
Programmable Smart Machines:
A Hybrid Neuromorphic approach to General Purpose Computation

Jonathan Appavoo1, Amos Waterland2, Katherine Zhao1, Schuyler Eldridge1, Ajay Joshi1, Margo Seltzer2,
and Steve Homer1

1Boston University {jappavoo,kzhao,schuye,joshi,homer}@bu.edu
2Harvard University {apw,margo}@seas.harvard.edu

We describe our research on integrating neuromorphic de-
vices into a new computing system, where the system is not
approximate by default and its operation automatically im-
proves as a function of its resources and “experience”. We
focus on communicating key insights and observations and
then sketch our research agenda. We use the term neuromor-
phic broadly to mean any hardware specifically designed for
machine learning or inspired by biological neural networks.

There appear to be two basic modes of computing: (1) by
logic, and (2) by pattern recognition. To date, there has gener-
ally been a gulf between these two modes, with the exception
of work on approximate computing [2, 4, 1]. We seek to de-
fine and exploit a closer bridge between the two. We define
Programmable Smart Machines (PSMs) as hybrid computing
systems that behave as programmed but transparently learn
and automatically improve their operation.

The PSM research agenda explores the use of neuromorphic
devices in addressing the challenges set forth by Michie in the
Nature ’68 paper that introduced memoization [3]:

“It would be useful if computers could learn from
experience and thus automatically improve the ef-
ficiency of their own programs during execution...
When I write a clumsy program for a contempo-
rary computer a thousand runs on the machine do
not re-educate my handiwork. On every execution,
each time-wasting blemish and crudity, each need-
less test and redundant evaluation, is meticulously
reproduced.”

Michie observed that computing the output of any function
given its input can be done either by calculation (rule) or
memory recall (rote), and concluded that:

“on each given occasion proceed either by rule, or
by rote, or by a blend of the two, solely as dictated
by the expediency of the moment ... rule versus rote
decisions shall be handled by the machine behind
the scenes.”

To address these challenges, we integrate pattern recognition
into the execution model of a general purpose computer. Our
goal is a computing system that (1) automatically learns and re-
calls patterns in its operation to achieve correctness-conserving
speedups by eliminating large fractions of its conventional in-
struction execution stream, and (2) recognizes and exploits
increasingly complex patterns as a function of the size of its
neuromorphic hardware resources.

Since the PSM research agenda hybridizes conventional
execution with learning, prediction, and auto-associative mem-
ory recall, our work is well-positioned to exploit efficient
high-capacity neuromorphic hardware.

Execution Model Two key observations give rise to the
PSM research agenda: (1) execution of a von Neumann com-
puter naturally produces a vector-valued binary signal from
the dynamics of the architected state (all memory and regis-
ters), and (2) a forward update of the architected state can be
done either by rule (execution) or rote (lookup in a cache of
previously executed complete state traces).

These observations link our research agenda to neural net-
works in specific and machine learning and approximate com-
puting in general. Learning, prediction and recall are at the
heart of our design for a computing system that automatically
improves as a function of its hardware resources. Neural net-
works are increasingly pervasive in domains such as image
and video processing. Both machine learning researchers and
biologists have shown that large neural networks can automati-
cally find and recall complex structure from patterns in binary
data.

By coding zeros and ones as e.g. black and white, the com-
plete n bits of instantaneous architected state of a computer
can be represented as a 1×n black and white image, illustrated
as a single row of pixels in Figure 1. Execution can then be
represented as a video of the architected state as it evolves
with each instruction execution. This gives a natural way to
interface computer execution to neuromorphic devices whose
value has already been proven in the domains of binary-valued
image and video processing. Neural networks implemented in
neuromorphic hardware can be used to learn, recognize and
recall patterns in execution as predictions over future frames.

Recognizable clips in “execution movies” can be interpreted
as repeated computation that maps the state of the system
represented by the first frame of the clip to the system state
associated with the last frame. As such, if one is able to
recognize, learn and predict reoccurring clips in execution
movies then one has captured and compressed patterns in
execution over all aspects of the program and its data.

In this fashion a neuromorphic mechanism can store knowl-
edge of execution in the form of recognized patterns. The
mechanism can provide feedback on the current execution
in the form of predicted frames (states of the system). For
a PSM to be effective, it must use this feedback to generate
future states of the system that are known to ensue from the

1

0

Execution as n bit "video" signal of system state

...

... n-1

...... ...

One row of pixels
is a frame of
execution and
describes entire
system state at a
particular step of
instruction
execution

...

