NFS Tricks and Benchmarking Traps

Daniel Ellard, Margo Seltzer
Harvard University
{ellard,margo} @eecs.harvard.edu

Abstract

We describe two modifications to the FreeBSD 4.6 NFS
server to increase read throughput by improving the
read-ahead heuristic to deal with reordered requests and
stride access patterns. We show that for some stride
access patterns, our new heuristics improve end-to-end
NEFES throughput by nearly a factor of two. We also show
that benchmarking and experimenting with changes to
an NFS server can be a subtle and challenging task, and
that it is often difficult to distinguish the impact of a new
algorithm or heuristic from the quirks of the underlying
software and hardware with which they interact. We dis-
cuss these quirks and their potential effects.

1 Introduction

Despite many innovations, file system performance is
steadily losing ground relative to CPU, memory, and
even network performance. This is due primarily to the
improvement rates of the underlying hardware. CPU
speed and memory density typically double every 18
months, while similar improvements in disk latency have
taken the better part of a decade. Disks do keep pace in
terms of total storage capacity, and to a lesser extent in
total bandwidth, but disk latency has become the primary
impediment to total system performance.

To avoid paying the full cost of disk latency, mod-
ern file systems leverage the relatively high bandwidth
of the disk to perform long sequential operations asyn-
chronously and amortize the cost of these operations
over the set of synchronous operations that would oth-
erwise be necessary. For write operations, some tech-
niques for doing this are log-structured file systems [18],
journalling, and soft updates [21]. For reading, the pri-
mary mechanism is read-ahead or prefetching. When
the file system detects that a process is reading blocks
from a file in a predictable pattern, it may optimistically
read blocks that it anticipates will be requested soon. If
the blocks are arranged sequentially on disk, then these
“extra” reads can be performed relatively efficiently be-
cause the incremental cost of reading additional contigu-

ous blocks is small. This technique can be beneficial
even when the disk blocks are not adjacent, as shown by
Shriver et al. [23].

Although there has been research in detecting and ex-
ploiting arbitrary access patterns, most file systems do
not attempt to recognize or handle anything more com-
plex than simple sequential access — but because sequen-
tial access is the common case, this is quite effective for
most workloads. The Fast File System (FFS) was the
pioneering implementation of these ideas on UNIX [12].
FFS assumes that most file access patterns are sequential,
and therefore attempts to arrange files on disk in such a
way that they can be read via a relatively small number
of large reads, instead of block by block. When reading,
it estimates the sequentiality of the access pattern and, if
the pattern appears to be sequential, performs read-ahead
so that subsequent reads can be serviced from the buffer
cache instead of from disk.

In an earlier study of NFS traffic, we noted that many
NFS requests arrive at the server in a different order than
originally intended by the client [8]. In the case of read
requests, this means that the sequentiality metric used
by FFS is undermined; read-ahead can be disabled by
a small percentage of out-of-order requests, even when
the overall access pattern is overwhelmingly sequential.
We devised two sequentiality metrics that are resistant
to small perturbations in the request order. The first is a
general method and is described in our earlier study. The
second, which we call SlowDown, is a simplification of
the more general method that makes use of the existing
FFS sequentiality metric and read-ahead code as the ba-
sis for its implementation. We define and benchmark this
method in Section 6.

The fact that the computation of the sequentiality
metric is isolated from the rest of the code in the
FreeBSD NFS server implementation provides an inter-
esting testbed for experiments in new methods to detect
access patterns. Using this testbed, we demonstrate a
new algorithm for detecting sequential subcomponents
in a simple class of regular but non-sequential read ac-
cess patterns. Such access patterns arise when there is
more than one reader concurrently reading a file, or when
there is one reader accessing the file in a “stride” read

pattern. Our algorithm is described and benchmarked in
Section 7.

Despite the evidence from our analysis of several
long-term NFS traces that these methods would enhance
read performance, the actual benefit of these new algo-
rithms proved quite difficult to quantify. In our efforts
to measure accurately the impact of our changes to the
system, we discovered several other phenomena that in-
teracted with the performance of the disk and file system
in ways that had far more impact on the overall perfor-
mance of the system than our improvements. The major-
ity of this paper is devoted to discussing these effects and
how to control for them. In truth, we feel that aspects of
this discussion will be more interesting and useful to our
audience than the description of our changes to the NFS
server.

Note that when we refer to NFS, we are referring only
to versions 2 (RFC 1094) and 3 (RFC 1813) of the NFS
protocol. We do not discuss NFS version 4 (RFC 3010)
in this paper, although we believe that its performance
will be influenced by many of the same issues.

The rest of this paper is organized as follows: In sec-
tion 2 we discuss related work, and in Section 3, we give
an overview of file system benchmarking. We describe
our benchmark and our testbed in Section 4. In Section 5,
we discuss some of the properties of modern disks, disk
scheduling algorithms, and network transport protocols
that can disrupt NFS benchmarks. We return to the topic
of optimizing NFS read performance via improved read-
ahead, and define and benchmark the SlowDown heuris-
tic in Section 6. Section 7 gives a new cursor-based
method for improving the performance of stride access
patterns and measures its effectiveness. In Section 8, we
discuss plans for future work and then conclude in Sec-
tion 9.

2 Related Work

NFS is ubiquitous in the UNIX world, and therefore has
been the subject of much research.

Dube et al. discuss the problems with NFS over wire-
less networks, which typically suffer from packet loss
and reordering at much higher rates than our switched
Ethernet testbed [6]. We believe that our SlowDown
heuristic would be effective in this environment.

Much research on increasing the read performance
of NFS has centered on increasing the effectiveness of
client-side caching. Dahlin et al. provide a survey of sev-
eral approaches to cooperative client-side caching and
analyze their benefits and tradeoffs [4]. The NQNFS
(Not Quite NFS) system grants short-term leases for
cached objects, which increases performance by reduc-

ing both the quantity of data copied from the server to
the client and the number of NFS calls that the client
makes to check the consistency of their cached copies
[10]. Unfortunately, adding such constructs to NFS ver-
sion 2 or NFS version 3 requires non-standard changes
to the protocol. The NFS version 4 protocol does include
a standard protocol for read leases, but has not achieved
widespread deployment.

