Performance Introspection
of Graph Databases

Peter Macko Daniel Margo Margo Seltzer
Harvard University Harvard University Harvard University
Cambridge, MA Cambridge, MA Cambridge, MA



Conventional Benchmark
Benchmarking Graph Database X

Dataset with 2 mil. nodes, 10 mil. edges

Unidirectional BFS-based shortest path:

38.3 seconds



Performance Introspection
of Graph Databases

* A black-box approach to

understanding the strengths and
? inefficiencies of graph databases.
@

A benchmarking methodology that
identifies how smaller operations fit

S ’ together to create bigger operations

using quantitative relationships.

e A web-based tool to run the
benchmarks and to visualize the
results.



Outline

Methodology
Implementation
Selected Results

A

Conclusion



Methodology

1. Recursively decompose a graph application into its
primitive graph operations:
— Get vertex, edge, property
— Insert/update vertex, edge, property

2. Measure each operation.

3. Model higher level operations naively in terms of
lower-level operations.

4. Compare actual and modeled performance to
identify strengths/weaknesses of implementation.



Example — Decomposition

* Consider the BFS shortest path:

Function Shortest-Path (source, target) :
Q « new Queue { source }
while Q 1s not empty:
v « dequeue from Q
if v = target:
done
else:
N — Get Neighbors of v
for n € N:
if n was not yet visited: enqueue n to Q

* How long should it take with no optimization?

(Latency of Get Neighbors) x (# of visited neighborhoods)



Example — Recursive Decomposition

BFS Shortest Path:
* Asimple BFS shortest path
BFS Shortest

Path algorithm decomposes into
some number of “Get

Neighbors” queries
Get

Neighbors e A call to “Get Neighbors”
traverses on average n edges

A “Traverse” operation gets a
single edge from the database
and the vertex at the other

GET endpoint

vertex

Traverse




Example — Recursive Decomposition

BFS Shortest Path:

BFS Shortest Latency-Model(Shortest Path)
Path = m x Latency(Get Neighbors)

Get Latency-Model(Get Neighbors)

Neighbors

= n x Latency(Traverse)

Traverse Latency-Model(Traverse)
= Latency(Get Vertex)

+ Latency(Get Edge)

GET
vertex




Example — Recursive Decomposition

BFS Shortest Path — Neo4j, 2 mil. node graph:

BFS Shortest Latency-Model(Shortest Path)
Path = m x Latency(Get Neighbors)

Get Latency-Model(Get Neighbors)

Neighbors

= n x Latency(Traverse)

Traverse Latency-Model(Traverse)
=0.5us +3.4 us
=3.9 us

GET
vertex




Example — Recursive Decomposition

BFS Shortest Path — Neo4j, 2 mil. node graph:

BFS Shortest Latency-Model(Shortest Path)

Path

= m x Latency(Get Neighbors)

Nei::;ors Latency-Model(Get Neighbors) 0
=10x 3.9 ps =39 us '1\\“1';(6
Actual: 32 ps
Traverse Latency-Model(Traverse)
=0.5us +3.4 us

=3.9 us

GET
vertex




Example — Recursive Decomposition

BFS Shortest Path — Neo4j, 2 mil. node graph: oﬂ G«.o
NS

BFS Shortest Latency- Model(Shortest'ﬁath)
path = 523,000 € 32 psi= 35.6 s
Actual: 38.3 s
Neisntors Latency-Model(Get Neighbors) O

=10 x3.9us =39 us gy 1’&@

Actual‘@

Traverse Latency-Model(Traverse)
=0.5us +3.4 us
=3.9 us

GET
vertex




Types of Operations

BFS Shortest Path:

BFS Shortest
Path

Get
Neighbors

Traverse

GET
vertex

Algorithms: Higher-level
operations; often not part of the
graph API.

Graph Operations: Common
building blocks for higher level
operations.

