
On the Design of a New CPU Architecture
for Pedagogical Purposes

Daniel Ellard, David Holland, Nicholas Murphy, Margo Seltzer
{ellard,dholland,nmurphy,margo}@eecs.harvard.edu

Abstract

Ant-32 is a new processor architecture designed
specifically to address the pedagogical needs of
teaching many subjects, including assembly lan-
guage programming, machine architecture, compil-
ers, operating systems, and VLSI design. This paper
discusses our motivation for creating Ant-32 and the
philosophy we used to guide our design decisions
and gives a high-level description of the resulting
design.

1 Introduction

The Ant-32 architecture is a 32-bit RISC architec-
ture designed specifically for pedagogical purposes.
It is intended to be useful for teaching a broad va-
riety of topics, including machine architecture, as-
sembly language programming, compiler code gen-
eration, operating systems, and VLSI circuit design
and implementation.

This paper gives our motivation for creating Ant-
32, lists our design goals and how these goals influ-
enced our design decisions, discusses some of the
more important details of the resulting architecture,
and describes our future plans for continuing devel-
opment of the architecture and integrating it into ex-
isting curricula.

2 The Motivation for Ant-32

Before describing the process by which we created
Ant-32, it is important to saywhywe felt it was use-
ful to create Ant-32 at all. The courses at our uni-
versity have frequently used several different archi-
tectures to illustrate different points, and often each

course used a different architecture.

A negative result of using a multitude of archi-
tectures was that each course had to spend time and
energy teaching the particular details of the archi-
tectures used by that course. This forced the profes-
sor to make an unpleasant choice between remov-
ing other material from the course, or adding to the
workload of the course (which is already a problem
at our institution, where Computer Science has an
unfortunate reputation as one of the most arduous
majors).

In order to minimize this problem in our
introductory-level courses, several years ago we de-
signed a simple eight-bit architecture named Ant-
8, which is now used in both of our introductory
programming courses as well as the introductory
machine architecture course. This architecture has
been successful and is now in use at several other
institutions. Its utter simplicity and tiny size make
it easy to learn, while providing a realistic illustra-
tion of a machine architecture, capable of running
interesting applications.

Unfortunately, Ant-8 is too small and simple to
be used for higher-level courses, such as compil-
ers, operating systems, and advanced machine ar-
chitecture. Therefore, we decided to create a 32-
bit architecture, using the lessons we learned from
our eight-bit processor, but with the goal of creating
a single processor that can be used across a much
wider range of courses.

We felt that it was worth the effort to create a new
architecture, rather than using one of the myriad ex-
isting architectures, because we could not find any
that were truly suitable. The “real” architectures
(such as x86, alpha, and MIPS) are, in our opinion,
too complicated and require mastery of too many
arcane details in order to accomplish anything inter-



esting. The many architectures created for purely
pedagogical purposes offer more hope, but the sys-
tems of which we are aware are too finely tuned for
illustrating or experimenting with a small number
of concepts, and were never meant to be used as a
general framework.

3 Goals and Requirements

The core philosophy of the Ant-32 architecture is
that it must be clean, elegant, and easy to under-
stand, while at the same time it must support all of
the important functionality of a real processor. In
short, it must maximize the number of concepts it
can be used to teach, while minimizing the com-
plexity and number of unrelated details the students
must struggle through in order to absorb those con-
cepts.

The functional requirements of the Ant-32 ar-
chitecture can be described in terms of the differ-
ent curricula that Ant-32 is designed to augment:
simple assembly language programming, compiler
code generation, operating system implementation,
and VLSI design and implementation.

Addressing all of these different needs required a
number of trade-offs and difficult design decisions,
which are described in the remainder of this section.

3.1 Assembly Language and Machine Ar-
chitecture

In an introductory assembly language programming
unit, we believe that it is desirable to use an architec-
ture that has a small number of instructions and sim-
ple memory and exception architectures. We also
believe that it is important that the architecture be
based on RISC design principles, because we be-
lieve that RISC principles will be the dominant in-
fluences on future processor designs. In addition,
we have found that RISC architectures are generally
easier for students to understand and implement.

In an earlier project, several members of the Ant-
32 team were involved in the development of Ant-
8, an eight-bit RISC architecture designed for in-
troductory programming and introductory machine
architecture courses. This architecture is extremely
small, simple and easy to learn. We have had pos-

itive feedback from professors and students who
have used it, both at our institution and elsewhere.