Another approach to optimizing NFS read perfor-
mance is reducing the number of times the data buffers
are copied. The zero-copy NFS server shows that this
technique can double the effective read throughput for
data blocks that are already in the server cache [11].

In contrast to most previous work in NFS read per-
formance, we focus on improving read performance for
uncached data that must be fetched from disk. In this
sense, our work is more closely related to the studies of
read-ahead [23] and the heuristics used by FES [13].

3 Benchmarking File Systems and
I/0 Performance

There has been much work in the development of ac-
curate workload and micro benchmarks for file sys-
tems [22, 24]. There exists a bewildering variety of
benchmarks, and there have been calls for still more
[16, 19, 27].

Nearly all benchmarks can be loosely grouped into
one of two categories: micro benchmarks, such as Im-
bench [14] or bonnie [1], which measure specific low-
level aspects of system performance such as the time
required to execute a particular system call, and macro
or workload benchmarks, such as the SPEC SFS [26]
or the Andrew [9] benchmarks, which estimate the per-
formance of the system running a particular workload.
Workload benchmarks are used more frequently than mi-
cro benchmarks in the OS research literature because
there are several that have become “standard” and have
been used in many analyses, and therefore provide a con-
venient baseline with which to compare contemporary
systems and new techniques. There are two principal
drawbacks to this approach, however — first, the bench-
mark workloads may have little or no relevance to the
workload current systems actually run, and second, the
results of these holistic benchmarks can be heavily influ-
enced by obscure and seemingly tangential factors.

For our analysis, we have created a pair of simple mi-
cro benchmarks to analyze read performance. A micro
benchmark is appropriate for our research because our
goal is to isolate and examine the effects of changes
to the read-ahead heuristics on read performance. The

benchmark used in most of the discussions of this pa-
per is defined in Section 4.2. The second benchmark is
defined in Section 7. Neither of these benchmarks re-
sembles a general workload — their only purpose is to
measure the raw read performance of large files.

We do not attempt to age the file system at all be-
fore we run our benchmarks. Aging a file system has
been shown to make benchmark results more realistic
[24]. For most benchmarks, fresh file systems represent
the best possible case. For our enhancements, however,
fresh file systems are one of the worst cases. We are
attempting to measure the impact of various read-ahead
heuristics, and we believe that read-ahead heuristics in-
crease in importance as file systems age. Therefore, any
benefit we see for a fresh file system should be even more
pronounced on an aged file system.

4 The Testbed

In this section, we describe our testbed, including the
hardware, our benchmark, and our method for defeating
the effects of caching.

4.1 The Hardware

The server used for all of the benchmarks described in
this paper is a Pentium III system running at 1 GHz, with
256 MB of RAM. The system disk is an IBM DDY S-
T36950N S96H SCSI-3 hard drive controlled by an
Adaptec 29160 Ultral60 SCSI adapter. The benchmarks
are run on two separate disks: a second IBM DDYS-
T3690N S96H drive (attached to the Adaptec card),
and a Western Digital WD200BB-75CAAQ drive (at-
tached to a VIA 82C686 ATA66 controller on the moth-
erboard). The server has two network interfaces: an In-
tel PRO/1000 XT Server card running at 1 Gb/s and an
3Com 3¢c905B-TX Fast Etherlink XL card running at 100
Mb/s.

The clients are Pentium III systems running at 1 GHz,
with 1 Gigabyte of RAM, and two network interfaces: an
Intel PRO/1000 XT Server card running at 1 Gb/s, and
an Intel Pro 10/100B/100+ Ethernet card, running at 100
Mb/s. The 100Mb/s interfaces are for general use, while
the 1Gb/s interfaces are only used by the benchmarks.

The gigabit Ethernet cards are connected via a Net-
Gear GSM712 copper gigabit switch. The switch and the
Ethernet cards use 802.3x flow control, and the standard
Ethernet MTU of 1500 bytes. The raw network band-
width achievable by the server via TCP over the gigabit
network is 49 MB/s. This falls far short of the theoreti-
cal maximum, but approaches the DMA speed of the PCI
bus of the server motherboard, which we measured at 54

MB/s using the gm_debug utility provided by Myrinet
to test their network cards. (A Myrinet card was installed
in the server long enough to run this benchmark, but was
not in the system for the other tests.) Only the bench-
mark machines are attached to the gigabit switch.

All systems under test run FreeBSD 4.6.2. The
FreeBSD kernel was configured to remove support for
pre-686 CPUs and support for hardware devices not
present in our configuration, but we made no other cus-
tomizations or optimizations beyond what is explicitly
described in later sections of the paper. For all tests, the
server runs eight nfsds instead of the default four, and
the clients run eight nf s i ods instead of the default four.

4.2 The Benchmark

The aspect of system performance that we wish to mea-
sure is the sustained bandwidth of concurrent read oper-
ations; the sustained bandwidth we can obtain from disk
via the file system when several processes concurrently
read sequentially through large files. In this section we
describe the simple benchmark that we have designed for
this purpose. Although it is simple, our benchmark illus-
trates the complexity of tuning even simple behaviors of
the system.

4.3 Running the Benchmark

Before running the benchmark, we create a testing di-
rectory and populate it with a number of files: one 256
MB file, two 128 MB files, four 64 MB files, eight 32
MB files, sixteen 16 MB files, and thirty-two 8 MB files.
We fill every block in these files with non-zero data, to
prevent the file system from optimizing them as sparse
files.

The benchmark loops through several different num-
bers of concurrent readers:

Foreachn (1, 2, 4, 8, 16, 32)

e For each file of size 256/n MB, create a
reader process to read that file. This pro-
cess opens the file, reads through it from
start to end, and then closes the file. Start
all these processes running concurrently.

o Wait until the last reader process has fin-
ished. Record the time taken by each
reader. The number of MB read divided
by the time required for the last reader
to finish gives the effective throughput of
the file system.

During the first iteration, a single reading process will
be created, which will read through the 256 MB file. In
the second iteration, two reading processing will con-
currently read through different 128 MB files. In the fi-
nal iteration, 32 reading processes will concurrently read
different 8 MB files.