One column of pixels for each bit of system state
 (register, ram and memory-mapped I/O devices)

initial state

future state

current state

Execution "video" proceeds from top to bottom

Figure 1: Execution as n-bit “video” signal of system state.

current state. One approach is to view the neuromorphic mech-
anisms as part of a two stage process. In aggregate the neuro-
morphic devices encapsulate a massive, first stage, long-term
knowledge-base of execution patterns of various scales and
complexity. When fed information from the current execution,
they generate predicted start states of a clip of computation
that it believes will follow based on the patterns it knows. This
feedback must be converted into an exact match to a state
that will deterministically follow from the current state of the
computer or it must be discarded.1

For this conversion a second "resolution" stage can be em-
ployed. The idea is to use a smaller set of traditional resources
to maintain a short term cache of start to end state pairs that
is populated based on the neuromorphic predictions. Rather
than directly updating the state of the computer with the neuro-
morphic prediction the prediction is used to generate a cache
entry that maps a set of precise start states to a set of resulting
end states. To do this the resolution stage allocates traditional
cores and memory to determine future states. Given that the
prediction defines a complete system state a traditional paral-
lel thread of computation can be used to generate the clip of
computation that it represents simply by executing forward.
This allows the prediction to be converted into a start and end
state pair. This pair is then stored in a cache that is consulted
as the computation proceeds. If a match is found the system
can directly be advanced to the associated end state. In current
and future work we explore more subtle resolution and cache
matching procedures that allow us to generalize and reuse
cache entries thus eliminating cases in which execution is re-
quired. Details of our current resolution process are beyond
the scope of this paper (see Waterland et al. [5]).

We see the PSM approach as providing a means for integrat-
ing neuromorphic devices into a general purpose computing
system that maintains a simple precise and deterministic pro-
gramming model. We also see PSMs as a way of allowing
arbitrary programs to transparently benefit from learning when
there is sufficient redundancy in behavior either due to the com-

1PSM computing systems also enable an error-bounded form of approxi-
mate computing, but we leave this for future work.

putation being well structured, or the data that it is operating
on, or both. Finally we believe that the PSM model has the
advantage that it can allow for “experience” from one system
to speed up other systems via a shared hierarchical approach.
That is to say while some of the neuromorphic devices could
be local to a system, others could be remotely hosted and
shared across several machines.

To date we have been using a combination of software
machine learning agents to learn and predict each value of
the system’s state. In particular, we combine the results of
two widely-used learning algorithms: logistic regression and
linear regression. These two approaches are closely related to
single layer neural networks. In the case of logistic regression
predictors, each predicted state bit is produced as a linear
combination of all bits values plus a bias weight. The weights
are updated using a standard gradient descent online update
method. Our linear regression predictors also operate on non-
overlapping 32-bit receptive fields interpreted as real values.
These two approaches are chosen to minimize the software
overheads and to permit an online learning model.

Next Steps We will evaluate the use of hardware neural
network accelerators in place of software implementations.
Our goal is to quantify the implications of using more complex
multi-layer networks within the PSM model. Speedup in a
PSM is a function of the prediction accuracy and the scales
and complexities of the patterns recognized. As has been
observed in vision based applications, deeper networks permit
improvements on all of these fronts.

To proceed we will first break down our PSM model into
a version that is friendly to offline training given that most
current hardware neural network accelerators follow this ap-
proach. To do this we will assume a model where a hardware
accelerator is synthesized to a particular multi-layer percep-
tron network configuration and then its weights can be loaded
or reloaded as needed. As such we will conduct training for
each application that we intend to run and store the attendant
weights with the application binaries. When we launch an
application we will load the neural network accelerators with
the associated weights. Given this setup we will evaluate a
range of applications, application-specific workloads and a
range of network complexities as dictated by a range of hard-
ware resource specifications. To do this we will build upon
components from our independent prior work into the design
and implementation of a multi-layer preceptron accelerator
architecture [1]. We envision an architecture that incorporates
network accelerators operating alongside traditional compu-
tation units and provides a path to deliver More-than-Moore
performance improvements in spite of the harsh landscape of
nanoscale CMOS. Interestingly, such an architecture has the
potential to leverage both precise and approximate regimes of
computation for performance improvements. We will migrate
portions of the online learning model from our prior software
implementation to hardware and investigate increasingly ad-
vanced architectures (e.g. HMAX) for the ability to discern
more complex patterns.

2

References
[1] S. Eldridge, F. Raudies, D. Zou, and A. Joshi, “Neural network-based

accelerators for transcendental function approximation,” in Proceedings
of the Great Lakes Symposium on VLSI (GLSVLSI), 2014.

[2] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceler-
ation for general-purpose approximate programs,” in Microarchitecture
(MICRO), 2012 45th Annual IEEE/ACM International Symposium on,
Dec 2012, pp. 449–460.

[3] D. Michie, “"Memo" Functions and Machine Learning,” Nature,
vol. 218, no. 5136, pp. 19–22, Apr. 1968. [Online]. Available:
http://dx.doi.org/10.1038/218019a0

[4] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke, “Paraprox: Pattern-
based approximation for data parallel applications,” in Proceedings
of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’14.
New York, NY, USA: ACM, 2014, pp. 35–50. [Online]. Available:
http://doi.acm.org/10.1145/2541940.2541948

[5] A. Waterland, E. Angelino, R. P. Adams, J. Appavoo, and M. Seltzer,
“ASC: Automatically Scalable Computation,” in Proceedings of
the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’14.
New York, NY, USA: ACM, 2014, pp. 575–590. [Online]. Available:
http://doi.acm.org/10.1145/2541940.2541985

3

http://dx.doi.org/10.1038/218019a0
http://doi.acm.org/10.1145/2541940.2541948
http://doi.acm.org/10.1145/2541940.2541985