Micro-Operations: Low-level
operations that do not further
decompose or that cannot be
measured directly (and thus
must be modeled).



Another Decomposition Example

Clustering Coefficients:

Compute  Computing a clustering
Clustering . . . .
Coeff. coefficients (i.e., triangle
- counting) involves getting
Neighbors k-hop neighborhoods for k = 2

* “Get k-hop neighbors” gets all
neighbors that are at most k
hops away from a given

 Traverse starting vertex

 (We have already seen “Get
L /. Neighbors” before)



Writes

Ingest:

Insert a
subgraph Bulk Ingest

ADD
vertex

* Inserting a subgraph into a database is a
combination of add vertex, add edge, and set edge

or vertex property micro-operations

* Performing one ingest at a time is often inefficient,
so databases frequently provide optimized bulk
ingest



Operation Decomposition Summary

Compute Hop-plot Identify
PageRank analysis small world

Applications
Compute
clustering All-pairs SP
coeff. Single-
source SP
BFS
Shortest
Path Algorithms

Get k-hop
neighbors
Get (cond)
neighbors

INS
Get subgraph

neighbors

Traverse

GET
vertex

vertex

Micro-operations



Outline

1
2.
3.
4
5

Implementation
Selected Results
Conclusion



Implementation

e Started with choosing the Blueprints APl —a
uniform Java API for accessing property graphs
(graphs with properties on nodes and edges)

‘:-;() Java

T

 Benchmark and all tools implemented in Java



Interfacing with Databases

 §r Blueprints\ — The benchmark framework and

the reference implementation for each operation

* For each graph database:

— Required: Implement a few methods (150 LOC on average)

— Optional: Re-implement each operation in the database’s
native API for improved performance

Tested with: .
o *dex :7 Neo4j

* During development, also BerkeleyDB and MySQL



Benchmark structure

1. Initialize each operation

Pick random vertices, edges, and/or property values

A vertex can be selected uniformly at random or

proportionally to its degree

2. Pollute the caches by a linear scan, to:

Warm up the caches, and

Ensure that cache contents do not come from initialization

3. Run each operation

Report results only for the last 10-25% of executions to make
sure we report results from JIT-ed, not interpreted byte-code

Collect: time, memory usage, number of accessed vertices and
neighborhoods, GC time, etc.



Using the Benchmark

1. Through a command-line:

graphdb-bench$ ./runBenchmarkSuite. lex 1 blk lel ——getl

2. Through a web interface:

Instance Name BerkeleyDBE DEX MySQL Neo4j
<default> (o
Graph Loading and Generation
amazon0302 .
Create index
amazon0312 Generate
Incremental Ingest
blk_lel v Ingest Configure the workloads:
Number of Operations
blk 2el Read-Only Workloads At least 1 Ll
A blank operation (noop) Number of K Hops .5
Compute PageRank A number or a range (e.g. 1:5) :
Y| Get
Get - micro ops only Edge Property Key for time
Get - traversals only Conditional Traversal
V| Get k-hop Use "none” to disable
Get k-hop using edge labg
Add to the Queue




Viewing the Results

Through a web interface:

Instance Name
<default>
amazon0302
amazon0312
blk_lel

blk_2el

BerkeleyDB

DEX MySQL Neo4j

€ O O

O

O

2) Select operations to compare:

] AddManyEdges
] AddManyVertices
"] Blank
CreateKeylndex

[l edge-time

["] vertex-age (7] vertex-
O DeleteGraph
GetAlINeighbors

V! both Vin
GetFirstNeighbor
| both in

Execution Time (ms)

0.5
-
m
o
0.4 =
0.3 L
1 S
0.2 o
[Fa ]
o | B I ~ =
- o o —
o LHNEN il o
S, S, S
N f/ 4
/9/ 4 S
both in out

Neo4)