For all of the timed benchmark results shown in this
paper, each point represents the average of at least ten
separate runs. Unless otherwise mentioned, the standard
deviation for each set of runs is less than 5% of the mean
(and typically much less).

4.3.1 Defeating the Cache

We wish to benchmark the speed that the file system
can pull data from the disk (either explicitly or via read-
ahead). To ensure that we measure this (instead of mem-
ory bandwidth), we must make sure that the data we read
are not already in the cache.

For our particular setup, every set of files contains 256
MB, so a complete iteration of the benchmark requires
reading 1.5 GB. Because our clients have 1 GB of RAM
and the server has only 256 MB of RAM and files are
not re-read until 1.25 GB of other data has been read,
none of the data will survive in the cache long enough
to have an effect, at least with our current OS. If our
clients and servers engaged in cooperative caching, or
used a caching mechanism intelligent enough to recog-
nize the cyclic nature of our benchmarks, we would have
to take more care to ensure that none of the data are read
from cache. Other techniques for ensuring that the data
are flushed from the cache include rebooting each client
and server between each iteration of the benchmark, un-
mounting and remounting the file systems used by the
benchmark, and reading large amounts of unrelated data
until they fill the cache. We experimented with each
of these and found that they made no difference to the
benchmark results, so we are confident that caching did
not influence our benchmarking.

S Benchmarking Traps

Our initial attempt to measure the effect of changes to the
FreeBSD NFS server and to experiment with heuristics
designed to address some of the behaviors we observed
in our earlier NFS trace study was frustrating. Our al-
gorithms were easy to implement, and the diagnostic in-
strumentation we added to monitor our algorithms con-
firmed that they were working as intended. However, the
results from our benchmarks were confusing and some-
times contradictory. Different runs on the same hardware
could give very different results, and the results on dif-

ferent hardware were often puzzling. We had anticipated
that the effect of our changes would be relatively small,
but we had not expected it to be overwhelmed by un-
expected effects. Therefore, before proceeding with the
benchmarks, we decided that a more interesting course
of action would be to investigate and expose the causes
of the variation in our benchmark and see if we could
design our experiments to control for them.

5.1 ZCAV Effects

Modern disk drives, with few exceptions, use a tech-
nique known as zoned constant angular velocity coding
(ZCAV) to increase the total disk capacity and average
transfer rate [15]. ZCAV can be thought of as an ap-
proximation of constant linear density coding, modified
to allow the disk to spin at a constant rate and provide
an integral number of disk sectors per track. The inner-
most cylinders of the disk drive contain fewer sectors
than the outermost tracks (typically by a factor of 2:3,
but for some drives as much as 1:2). The transfer rate be-
tween the disk and its buffer varies proportionally; in the
time it takes to perform a single revolution, the amount
of data read or written to disk can vary by a factor of al-
most 2 depending on whether the head is positioned at
the innermost or outermost track. If the transfer rate be-
tween the disk drive and the host memory is greater or
equal to the internal transfer rate of the disk at the inner-
most track, then the effect of the differences in transfer
rate will be visible to the host. For contemporary SCSI
and IDE drives and controllers, which have host interface
bandwidth exceeding their maximum read/write speeds,
this difference is entirely exposed. If the proportion be-
tween the number of sectors in the innermost and outer-
most cylinders is 2:3, then reading a large file from the
outermost cylinders will take only two-thirds of the time
(and two-thirds of the number of seeks, since each track
at the outside of the disk contains more sectors).

This effect has been measured and analyzed and is the
basis of some well-studied techniques in file system lay-
out tuning [15, 28]. Beyond papers that explicitly discuss
methods for measuring and exploiting disk properties,
however, mention of this effect is rare.

The ZCAV effect can skew benchmark results enor-
mously, depending on the number of files created and
accessed during the benchmark. If two independent runs
of the same benchmark use two different sets of files,
then the physical location of these files on disk can have
a substantial impact on the benchmark. If the effect that
the benchmark is attempting to measure is subtle, then
it may be completely overwhelmed by the ZCAV effect.
It may require a daunting number of runs to statistically
separate the effect being measured from the noise intro-

The ZCAV Effect on Local Drives

Throughput (MB/s)

12 4 8 16 32

Number of Concurrent Readers

Figure 1: The ZCAV effect. The scsil and idel par-
titions use the outermost cylinders of the disk, while the
scsi4 and ide4 use the innermost. As a result, the
transfer rates for the scsil and idel partitions are
higher than scsi4 and ide4.

duced by using blocks from different areas of the disk.

The ZCAV effect is illustrated in Figure 1, which
shows the results of running the same benchmark on dif-
ferent areas of a disk. For our benchmarks, we have di-
vided each of our test disks into four partitions of approx-
imately equal size, numbered 1 through 4. The files in
tests scsil and idel are positioned in the outer cylin-
ders of the SCSI and IDE drives, respectively, while the
scsi4 and ided test files are placed in the inner cylin-
ders. For both disks, it is clear that ZCAV has a strong ef-
fect. The effect is clearly pronounced for the IDE drive.
The SCSI drive shows a weaker effect — but as we will
see in Section 5.2, this is because there is another effect
that obscures the ZCAV effect for simple benchmarks on
our SCSI disk. For both drives the ZCAV effect is more
than enough to obscure the impact of any small change
to the performance of the file system.

The best method to control ZCAV effects is to use
the largest disk available and run your benchmark in the
smallest possible partition (preferably the outermost par-
tition). This will minimize the ZCAV effect by minimiz-
ing the difference in capacity and transfer rate between
the longest and shortest tracks used in your benchmark.

5.2 Tagged Command Queues

One of the features touted by SCSI advocates is the
availability of tagged command queues (also known as
tagged queues). This feature permits the host to send
several disk operation requests to the disk and let the
disk execute them asynchronously and in whatever or-
der it deems appropriate. Modern SCSI disks typically

Tagged Queues and ZCAV - Local SCSI Drive

35 T T T T
2 30— scsil/notags
E : scsi4 / no tags]
é scsil / tags
an
=]
g
=
= 5t 4
0 11 1 1 1

12 4 8 16 32

Number of Concurrent Readers

Figure 2: The effect of using tagged queues on SCSI per-
formance. On our test system, disabling tagged queues
improves transfer rates substantially for concurrent pro-
cesses performing long sequential reads.

have an internal command queue with as many as 256
entries. Some recent IDE drives support a feature con-
ceptually identical to tagged command queues, but our
IDE drive does not.