The first draft of Ant-32 was a direct extension
of Ant-8 to thirty-two bits. It contained approxi-
mately twenty instructions, and was designed with
the intention that all of our second-year students
(who were familiar with the eight-bit architecture
from their introductory classes) would feel familiar
with the architecture and be able to read and write
Ant-32 assembly language programs almost imme-
diately. Like Ant-8, there was no support for virtual
memory or any form of protection, and the excep-
tion architecture consisted of having the machine
halt and dump core whenever any error occurs.

3.2 Code Generation

There are two aspects of the orignal Ant-32 de-
sign that made it unsatisfactory as the target of a
code generator: the absence of relative jumps and
branches and an overly simplified instruction set.

Our original Ant-8 architecture used absolute
jumps and branches, because our students found ab-
solute addressing more intuitive and easier to de-
bug than relative addressing. However, automated
code generators see the world in a different way than
their human counterparts, and in many contexts rel-
ative addresses are easier to generate. The ability to
use relative addresses also greatly simplifies sepa-
rate compilation and linking (which has never been
an issue for Ant-8, but which we expect will be im-
portant for Ant-32).

The original Ant-32 architecture also did not in-
clude any immediate arithmetic instructions. As a
result, simple and commonplace operations such as
incrementing the value in a register required at least
two instructions. Adding a rich set of immediate
arithmetic instructions make it possible to investi-
gate a number of useful code optimizations.

In addition, we found it useful to extend the orig-
inal Ant-32 programming model by adding basic
register usage conventions, in order to provide a
common framework for function calling and link-
age conventions. These conventions arenot part of
the architectural specification, however, and there is
nothing implicit in the architecture that limits how
the processor is programmed. For example, there
is no register dedicated to be the stack pointer in



the Ant-32 architecture, although programmers can
choose to adopt a register usage convention that
creates that impression. Programmers are free to
choose or experiment with different conventions.

3.3 Operating Systems

Operating systems courses require a more complex
view of the processor, including an exception and
virtual memory architecture, mechanisms to access
memory and processor state, and an interface to an
external bus to support devices separate from the
CPU.

It was a challenge to add the functionality re-
quired to support a full-featured operating system
without losing the ability to program Ant-32with-
out writing at least a bare-bones boot-strap OS. To
achieve this goal, we designed the processor so that
in its initial state, most of the higher-level function-
ality is disabled. This means that the programmer
only needs to understand the parts of the architec-
ture that they actually employ in their program.

3.4 Advanced VLSI Implementation

Considering the architecture from the perspective of
an actual VLSI implementation was an extremely
important influence on the design. It was often quite
tempting to add powerful but unrealistic features to
the architecture, in order to add “convenience” in-
structions, such as instructions to simplify the as-
sembly language glue required for exception han-
dlers, context switching, and related routines. Con-
sidering whether or not it would be realistic to ac-
tually implement these instructions in hardware was
an essential sanity check to make sure that we were
creating a plausible and realistic architecture.

3.5 Omitted Features

It is worth mentioning that there are a number of
features present in many architectures that we felt
comfortable omitting entirely from Ant-32, because
we felt that they added unnecessary complexity. If
necessary, the specification can be augmented to in-
clude these features. We have made an effort to
make our design flexible, and in fact several fea-
tures (such as support for floating point) were ac-

tually present in our design until late in the review
process, when we decided to omit them.

• Ant-32 does not contain any floating point in-
structions: for our intended audience we be-
lieve that these instructions are rarely neces-
sary, and they lengthen the specification of the
architecture (and increase the complexity of
implementing the architecture) to such an ex-
tent that we decided to drop them entirely.

• The Ant-32 architecture does not include a
specification for an external bus; the only re-
quirements are the ability to read and write
memory external to the CPU. The bus can
cause an interrupt to occur via a single IRQ
channel.

The separation of bus and processor architec-
tures, as well as the simplicity of the inter-
face to the bus, allows Ant-32 to integrate eas-
ily with many bus architectures. In our cur-
rent implementation, we use a simple (but full-
featured) bus architecture that was originally
designed for use with the MIPS processor ar-
chitecture, which allows us to use simulators
for devices already written for this bus.