Outline

Introduction
Methodology
Implementation

Selected Results

“uBH W e

Conclusion



Experimental Setup: Platform

e Databases:
— Neo4j 1.8
— In the paper: DEX 4.6

* Benchmarked on:
— Intel Core i3, 3 GHz, 4 GB RAM
— Ubuntu 12.04 LTS
— 1 GB Cache, 1 GB JVM Heap



Experimental Setup: Datasets

* Datasets:
— Barabasi graphs (small world networks), m=5
— In the paper: Kronecker graphs (natural networks)
— In the paper: Amazon co-purchasing networks (from SNAP)

* Four different sizes of Barabasi graphs:

Operating Point

1K Fits entirely in DB cache
(Neodj: fits entirely in the object cache)

1 mil. Fits entirely in DB cache
2 mil. Bigger than DB cache, but fits in memory

10 mil. Bigger than memory



Experimental Setup: Workload

Get k-Hop Neighbors

Get k-hop
Neighbors

Get
Neighbors

Evaluate Get Neighbors
using modeled Traverse

Traverse

(We cannot evaluate
Traverse, since we cannot

GET measure it directly.)

vertex




Neodj: Get Neighbors

Model:
(# Accessed Vertices) g
x (Latency(Get Vertex) >
+ Latency(Get Edge)) \0“%

Neo4] 2m
0.3
0.25 |
0.2 |
0.15 |
0.1}
0.05  ;

A'Ctl.jall ' ' ' ' ' //
Model 1

Latency (in ms)

10 20 30 40 50 60 70
# Accessed Nodes

Latency (in ms)

0.16

0.14 |
0.12
0.1 ¢
0.08 |
0.06
0.04 | ¢
0.02 }

0

O =N W Hs oo N

0 10 20 30 40 50 60 70 80

Neodj 10m

Actual -
Model 7

0

10 20 30 40 50 60 70
# Accessed Nodes



Experimental Setup: Workload

Get k-Hop Neighbors

Get k-hop
REIEUBOES Evaluate Get k-Hop
Neighbors using actual
o Get Neighbors

Neighbors

OPTIMIZATION DETECTED
Traverse

(We cannot evaluate
Traverse, since we cannot
o measure it directly.)

vertex




Latency (in ms)

Neodj: Get k-Hop Neighbors

Model: 12000
10000

(# Calls to Get Neighbors) E g000
x Latency(Get Neighbors) 3z 6000

% 4000

Using actual, not modeled ~ 2000

latency of Get Neighbors.

Neo4j 2m “o © a‘ao‘
9000 —p—— : — QF 45000
7000 | Mo SO
6000 | I € 30000
5000 | ~ £ 25000
4000 } g 20000
3000 | £ 15000
2000 | 47 310000
1000 / - 5000
0 . . : 0
0 16405 2e+05 3e+05 4e+05 0

# Calls to Get Neighbors

Neod4j 1m

Actual - )
Model

2.5e+05 5e+05 7.5e+05 1e+06
# Calls to Get Neighbors



Experimental Setup: Workload

Get k-Hop Neighbors

Get k-hop
Neighbors

NO OPTIMIZATION
DETECTED

Get
Neighbors

OPTIMIZATION DETECTED
Traverse

(We cannot evaluate
Traverse, since we cannot
o measure it directly.)

vertex




Selected Results Summary

* Neodj’s neighborhood queries

— Good optimization of individual neighborhood queries
when the database does not fit in the cache

— No optimization of multiple neighborhood queries, even
when run in a BFS order



Outline

Introduction
Methodology
Implementation

Selected Results

LB wihe

Conclusion



Conclusion

Performance Introspection of Graph Databases

A black-box approach to understanding strengths and weaknesses
of graph databases by comparing the actual and the modeled
performance.

Availability: code.google.com/p/pig-bench
Contact: pmacko at eecs.harvard.edu

Thanks to: . * o 0
W)+ ORACLE “sparsity S feotechnology

technologies

1. actior