The fact that the tagged command queue allows the
disk to reorder requests is both a boon for ordinary users
and a source of headaches for system researchers. With
tagged queues enabled, the disk may service its requests
in a different order than they arrive at the disk, and its
heuristics for reordering requests may be different from
what the system researcher desires (or expects). For ex-
ample, many disks will reorder or reschedule requests in
order to reduce the total power required to position the
disk head. Some disks even employ heuristics to reduce
the amount of audible noise they generate — many users
would prefer to have a quiet computer than one that uti-
lizes the full positioning speed of the disk. The same
model of disk drive may exhibit different performance
characteristics depending on the firmware version, and
on whether it is intended for a desktop or a server.

The SCSI disk in our system supports tagged queues,
and the default FreeBSD kernel detects and uses them.
We instrumented the FreeBSD kernel to compare the or-
der that disk requests are sent to the disk to the order
in which they are serviced, and found that when tagged
queues are disabled, the two orders are the same, but
when tagged queues are enabled, the disk does reorder
requests. Note that this instrumentation was disabled
during our timed benchmarks.

To explore the interaction between the FreeBSD disk
scheduler and the disk’s scheduler, we ran a benchmark
with the tagged queues disabled. The results are shown
in Figure 2. For our benchmark, the performance is sig-
nificantly increased when tagged queues are disabled.

When tagged queues are enabled, the performance for
the default configuration has a dramatic spike for the
single-reader case, but then quickly falls away for mul-
tiple readers. With the tagged command queue disabled,
however, the throughput for multiple concurrent readers
decreases slowly as the number of readers increases, and
is almost equal to the spike for the single reader in the
default configuration. For example, the throughput for
scsil levels off just above 15 MB/s in the default con-
figuration, but barely dips below 27 MB/s when tagged
command queues are disabled.

There is no question that tagged command queues are
effective in many situations. For our benchmark, how-
ever, the kernel disk scheduler makes better use of the
disk than the on-disk scheduler. This is undoubtedly due
in part to the fact that the geometry the disk advertises
to the kernel does, in fact, closely resemble its actual ge-
ometry. This is not necessarily the case — for example,
it is not the case for many RAID devices or similar sys-
tems that use several physical disks or other hardware
(perhaps distributed over a network) to implement one
logical disk. In a hardware implementation of RAID, an
access to a single logical block may require accessing
several physical blocks whose addresses are completely
hidden from the kernel. In the case of SAN devices or
storage devices employing a dynamic or adaptive config-
uration the situation is even more complex; in such de-
vices the relationship between logical and physical block
addresses may be arbitrary, or even change from one mo-
ment to the next [29]. For these situations it is better to
let the device schedule the requests because it has more
knowledge than the kernel.

Even for ordinary single-spindle disks, there is a small
amount of re-mapping due to bad block substitution.
This almost always constitutes a very small fraction of
the total number of disk blocks and it is usually done in
such a manner that it has a negligible effect on perfor-
mance.

5.3 Disk Scheduling Algorithms

The FreeBSD disk scheduling algorithm, implemented
in the bufgdisksort function, is based on a cycli-
cal variant of the SCAN or elevator scan algorithm, as
described in the BSD 4.4 documentation [13]. This al-
gorithm can achieve high sustained throughput, and is
particularly well suited to the access patterns created by
the FFS read-ahead heuristics. Unfortunately, if the CPU
can process data faster than the I/O subsystem can de-
liver it, then this algorithm can create unfair scheduling.
In the worst case, imagine that the disk head is positioned
at the outermost cylinder, ready to begin a scan inward,
and the disk request queue contains two requests: one for

a block on the outermost cylinder, requested by process
a, and another for a block on the innermost cylinder, re-
quested by process 3. The request for the first block is
satisfied, and a immediately requests another block in
the same cylinder. If o requests a sequence of blocks
that are laid out sequentially on disk, and does so faster
than the disk can reposition, its requests will continue to
be placed in the disk request queue before the request
made by 3. In the worst case, § may have to wait until o
has scanned the entire disk. Somewhat perversely, an op-
timal file system layout greatly increases the probability
of long sequential disk accesses, with a corresponding
increase in the probability of unfair scheduling of this
kind.

This problem can be reduced by the use of tagged
command queues, depending on how the on-disk sched-
uler is implemented. In our test machine, the on-board
disk scheduler of the SCSI disks is in effect more fair
than the FreeBSD scheduler. In this example, it will pro-
cess 3’s request before much time passes.

The unfairness of the elevator scan algorithm is also
somewhat reduced by the natural fragmentation of file
systems that occurs over time as files are added, change
size, or are deleted. Although FFS does a good job of re-
ducing the impact of fragmentation, this effect is difficult
to avoid entirely.

The primary symptom of this problem is a large vari-
ation in time required by concurrent readers, and there-
fore this behavior is easily visible in the variance of the
run times of each subprocess in our simple benchmark.
Each subprocess starts at the same time, and reads the
same amount of data, so intuition suggests that they will
all finish at approximately the same time. This intu-
ition is profoundly wrong when the default scheduler is
used. Figure 3 illustrates the distribution of the individ-
ual process times for runs for the benchmark that runs
eight concurrent processes, each reading a different 32
MB file. Note that the cache is flushed after each run.
The plot of the time required to complete 1 through 8
processes using the elevator scan scheduler on the idel
partition shows that the average time required to com-
plete the first process is 1.04 seconds, while the second
finishes in 1.98 seconds, the third in 2.94, and so on un-
til the last job finishes after an average of 5.97 seconds.
With tagged queues disabled, a similar distribution holds
for the scsil partition, ranging from 1.18 through 8.54
seconds, although the plot for scsil is not as straight
as that for idel. The difference between the time re-
quired by the fastest and slowest jobs is almost a factor
6 for idel, and even higher for scsil.