• The Ant-32 memory interface is extremely
simple and does not include a specification of a
cache. However, it does not preclude the pres-
ence of a cache, and is designed to allow the
easy incorporation of nearly any caching archi-
tecture. In fact, our reference simulator for the
architecture is designed to allow easy experi-
mentation with different caching strategies.

• Ant-32 has a simple instruction execution
model. Our main focus has been on the
instruction-set architecture of Ant-32, and not
on the actual implementation details. We have
tried to avoid making any design decisions that
would prevent the implementation of an Ant-
32 processor with such contemporary features
as pipelining, super-scalar execution, etc. The
specification is written in such a way as to al-
low extension in this area. It is our belief that
the Ant-32 instruction set architecture can be
implemented in a number of interesting ways.



4 A Description of the Ant-32 Ar-
chitecture

The core of our architecture is a straight-forward
three-address RISC design, influenced heavily by
the MIPS design philosophy and architecture. Since
RISC architectures (and variants of MIPS) are ubiq-
uitous, we will not describe the general character-
istics of the architecture in detail, but will focus on
where our architecture differs.

In a nutshell, Ant-32 is a 32-bit processor, sup-
porting 32-bit words and addresses and 8-bit bytes.
All instructions are one word wide and must be
aligned on word boundaries. For all instructions,
the high-order 8 bits of an instruction represent the
opcode. There are a total of 62 instructions, includ-
ing four optional instructions. There are 64 general-
purpose registers. All register fields in the instruc-
tions are 8 bits wide, however, allowing for future
expansion. Virtual memory is made possible via
a TLB-based MMU, which is discussed in section
4.1. The processor has supervisor and user modes,
and there are instructions and registers that can only
be used when the processor is in supervisor mode.

The architecture also defines 8 special-purpose
registers that are used for exception handling. These
are described in section 4.2.

A somewhat unusual addition to the architecture
is 8 cycle and event counters. These include a cumu-
lative CPU cycle counter, a CPU cycle counter for
supervisor mode only, and counters for TLB misses,
IRQs, exceptions, memory loads and stores. We be-
lieve that these will be useful for instrumenting and
measuring the performance of software written for
the processor.

4.1 The Virtual Memory Architecture

The VM architecture was the focus of far more
philosophical debate (and contention) than any
other area of the architecture. Perhaps because of
the energy and passion we put into airing our di-
vergent views, and the fact that we eventually con-
verged on a design that satisfied everyone, we feel
that the resulting architecture is perhaps the most
important contribution of the overall Ant-32 archi-
tecture.

The main focus of the debate was how much

high-level support for virtual memory we should
provide in hardware. In real applications, TLB op-
erations (such as TLB miss exceptions, TLB inval-
idation during context switching, etc) are expensive
and it is more than worthwhile to provide architec-
tural support for them. For the purpose of pedagogy,
however, providing this support makes the design
and specification of the architecture considerably
more complex. We feel that the architecture must be
clear and elegant in order for the students to under-
stand it well, and we are more concerned with how
quickly students can implement their operating sys-
tems than how quickly their operating systems run.
At the same time, however, we were still guided by
the principle that our architecture must be realistic
and full-featured.

Ant-32 is a paged architecture, with a fixed 4K
page size. A software-managed translation look-
aside buffer (TLB) maps virtual addresses to physi-
cal addresses. The TLB contains at least 16 entries,
and may contain more. There are only three instruc-
tions that interact directly with the TLB:tlbpi ,
which probes the TLB to find whether a virtual ad-
dress has a valid mapping,tlble , which loads a
specific TLB entry into a register pair, andtlbse ,
which stores a register pair into a specific TLB en-
try.

In addition to the virtual to physical page map-
pings, each TLB entry contains information about
the mapping, including access control (to limit ac-
cess to any subset of read, write, and fetch), and
whether the TLB entry is valid.

Ant-32 has a one gigabyte physical address space.
Physical memory begins at address 0, but need not
be contiguous. Memory-mapped devices are typi-
cally located at the highest physical addresses, and
the last page is typically used for a bootstrap ROM,
but the implementor is free to organize RAM, ROM,
and devices in virtually any way they deem appro-
priate. The only constraint placed on the arrange-
ment of memory is that the last word of the physi-
cal address space must exist; this location is used to
store the address of the power-up or reset code.

