML-based name-to-value schemes are not sufficient and will
be readily expressible in the filename even under the baesit work well unless augmented with other structures.
possible naming conventions. In our earlier example of
sensor replacement, one might want to know when partic-

e ’ I11. WHAT TO QUERY
ular sensors were upgraded; this information cannot rea-I thi i ider the t ¢ ios that
sonably be encoded in a conventional filename. n this section, we consider the types ot queries that a sensor

« Again because the structure is not exposed, it is diffiCLﬁf"ta reposﬂory should ?UPDO”- W.e begin by discussing 'doc—
to recognize the relationships among data sets. One tu [gent versioning, as this is a familiar framework for V\{orklng
set might be the results of passing another through so ith provenance metadata. We then look at the requirements

postprocessing filter, such as image sharpening, but thgﬁeresearc_h comr_nunm_es in the sciences, W_here provenance is-
is no practical way for an indexing engine to “know” this Sues are increasingly important. Finally, using these examples

The fundamental problem is that the name is trying to encod@ motivation, we turn to queries on sensor data provenance.

a collection of attributes. In many areas, such identifying in- o
formation is calledorovenance[2], [6], [7]. For example, in A. Document Versioning Systems

high-energy physics, provenance metadata tracks the completocument versioning systems are provenance management
history of a research result. The provenance for the datag{istems. When multiple programmers are working on the same
a publication describes all the various analysis and collectipfogram, they will be editing concurrently and (largely) inde-
steps, all the way back to the raw data collected in a partigendently. Systems like CVS [11] allow programmers to coor-
accelerator. In the archival community, provenance metadaf@ate; however, they also track changes over time and record
describes the history of a document, the people who assumgsb did what. Typical queries on such systems include:
responsibility for it, and, in the digital world, any format trans- , show me the file as it is now, or as it was yesterday.

formations applied to it [29]. S « Show me all changes to this file since last week.
The provenance of a collection of data is not just a useful de- Show me when each line in this file was inserted.

scription. Itis the single, unique identifier for that data set. Ina , Find the person who removed this error code.
very real sense, this makes the provenanceimeeof the data | get me all files tagged “Release 1.1”.

set. For this reason, provenance shogld be afirst class.propem/ese queries are all reasonably well supported by CVS and
Instead of encoding the name as a string, we represent it fu”ys‘ﬁnlar systems. However, most document versioning systems

a collection of name-value pairs. Of course, traditional Names, fo_oriented. Queries that span files in complex ways, or

rer_:_wr?m usefl#i asdwfni.l t the provenan e likelv t binvolve data that has been copied from one place to another
1€ spectiic detalls ot the provenance are fikely 10 %ustgenerally be performed manually.
application-specific or at least community-specific. Different

communities will likely develop their own standards for prove- _ ) )
nance metadata. For example, the VOTable format is a domd- Experimental Data in the Sciences

specific DTD that is augmented with provenance [23]. Research communities demand good provenance support for
their experimental data. This is necessary to support reproduc-
B. Indexing Provenance tion and validation of research results when large data reposi-

Because the complete provenance of any particular tuple &¥ies are available. For example, the Sloan Digital Sky Survey
is likely to be large, most queries will probably not be a simpl28] collects data on millions of astronomical objects. This data
matter of looking up a name and retrieving the data; inste&@@mes from observatories across the world and is synthesized
users will search for data sets based on subsets of the attrib@@® a universal ‘map’ to allow queries by position. Other com-
and values found in provenance metadata. Different users vilHnities, including biology [13], chemistry [10], and physics
tend to query by different attributes depending on their goald;6], have deployed similar databases.
for example, given traffic sensor data framed as car sightingsFurthermore, many data sets are derived from others as anal-
a commuter investigating alternate routes will likely search Bisis steps are performed. The provenance of a derived data set
sensor location, but someone assessing the city-wide impactsahe provenance of the original data plus the provenance of the
new one-way street assignments will likely search by time. tools used to do the derivation.