N-step CSCAN (N-CSCAN) is a fair variation of the
Elevator scheduler that prohibits changes to the sched-
ule for the current scan — in effect, it is always planning

Elevator Scheduler

18 T I. 1 / T T T T
16 F scsil / no tags i
12 | idel -------- i

Time to Completion (s)

1 2 3 4 5 6 7 8

Processes Completed

N-CSCAN Scheduler

=

e

D

=

g

S

o 6} scsil / Elevator / tags 4
° 4 scsil / N-CSCAN / tags -------- |
E scsil / N-CSCAN / no tags - -
& 3‘ . idel /N-CSCAN -]

1 2 3 4 5 6 7 8

Processes Completed

Figure 3: The interaction between tagged queues, the disk scheduling algorithm, and the distribution of average time
required to complete a given number of processes. In each run, eight processes are started at the same time, and
each reads the same amount of data. Each point on these plots represents the average of 34 runs. Processes run
more quickly with the Elevator scan, but the last process takes 6-7 times longer to complete than the first. With the
N-CSCAN scheduler, there is less variation in the distribution of running times, but all of the jobs are much slower.

the schedule for the next scan [5]. The resulting sched-
uler is fair in the sense that the expected latency of each
disk operation is proportional to the length of the request
queue at the time the disk begins its next sweep. Only
a small patch is needed to change the current FreeBSD
disk scheduler to N-CSCAN. We have implemented this
change, along with a switch that can be used to toggle at
runtime which disk scheduling algorithm is in use. As
illustrated again in Figure 3, this dramatically reduces
the variation in the run times for each reader process: for
both idel and scsil, the difference in elapsed time
between the slowest and the fastest readers is less than
20%.

Unfortunately, fairness comes at a high price: al-
though all of the reading processes make progress at
nearly the same rate, the overall average throughput
achieved is less than half the bandwidth delivered by the
unfair elevator algorithm. In fact, for these two cases,
the slowest reading process for the elevator scan algo-
rithm requires approximately 50% less time to run than
the fastest reading process using the N-step CSCAN al-
gorithm. For this particular case, it is hard to argue con-
vincingly in favor of fairness. In the most extreme case,
however, it is possible to construct a light workload that
causes a process to wait for several minutes for the read
of a single block to complete. As a rule of thumb, it is
unwise to allow a single read to take longer than it takes
for a user to call the help desk to complain that their ma-
chine is hung. At some point human factors can make
a fair division of file system bandwidth as important as
overall throughput.

Also shown in Figure 3 is the impact of these disk
scheduling algorithms on scsil when the tagged com-

mand queue is enabled. As described in Section 5.2, the
on-disk tagged command queue can override many of
the scheduling decisions made by the host disk sched-
uler. In this measurement, the on-disk scheduling algo-
rithm appears to be fairer than N-step CSCAN (in terms
of the difference in elapsed time between the slowest
and fastest processes), but even worse in terms of overall
throughput.

Although the plots in Figure 3 are relatively flat, they
still exhibit an interesting quirk — there is a notable jump
between the mean run time of the sixth and seventh pro-
cesses to finish for N-CSCAN for idel and scsil
with tagged queues disabled. We did not investigate this
phenomenon.

The tradeoffs between throughput, latency, fairness
and other factors in disk scheduling algorithms have
been well studied and are still the subject of research
[3, 20]. Despite this research, choosing the most appro-
priate algorithm for a particular workload is a complex
decision, and apparently a lost art. We find it disappoint-
ing that modern operating systems generally do not ac-
knowledge these tradeoffs by giving their administrators
the opportunity to experiment and choose the algorithm
most appropriate to their workload.

54 TCP vs UDP

SUN RPC, upon which the first implementation of NFS
was constructed, used UDP for its transport layer, in part
because of the simplicity and efficiency of the UDP pro-
tocol. Beginning with NFS version 3, however, many
vendors began offering TCP-based RPC, including NFS

NFS over UDP / Default Settings

~~

£

M

2

3

o

=

on

=

]

R 1
F

OIII 1 1

12 4 8 16 32

Number of Concurrent Readers

NFS over UDP / No Tagged Queue

~~

£

M

2

3

o

=

on

=

]

R 1
F

OIII 1 1

12 4 8 16 32

Number of Concurrent Readers

Figure 4: The speed of NFS over UDP, with and without tagged queues. Performance drops quickly as the number
of concurrent readers increases. With tagged queues disabled, scsil performance improves relative to idel as the
number of concurrent readers increases. Note that the ZCAV effect is still visible.

NFS over TCP / Default Settings

25 LI T T
Q
M
2
5
o
=
on
=
]
R 1
F
| I — 1 1

12 4 8 16 32

Number of Concurrent Readers

NFS over TCP / No Tagged Queue

25 TT T T T
idel
2 scsil -------- i
)
2]
S
2.
=
) i
=
2
£ st :
0 11 1 1 1
12 4 8 16 32

Number of Concurrent Readers

Figure 5: The speed of NFS over TCP, with and without tagged queues. Compared to UDP, the throughput is relatively
constant as the number of concurrent readers increases, especially when tagged queues are disabled on the scsil.
We do not know why the IDE partitions show a performance spike at two concurrent readers, nor why ide4 is faster

than ide1l for 16 readers.

over TCP. This has advantages in some environments,
particularly WAN systems, due to the different charac-
teristics of TCP versus UDP. UDP is a lightweight and
connectionless datagram protocol. A UDP datagram
may require several lower-level packets (such as Ether-
net frames) to transmit, and the loss of any one of these
packets will cause the entire datagram to be lost. In con-
trast, TCP provides a reliable connection-based mecha-
nism for communication and can, in many cases, detect
and deal with packet corruption, loss, or reordering more
efficiently than UDP. TCP provides mechanisms for in-
telligent flow control that are appropriate for WANS.

On a wide-area network, or a local network with fre-
quent packet loss or collision, TCP connections can pro-
vide better performance than UDP. Modern LANs are
nearly always fully switched, and have very low packet

loss rates, so the worst-case behavior of UDP is rarely
observed. However, mixed-speed LANs do experience
frequent packet loss at the junctions between fast and
slow segments, and in this case the benefits of TCP are
also worth considering. In our testbed, we have only a
single switch, so we do not observe these effects in our
benchmarks.