Virtual addresses are 32 bits in length. The top
two bits of a virtual address determine the segment
that the address maps to. When the processor is in
user mode, only segment 0 is accessible, but all the
segments are accessible in supervisor mode. Ad-



dresses in segments 0 and 1 are mapped to physical
addresses via the TLB, while addresses in segments
2 and 3 are mapped directly to physical addresses.
Accesses to memory locations in segment 2 may be
cached (if the implementation contains a cache) but
accesses to memory locations in segment 3 may not
be cached.

4.2 The Exception Architecture

A realistic but tractable exception architecture is es-
sential to any processor used by an operating system
course. Exception handlers, and particularly their
entry/exit code, are among the most difficult parts
of the operating system to code, test and debug. For
most real 32-bit processors, searching the documen-
tation to learn how to save and restore all the neces-
sary aspects of the CPU state is a daunting task.

For Ant-32, our goal was to design an exception
architecture that is realistic and complete, but also
easy to understand and allows a simple implemen-
tation of the necessary glue routines for handling
exceptions and saving and restoring processor state.

In Ant-32, interrupts and exceptions are enabled
and disabled via special instructions. Interrupts
from external devices are treated as a special kind of
exception. Interrupts can be disabled independently
of exceptions.

When exceptions are enabled, any exception
causes the processor to enter supervisor mode, dis-
able exceptions and interrupts, and jump to the ex-
ception handler. If an exception other than an inter-
rupt occurs when exceptions are disabled, the pro-
cessor resets. If an interrupt occurs while exceptions
or interrupts are disabled, it is not delivered until in-
terrupts and exceptions are enabled.

System calls are made via thetrap instruction,
which triggers an exception. The transition from su-
pervisor mode to user mode is accomplished via the
rfe instruction.

The Ant-32 exception-handling mechanism con-
sists of eight special registers. These registers are
part of the normal register set (and therefore can be
addressed by any ordinary instruction), but they can
only be accessed when the processor is in supervi-
sor mode. Four of the registers are scratch registers,
with no predefined semantics. They are intended to
be used as temporary storage by the exception han-

dler. The other four registers contain information
about the state the processor was in when the ex-
ception occurred. These four registers are read-only,
and their values are only updated when exceptions
are enabled. When an exception occurs, further ex-
ceptions are immediately disabled, and these regis-
ters contain all the information necessary to deter-
mine the cause of the exception, and if appropriate
reconstruct the state of the processor before the ex-
ception occurred and restart the instruction:

e0 When exceptions are enabled, this register is
updated every cycle with the address of the cur-
rently executing instruction.

When an exception occurs,e0 contains the
address of the instruction that was being exe-
cuted. Depending on the exception, after the
exception handler is finished, this instruction
may be re-executed.

e1 When exceptions are enabled, this register is
updated every cycle to indicate whether inter-
rupts are enabled.

When an exception occurs, interrupts are dis-
abled, bute1 tells whether or not interrupts
were enabled before the exception occurred.
This allows the exception handler to easily re-
store this part of the CPU state.

e2 When exceptions are enabled, this register is
updated with every address sent to the memory
system. If any memory exception occurs, this
register will contain the memory address that
caused the problem.

e3 This register contains the exception number
and whether the processor was in user or super-
visor mode when the exception occurred. For
exceptions due to memory accesses, the value
of this register also indicates whether the ex-
ception was caused by a read, write, or instruc-
tion fetch.

Disabling interrupts automatically whenever any
exception occurs provides a way to prevent nested
exceptions and an unrecoverable loss of data: if an
interrupt is permitted to occur before the state of the
processor has been preserved, then the state of the
processor when the first exception occurred may be



lost forever. By disabling interrupts until they are
explicitly re-enabled, we can prevent this from hap-
pening.

The benefit of this arrangement is that the only
way to fatally crash the processor is to have a mis-
take which causes an exception to occur in the
exception entry/exit code. The drawback of this
scheme is that the exception handler entry/exit code
(and all the memory addresses referenced by this
code) must generally be located in an unmapped
memory segment, because otherwise a TLB miss
could occur during execution of the exception han-
dler.