If these car sightings are amalgamated from different sen-Provenance is particularly important for derived data; if a
sor networks of different types (cameras, magnetometers, egggblem is found with the original data or with an analysis tool,
where the raw data is postprocessed in different ways, some@Hedownstream data is tainted and must be locatable. Other
investigating anomalies in the data reporting might query basegical queries on research data provenance include:
on origin: looking up the magnetometer readings that gener-. Find all the raw data from which this data set was derived.
ated some suspect sighting data, or finding tuple sets handled Show me what | need to reproduce this result.
by a particular postprocessing program. Such queries are oftem Find an experiment that answers this question.
recursive, as there may have been several steps involved witk | am up for tenure. Show everyone who has used my work.
multiple intermediate data sets, each with its own provenance. « Find experiments similar to mine.



The queries in this domain tend to be more complex than thoseQuery needs are heterogeneousThough application do-
in the document versioning system. Nearly all the queries hawveins share various characteristics, there is no reason that spe-
some component of transitive closure, a construct not well sugfic applications from different domains need commonality at

ported by conventional query systems. the query language or data organization level. Nonetheless, it
seems useful to share common infrastructure (network and stor-
C. Sensor Queries age resources) and also to be able to perform queries across do-

Sensor applications require all the same capabilities we se¥ins. The traffic and weather communities might not agree
in the two previous examples, and pose new demands of tHegforehand on how to store and represent their data sets, but
own. Consider a sensor-enabled ambulance team [30]. EMiiey may later want to query across them. This argues for the
arriving at an accident or mass casualty event place sensapdity to federate data and processing.

(e.g., pulse oximeters, EKGs) on the patients. These sensors

monitor vital signs in real time. The resulting data is streamed IV. DESIGN SPACE

to the ambulance, to dispatchers who route patients to medicaln this section, we first present criteria for evaluating prove-
facilities, and ultimately also to the correct hospital emergengance index and query architectures. We then discuss several
room. Initially, this data is identified by patient, date/time, lopotential models in these terms.

cation, etc. As it moves through the system, it gets processedcalability. The system might need to scale in many ways:
and filtered, and is thus enriched with additional provenancesome possibilities include the number and size of tuple sets,

All of this data and metadata represents critical informatiopate of tuple set production, number of indexes, depth of ances-
not only about each patient, but also about the emergency cgge number of hosts, and distance across which the system is
infrastructure itself. These two aspects involve queries of coflistributed.
siderably different natures. Queries about an individual patientReliability. Data, local or non-local, will become inaccessi-

might include: ble if provenance metadata becomes corrupted or is lost due to
« Show me everything we've done for this patient. a system crash. The system must recover provenance metadata
« Show me the heart rate from moment of arrival until nowto a state consistent with its data after a system failure.
« Show me the results of oxygen treatment. Query Result Quality. In information retrieval terms, there

« Feed this patient’s data into our automatic diagnostic toafe two aspects to thiprecision the fraction of returned results
and suggest the appropriate hospital or trauma center. that are relevant to the query, aretall, the fraction of relevant

Examples of queries about the system might include: results that are actually returned.
« Give heart rate profiles for everyone handled by EMT Usability. The content and structure of provenance infor-
« Find me all patients with signs of arrhythmia. mation depends on the application domain. The system must
support storing domain-specific provenance, and must allow
D. Characteristics queries in whatever form is most appropriate for each domain.

From the above examples, we derive the following set of re- SP€€d. Provenance metadata is accessed more frequently
quirements for provenance-based sensor data storage: than its data. The system must perform at a reasonable speed,
Storage should be near the sensorsSensor data may be 8/€n 0n complex queries such as the transitive closures dis-
valuable for arbitrarily long periods of time. (Weather data coRUSSed previously. . _
lected by hand goes back over a hundred years and can be ef@esource Consumption. The system must not impose
pected to remain valuable indefinitely.) Furthermore, sensgfcessive overhead, particularly on the network. Index meta-
networks can generate a huge volume of data: a regional trafff@ must be widely accessible, and will be both updated and
sensing network that records every passing car could easily géfcessed often. If distributed, updates may use a lot of network
erate terabytes of data per day. Transmitting all this data loRgndwidth; if centralized, query traffic may instead.
distances over the network is unnecessarily expensive; also, the

data is often most valuable near the source. Boston traffic datd "eS€ criteria are not independent. Different models (and
belongs in Boston, not in Singapore or even Seattle. implementations) offer different tradeoffs among them. For ex-

Data has multiple consumers. Real-time sensor data is@MPle, & system with good precision and recall will generally
probably of most value to its immediate collector, but manie relatively slow and expensive. Similarly, increasing reliabil-
parties may have use for the archives. We cannot anticipate'tél_llby d|str|put|ng index !nformatlon will incur additional band-
applications, so both access and packaging must be flexible Width requirements for index updates.