The RPC transport protocol used by each file sys-
tem mounted via NFS is chosen when the file sys-
tem is mounted. The default transport protocol used
by mount_nfs is UDP. Many system administrators
use amd instead of mount_nfs, however, and amd
uses a different implementation of the mount proto-
col. On FreeBSD, NetBSD, and many distributions of
GNU/Linux, amd uses TCP by default, but on other sys-
tems, such as OpenBSD, amd uses UDP. This choice can

be overridden, but often goes unnoticed.

A comparison of the raw throughput of NFS for large
reads over TCP and UDP is given in Figures 4 and 5.
Compared to the performance of the local file system,
shown in Figure 1, the throughput of NFS is disappoint-
ing; for concurrent readers the performance is about half
that of the local file system and only a fraction of the po-
tential bandwidth of the gigabit Ethernet. The through-
put for small numbers of readers is substantially better
for UDP than TCP, but the advantage of UDP is attenu-
ated as the number of concurrent readers increases until
it has no advantage over TCP (and in some cases is ac-
tually slower). In contrast, the throughput of accesses to
the local disk slightly increases as the number of readers
increases. We postulate that this is due to a combination
of the queuing model used by the disk drive, and the ten-
dency of the OS to perform read-ahead when it perceives
that the access pattern is sequential, but also to throttle
the read-ahead to a fixed limit. When reading a single
file, a fixed amount of buffer space is set aside for read-
ahead, and only a fixed number of disk requests are made
at a time. As the number of open files increases, the to-
tal amount of memory set aside for read-ahead increases
proportionally (until another fixed limit is reached) and
the number of disk accesses queued up for the disk to
process also grows. This allows the disk to be kept bus-
ier, and thus the total throughput can increase.

Unlike UDP, the throughput of NFS over TCP roughly
parallels the throughput of the local file system, although
it is always significantly slower, even over gigabit Ether-
net. This leads to the question of why UDP and TCP im-
plementations of NFS have such different performance
characteristics as the number of readers increases — and
whether it is possible to improve the performance of
UDP for multiple readers.

5.5 Discussion

As illustrated in Figures 4 and 5, the effects of ZCAV
and tagged queues are clearly visible in the NFS bench-
marks. Even though network latency and the extra over-
head of RPC typically reduces the bandwidth available
to NFS to half the local bandwidth, these effects must be
considered because they can easily obscure more subtle
effects.

In addition to the effects we have uncovered here,
there is a new mystery — the anomalous slowness of the
idel and ide4 partitions when accessed via NFS over
TCP by one reader. We suspect that this is a symptom of
TCP flow control.

6 Improving Read-Ahead for NFS

Having now detailed some of the idiosyncrasies that we
encountered with our simple benchmark, let us return to
the task at hand, and evaluate the benefit of a more flexi-
ble sequentiality metric to trigger read-ahead in NFS.

The heuristics employed by NFS and FFS begin to
break down when used on UDP-based NFS workloads
because many NFS client implementations permit re-
quests to be reordered between the time that they are
made by client applications and the time they are deliv-
ered to the server. This reordering is due most frequently
to queuing issues in the client nfsiod daemon, which
marshals and controls the communication between the
client and the server. This reordering can also occur due
to network effects, but in our system the reorderings are
attributable to nfsiod.

It must be noted that because this problem is due en-
tirely to the implementation of the NFS client, a direct
and pragmatic approach would be to fix the client to
prevent request reordering. This is contrary to our re-
search agenda, however, which focuses on servers. We
are more interested in studying how servers can handle
arbitrary and suboptimal client request streams than opti-
mizing clients to generate request streams that are easier
for servers to handle.

The fact that NFS requests are reordered means that
access patterns that are in fact entirely sequential from
the perspective of the client may appear, to the server,
to contain some element of randomness. When this hap-
pens, the default heuristic causes read-ahead to be dis-
abled (or diminished significantly), causing considerable
performance degradation for sequential reads.

The frequency at which request reordering takes place
increases as the number of concurrent readers, the num-
ber of nfsiods, and the total CPU utilization on the
client increases. By using a slow client and a fast server
on a congested network, we have been able to create
systems that reorder more than 10% of their requests
for long periods of time, and during our analysis of
traces from production systems we have seen similar per-
centages during periods of peak traffic. On our bench-
mark system, however, we were unable to exceed 6% re-
quest reordering on UDP and 2% on TCP on our gigabit
network with anything less than pathological measures.
This was slightly disappointing, because lower probabil-
ities of request reordering translate into less potential for
improvement by our algorithm, but we decided to press
ahead and see whether our algorithm is useful in our sit-
uation and thus might be even more useful to users on
less well-mannered networks.

idel via NFS over UDP - Idle Client

25 TT T T T
Z 20 | .
=) \ Always Read-Ahead
= S
S 15t
= Tl
[e
10 b y
%" Default Read-Ahead
g 5T :

0 11 1 1 1

124 8 16 32

Number of Concurrent Readers

idel via NFS over UDP - Busy Client

25 TT T T T
Z 20 . _
[aa) \
% 15 _\\Always Read-Ahead |
A R —
S 10F T ~
3 Default Read-Ahead
Ea 1
F

0 11 1 1 1

12 4 8 16 32

Number of Concurrent Readers

Figure 6: A comparison of the NFS throughput for the default read-ahead heuristic and a hard-wired “always do read-
ahead” heuristic. All tests are run using file system idel via UDP. The idle client is running only the benchmark,
while the busy client is also running four infinite loop processes.

6.1 Estimating the Potential Improvement

Figure 6 shows the NFS throughput for the default im-
plementation compared to the throughput when we hard-
wire the sequentiality metric to always force read-ahead
to occur. The difference between the “Always Read-
ahead” and “Default Read-ahead” lines shows the poten-
tial improvement. In theory, for large sequential reads
(such as our benchmarks) the NFS server should detect
the sequential access pattern and perform read-ahead. As
shown in Figure 6, however, for more than four concur-
rent readers the default and optimal lines diverge. This
is due in part to the increased number of packet reorder-
ings that occur when the number of concurrent readers
increases, but it is also due to contention for system re-
sources, as we will discuss in Section 6.3.