5 Future Directions

Although completing the specification of our archi-
tecture was an important step towards our goal of
making Ant-32 a widely valuable educational tool,
we acknowledge that there is much more to do.
From our experiences with Ant-8, we know that ed-
ucators will not use Ant-32 in their curricula unless
the benefits of using Ant-32 are obvious, and the
cost of transition to Ant-32 is very low.

To minimize the transition costs, we have already
implemented a reference assembler, simulator, and
debugger for the Ant-32 architecture, an assembly-
language tutorial and hardware specification. This
software and documentation has already been used,
with positive results, by a compiler course at Boston
College. We are currently working on extending this
material into full suite of educational materials for
the Ant-32 architecture, including extended tutorial
and reference texts, example code, lecture materi-
als, problem sets and exercises with detailed solu-
tions, and pre-compiled distributions for easy instal-
lation on popular platforms, in the same manner as
we have done with our earlier eight-bit architecture.
All of this material will be freely available from our
web site,http://www.ant.harvard.edu/ .

We are also planning a project to build a complete
GNU tool-chain (gcc , gas , gdb , and complete li-
braries) for Ant-32 so that it can be used to write a
complete operating system for Ant-32 with only a
small amount of assembly language programming.
This is a huge undertaking, and we invite anyone
interested in helping to develop this material in any

way to contact the Ant-32 team.

6 Related Work

Many simplified or artificial architectures have been
created for the purposes of pedagogy or separating
conceptual points from the details of implementa-
tion, beginning at the foundation of computer sci-
ence with the the Turing machine [6] and continuing
to the present day. Attempting to survey this field in
the related work section of a five page paper is futile;
in the last ten years SIGCSE has published at least
25 papers directly related to this topic, and we sus-
pect that for every architecture documented in the
literature there are at least a dozen toy architectures
that are never publicized outside of the course they
were created for.

The continued and vigorous activity in the devel-
opment of simplified architectures, simulators for
existing architectures, or extended metaphors for
computation such asKarel the Robot[5] or theLittle
Man [7] computer simulators strengthens our belief
that these are powerful pedagogical tools, and that
they are worth further development.

All of the pedagogical systems of which we are
aware focus on a single conceptual domain, instead
of trying to work well across a spectrum of top-
ics. One standout has been the MIPS architecture,
which has served as a useful tool in the domains
of both operating systems and machine architecture
pedagogy. This is demonstrated by the number of
educational projects based on MIPS, such as SPIM
[3], MPS [2], Nachos [1], and descendants of MIPS
such as DLX [4]. Once again, however, the sheer
number and diversity of tools based on this archi-
tecture seems to imply that the situation could be
improved. With Ant-32, we plan to combine the ed-
ucational features of most of these tools into a sin-
gle, coherent framework that can easily be adapted
to a broad range of educational purposes.

7 Conclusions

We believe that Ant-32 will allow educators to
streamline their courses by using the same archi-
tecture (and tools) in several courses, because Ant-



32 is well-suited to many different different educa-
tional purposes.

We recognize that educators will disagree in
whole or in part with some of our assumptions,
opinions, and conclusions, but when this happens,
we hope that sharing our experiences in designing a
32-bit architecture for pedagogical purposes will be
helpful to them as they develop or refine their own
designs.

References

[1] W. A. Christopher, S. J. Procter, and T. E. An-
derson. The nachos instructional operating sys-
tem. Proceedings of the USENIX Winter 1993
Conference, 1993.

[2] M. Morsiani and R. Davoli. Learning operating
systems structure and implementation through
the mps computer system simulation.Proceed-
ings of SIGCSE 1999, 31(1), 1999.

[3] D. A. Patterson and J. L. Hennessy.Com-
puter Organization & Design: The Hard-
ware/Software Interface. Morgan Kaufmann
Publishers, 1994.

[4] D. A. Patterson and J. L. Hennessy.Computer
Architecture: A Quantitative Approach, 2nd
edition. Morgan Kaufmann Publishers, 1996.

[5] R. Pattis. Karel the Robot. John Wiley and
Sons, Inc, 1981, 1995.

[6] A. M. Turing. On computable numbers, with an
application to the entscheidungsproblem.Pro-
ceedings of the London Mathematical Society,
42(2):230–265, 1936.

[7] W. Yurcik and L. Brumbaugh. A web-based
little man computer simulator.Proceedings of
SIGCSE 2001, 33(1), 2001.