Recursive queries are common.All the usage scenarios Ve now turn to the architectural models. Due to space con-
make heavy use of transitive closure queries. These may%jb"“ms, we examine only the most critical criteria affecting
both backwards, to find ultimate origins, and also forwards, gch model.
find derived data that may be many generations downstream. )

Distributed queries are common.Because raw sensor data®- Centralized Models
should be stored near the sensors, aggregating over multiplén a centralized system, provenance metadata is sent to some
sensor networks is inherently a distributed operation. Furtheentral data warehouse, where it is examined and indexed;
more, aggregate data sets derived from such queries will prajotery processing is then done within the warehouse. (As dis-
ably be stored where they are created, so the transitive closcussed in Section I, the warehouse would not store actual sen-
queries tracing the history of data will be distributed as well. sor data.)



This offers speed, simplicity, and ease of use. The conven-These examples from the Grid do provide worldwide access
tional wisdom is that centralized indexing cannot scale. Hows large data sets. For RLS, much of this scaling, however,
ever, the success of Google [18] and Napster [15], among otlemes from an assumption that the exact name of each data set
ers, suggests otherwise. Centralized setups are also as likelisdgnown. Meanwhile, SRB’s metadata model denies transi-
any to be able to handle recursive queries and provide effecttixe closure, which is essential for handling provenance. Still,
backups. these models do support locale-specific query processing: data

The Trio project is a centralized database system that masistored at the producers and replicated at consumers; it is
ages not only data, but also the provenance and accuracy ofghgped to neither a central nor an arbitrary location.
data [32]. Bunemast al. offer a a centralized XML database The fourth model is the filename (or URL) model: orga-
that handles user annotations and allows tracking the path afiae the material into a hierarchical namespace and then use
single datum through various transformations [5]. the hierarchy to partition the data across a distributed network

For sensor data, however, a central index has three shortcaiservers. While this approach is very practical for many ap-
ings. First, query processing on real-time sensor streams isglleations, for sensor data it is inappropriate. Hierarchical nam-
ready becoming distributed [1], [24], [27]. And second, eveing systems are fundamentally limited by the need to choose
though Google has indexed eight billion web pages [18], it maysignificance ordering for the attributes. This is a bad fit for
not be scale to the volume of updates associated with senany problem where no natural ordering exists, as is typically
data or data aggregated over many sensor networks. Finaly case for the attributes that make up provenance metadata.
even though both data and its provenance are read-only ofoe example, astronomical data will likely be tagged with both
collected, when the index is only loosely coupled to the actugpatial coordinates and observation wavelength, and neither is
data there is a risk of inconsistencies creeping in: the linkagenore general attribute than the other. Choosing either one as
back from the index to the data might break or end up pointimgost significant will make querying on the other difficult.
to the wrong thing.

Nonetheless, despite these issues, the success of centralizegistributed and Unstable Models
indexing in practice makes it a standard against which to com-

pare any other mechanism It may not be feasible to rely on stable participants; if so,

a different class of architecture is needed. The most widely-
L used mechanism in this class is the distributed hash table, or
B. Distributed but Stable Models DHT [12], [14]. However, DHTs do not appear to be a suitable

If one assumes that the hosts involved are stable — permangf)ition.
participants with reasonable reliablity and availability — there Fjrst, storing data objects by hashing a key inherently as-
are four conventional architectures that require no centralizggmes that the location of these objects is unimportant. This is
installation. not the case for sensor data. The DHT-based database Pier [20]

The first of these is the distributed database. Distribut@;ﬂoved slow because of poor data placement. Second, periodic
databases inherently provide unified schemas [21], a usefghjates of distinct queriable attributes to DHTs scale to only
property. However, they have limited ability to process recufans of thousands of updaters [25]. This is inadequate. Third,
sive queries €.g., transitive closure), and optimizing continu-getting even this much update performance would require that
ous, distributed queries is still an open problem. ~ all participants have good network connectivity and plenty of

A second model, the federated database, uses multiple giscessor power; this is more expensive than maintaining the
tonomous database systems, each with its own specific intgfpje servers required by other architectures. Finally, support

face, transactions, concurrency, and schema [4]. A federaiglefficient recursive queries is so far nonexistent.
system does provide the illusion of a unified schema, but the

fact that the components are truly disjoint systems may lead to
slow access.