In our own experiments, we noticed that the frequency
of packet reordering increases in tandem with the num-
ber of active processes on the client (whether those pro-
cesses are doing any I/O or not), so Figure 6 also shows
throughput when the client is running four “infinite loop”
processes during the benchmark. Not surprisingly, the
throughput of NFS decreases when there is contention
for the client CPU (because NFS does have a significant
processing overhead). Counter to our intuition, however,
the gap between the “Always Read-ahead” line and the
“Default Read-ahead” lines is actually smaller when the
CPU is loaded, even though we see more packet reorder-
ing.

6.2 The SlowDown Sequentiality Heuristic
There are many ways that the underlying sequentiality of

an access pattern may be measured, such as the metrics
developed in our earlier studies of NFS traces. For our

preliminary implementation, however, we wish to find a
simple heuristic that does well in the expected case and
not very badly in the worst case, and that requires a min-
imum of bookkeeping and computational overhead.

Our current heuristic is named SlowDown and is based
on the idea of allowing the sequentiality index to rise in
the same manner as the ordinary heuristic, but fall less
rapidly. Unlike the default behavior (where a single out-
of-order request can drop the sequentiality score to zero),
the SlowDown heuristic is resilient to “slightly” out-of-
order requests. At the same time, however, it does not
waste read-ahead on access patterns that do not have a
strongly sequential component — if the access pattern is
truly random, it will quickly disable read-ahead. The de-
fault metric for computing the heuristic, as implemented
in FreeBSD 4.x, is essentially the following: when a new
file is accessed, it is given an initial sequentiality metric
seqCount = 1 (or sometimes a different constant, de-
pending on the context). Whenever the file is accessed,
if the current offset currOffset is the same as the offset
after the last operation (prevOffset), then increment seq-
Count. Otherwise, reset seqCount to a low value.

The seqCount is used by the file system to decide how
much read-ahead to perform — the higher seqCount rises,
the more aggressive the file system becomes. Note that
in both algorithms, seqCount is never allowed to grow
higher than 127, due to the implementation of the lower
levels of the operating system.

The SlowDown heuristic is nearly identical in concept
to the additive-increase/multiplicative-decrease used by
TCP/IP to implement congestion control, although its
application is very different. The initialization is the
same as for the default algorithm, and when prevOffset
matches currOffset, seqCount is incremented as before.
When prevOffset differs from currOffset, however, the

response of SlowDown is different:

o If currOffset is within 64k (eight 8k NFS blocks) of
prevOffset then seqCount is unchanged.

o If currOffset is more than 64k from prevOffset, then
divide seqCount by 2.

In the first case, we do not know whether the access
pattern is becoming random, or whether we are simply
seeing jitter in the request order, so we leave seqCount
alone. In the second case, we want to start to cut back on
the amount of read-ahead, and so we reduce seqCount,
but not all the way to zero. If the non-sequential trend
continues, however, repeatedly dividing seqCount in half
will quickly chop it down to zero.

It is possible to invent access patterns that cause Slow-
Down to erroneously trigger read-ahead of blocks that
will never be accessed. To counter this, more intelligence
(requiring more state, and more computation) could be
added to the algorithm. However, in our trace analysis
we did not encounter any access patterns that would trick
SlowDown to perform excessive read-ahead. The only
goal of SlowDown is to help cope with small reorderings
in the request stream. An analysis of the values of seq-
Count show that SlowDown accomplishes this goal.

6.3 Improving the nfsheur Table

NFS versions 2 and 3 are stateless protocols, and do
not contain any primitives analogous to the open and
close system calls of a local file system. Because of
the stateless nature of NFS, most NFS server implemen-
tations do not maintain a table of the open file descrip-
tors corresponding to the files that are active at any given
moment. Instead, servers typically maintain a cache of
information about files that have been accessed recently
and therefore are believed likely to be accessed again in
the near future. In FreeBSD, the information used to
compute and update the sequentiality metric for each ac-
tive file is cached in a small table named nfsheur.

Our benchmarks of the SlowDown heuristic showed
no improvement over the default algorithm, even though
instrumentation of the kernel showed that the algo-
rithm was behaving correctly and updated the sequen-
tiality metric properly even when many requests were
reordered. We discovered that our efforts to calculate
the sequentiality metric correctly were rendered futile
because the nfsheur table was too small.

The nfsheur table is implemented as a hash table, us-
ing open hashing with a small and limited number of
probes. If the number of probes necessary to find a file
handle is larger than this limit, the least recently used file

idel via NFS over UDP - Busy Client

T

= i
s
5 4L -
iy
= Always Read-ahead
1:9 5 F SlowDown / New nfsheur 4
= Default / New nfsheur ---

o L Dlefault / Def:ault nfsheur

12 4 8 16 32

Number of Concurrent Readers

Figure 7: The effect of SlowDown and the new nfsheur
table for sequential reads for disk idel over UDP. The
new nfsheur increases throughput for more than four
concurrent readers, and gives performance identical to
the Always Read-ahead case. SlowDown makes no fur-
ther improvement.

handle from among those probed is ejected and the new
file handle is added in its place. This means that entries
can be ejected from the table even when it is less than
full, and in the worst case a small number of active files
can thrash nfsheur. Even in the best case, if the num-
ber of active files exceeds the size of the table, active file
handles will constantly be ejected from the table. When
afile is ejected from the table, all of the information used
to compute its sequentiality metric is lost.

The default hash table scheme works well when a rel-
atively small number of files are accessed concurrently,
but for contemporary NFS servers with many concur-
rently active files the default hash table parameters are
simply too small. This is not particularly surprising, be-
cause network bandwidth, file system size, and NFS traf-
fic have increased by two orders of magnitude since the
parameters of the nfsheur hash table were chosen. For
our SlowDown experiment, it is clear that there is no
benefit to properly updating the sequentiality score for a
file if the sequentiality score for that file is immediately
ejected from the cache.

To address this problem, we enlarged the nfsheur ta-
ble, and improved the hash table parameters to make
ejections less likely when the table is not full. As shown
in Figure 7, with the new table implementation Slow-
Down matches the “Always Read-ahead” heuristic. We
were also surprised to discover that with the new table,
the default heuristic also performs as well as “Always
Read-Ahead”. It is apparently more important to have
an entry in nfsheur for each active file than it is for those
entries to be completely accurate.