Both of these models provide strong consistency: full trans-We have shown that provenance-aware storage is useful for
action semantics. However, this may be overkill for sensor dafgnsor network applications. With this storage come interesting
given that the provenance index will be effectively append-onkgsearch challenges.

A third model, choosing availability over consistency, relies A Provenance-Aware Storage Sysf@mPASS, has four fun-
on soft-state and a mostly stable network. Three variatioldmental properties distinguishing it from other storage:
come from the scientific community. The Replica Location Ser- « Provenance is treated as a first class object.
vice, or RLS, provides a unified lookup service for replicas of « Provenance can be queried.
large data sets [9]. Its metadata lookup service is distributeds Nonidentical data items do not have identical provenance.
reducing update and query load, and it relies on periodic up-s Provenance is not lost if ancestor objects are removed.
dates to keep its soft-state from becoming stale. Another ex-The first goal is to construct a purely local PASS. As prove-
ample, the Storage Resource Broker, or SRB, is an instantiatitance metadata is large and contains cross-references among
of a simple federated database, storing metadata as name-vfiles, just storing and indexing offers challenges; in particular,
pairs and dividing itself into zones for scalability [3]. Third, theone needs efficient support for transitive closure queries.
PASOA project, which examines trust relationships, includes aOnce this is done, the second goal is to allow merging collec-
protocol for managing provenance in a client-server envirotions of local PASS installations into single globally searchable
ment [19]. data archives. This requires distributed naming and indexing

V. RESEARCHAGENDA



schemes, and support for distributed queries. Designing effi3]
cient distributed transitive closure techniques is likely to keéb4
researchers busy for years to come.

Other challenges abound. Our model does not inherently [me]
volve replication, as data is locale-specific, but replication is
desirable for reliability and for query performance. Supporting7;
replication cheaply is an interesting problem.

Security is essential as well, as much of the data collect g
in sensor networkse(g., medical data) is private. Much of [19]
this data is valuable even when aggregated to preserve privacy.

What degree of aggregation is necessary? How does one o8y

15] S. Flanning. Napstehttp://www.napster.com

DBCAT. http://www.infobiogen.fr/services/dbcat

P. Druschel and A. Rowstron. PAST: A large-scale, perS|stent peer-to-
peer storage utility. I'8OSPR October 2001.

, 2000.

I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. The Virtual Data Grid: A
New Model and Architecture for Data-Intensive CollaborationCIDR,
Asilomar, CA, Jan. 2003.

M. Gaynor, M. Welsh, S. Moulton, A. Rowan, E. LaCombe, and
J. Wynne. Integrating wireless sensor networks with the giEE In-
ternet ComputingJuly/August 2004.

] Google.http://www.google.com .

P. Groth, L. Moreau, and M. Luck. Formalising a protocol for recording
provenance in grids. IRroceedings of the UK OST e-Science Third All
Hands MeetingNottingham, UK, Sept. 2004.

R. Huebsch, J. Hellerstein, N. Lanham, B. Loo, S. Shenker, and |. Stoica.

resent the provenance of such aggregates? How do regulatory Querying the Internet with PIER. MLDB'03, Berlin, September 2003.

moves like HIPAA affect the situation? And how do we providé!]
strong guarantees that privacy policies will be enforced? [22]

Relatedly, sometimes one wants to abstract provenance away.

For example, one probably wants to know what compiler co
piled the program that did a particular analysis step; compilers
are subject to optimizer bugs that can invalidate results. But f8#]
most purposes, it is far more useful for this information to be

reported as “gcc 3.3.3” rather than as a detailed record of gc's)
own provenance and change history. How does one identify
these abstractions and take advantage of them? [26]

VI. CONCLUSION [27]

Sensor data alone, decoupled from its origins, will only be
useful for the most prosaic applications. Instead, it must fgs]
tightly bound to searchable information about the sensors tiH
produced it and any programs that processed it. Building suit-
able indexes on thigrovenances a challenging problem. [30]

Given reasonable assumptions about (1) the physical loca-
tions of where data comes from and goes to, and (2) the arriyah
rate of new tuples, no existing storage/query model offers a sat-
isfying fit. A new architecture must be developed. 32]

Constructing a distributed provenance-aware storage system
requires solving both of these problems.
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