7 Improving Stride Read Perfor-
mance

The conventional implementation of the sequentiality
metric in the FreeBSD implementation of NFS (and in
fact, in many implementations of FFS) uses a single de-
scriptor structure to encapsulate all information about the
observed read access patterns of a file. This can cause
suboptimal read-ahead when there are several readers of
the same file, or a single reader that reads a file in a
regular but non-sequential pattern. For example, imag-
ine a process that strides through a file, reading blocks
0,2, 1, z+1, 2, z+2, 3, x+3 ---. This pattern is the
composition of two completely sequential read access
patterns (0, 1, 2, 3,---and z, x+1, z+2, 2 +3,---),
each of which can benefit from read-ahead. Unfortu-
nately, neither the default sequentiality metric nor Slow-
Down recognizes this pattern, and this access pattern
will be treated as non-sequential, with no read-ahead.
Variations on the stride pattern are common in engineer-
ing and out-of-core workloads, and optimizing them has
been the subject of considerable research, although it is
usually attacked at the application level or as a virtual
memory issue [2, 17].

In the ordinary implementation, the nfsheur contains
a single offset and sequentiality count for each file han-
dle. In order to handle stride read patterns, we add the
concept of cursors to the nfsheur. Each active file han-
dle may have several cursors, and each cursor contains
its own offset and sequentiality count. When a read oc-
curs, the sequentiality metric searches the nfsheur for a
matching cursor (using the same approximate match as
SlowDown to match offsets). If it finds a matching cur-
sor, the cursor is updated and its sequentiality count is
used to compute the effective seqCount for the rest of
the operation, using the SlowDown heuristic. If there is
no cursor matching a given read, then a new cursor is
allocated and added to the nfsheur. There is a limit to
the number of active cursors per file, and when this limit
is exceeded the least recently used cursor for that file is
recycled.

If the access pattern is truly random, then many cur-
sors are created, but their sequentiality counts do not
grow and no extra read-ahead is performed. In the worst
case, a carefully crafted access pattern can trick the algo-
rithm into maximizing the sequentiality count for a par-
ticular cursor just before that cursor dies (and therefore
potentially performing read-ahead for many blocks that
are never requested), but the cost of reading the extrane-
ous blocks can be amortized over the increased efficiency
of reading the blocks that were requested (and caused the
sequentiality count to increase in the first place).

The performance of this method for a small set of

Throughput for Stride Readers using UDP
20 T

a scsil / Cursor
g ____________ idel / Cursor 7Tt
g 10 E.... scsil / default e
5
s |
=2 5r idel / default 4
F
0 1
2 4 8
Number of Strides

Figure 8: Throughput using the default NFS read-ahead
compared to the cursor read-ahead, for reading a 256 MB
file using 2, 4, and 8-stride patterns. scsil runs 60-
70% faster for all tests when cursors are enabled. idel
is only 50% faster for the 2-stride test with cursors en-
abled, but 140% faster for the 8-stride test.

stride read patterns is shown in Figure 8 and Table 1.
For the “2” stride for a file of length n, there are two se-
quential subcomponents, beginning at offsets 0 and n/2,
for the “4” stride there are four beginning at offsets 0,
n/4,n/2, and 3n/4, and for the “8” stride there are eight
sequential subcomponents beginning at offsets 0, n/8,
n/4,3n/8,n/2,5n/8,3n/4, and Tn /8. To the ordinary
sequentiality or SlowDown heuristics, these appear to be
completely random access patterns, but our cursor-based
algorithm detects them and induces the proper amount
of read-ahead for each cursor. As shown in this figure,
the time required to read the test files using the cursor-
based method is at least 50% faster than using the de-
fault method. In the most extreme case, the cursor-based
method is 140% faster for the 8-stride reader on idel.

8 Future Work

We plan to investigate the effect SlowDown and the
cursor-based read-ahead heuristics on a more complex
and realistic workload (for example, adding a large num-
ber of metadata and write requests to the workload).

In our implementation of nfsheur cursors, no file han-
dle may have more than a small and constant number of
cursors open at any given moment. Access patterns such
as those generated by Grid or MPI-like cluster work-
loads can benefit from an arbitrary number of cursors,
and therefore would not fully benefit from our imple-
mentation.

In our simplistic architecture, it is inefficient to in-
crease the number of cursors, because every file handle

File System s=2 s=4 s=8
idel UDP/Default 7.66 (0.02) 7.83 (0.02) 5.26 (0.02)
UDP/Cursor 11.49 (0.29) | 14.15(0.14) | 12.66 (0.43)
scsil UDP/Default 9.49 (0.03) 8.52 (0.04) 8.21 (0.03)
UDP/Cursor 15.39 (0.20) | 15.38 (0.15) | 14.12 (0.46)

Table 1: Mean throughput (in MB/s) of ten reads of a single 256 MB file using a stride read, comparing the default
read-ahead heuristic to the cursor-based heuristic. The cache is flushed before each run. The numbers in parenthesis

give the standard deviation for each sample.

will reserve space for this number of cursors (whether
they are ever used or not). It would be better to share a
common pool of cursors among all file handles.

It would be interesting to see if the cursor heuris-
tics are beneficial to file-based database systems such as
MySQL [7] or Berkeley DB [25].

9 Conclusions

We have shown the effect of two new algorithms for
computing the sequentiality count used by the read-
ahead heuristic in the FreeBSD NFS server.

We have shown that improving the read-ahead heuris-
tic by itself does not improve performance very much
unless the nfsheur table is also made larger, and making
nfsheur larger by itself is enough to achieve optimal per-
formance for our benchmark. In addition, our changes
to nfsheur are very minor and add no complexity to the
NFS server.

We have also shown that a cursor-based algorithm for
computing the read-ahead metric can dramatically im-
prove the performance of stride-pattern readers.

Perhaps more importantly, we have discussed several
important causes of variance or hidden effects in file sys-
tem benchmarks, including the ZCAV effect, the inter-
action between tagged command queues and the disk
scheduling algorithm, and the effect of using TCP vs
UDP, and demonstrated the effects they may have on
benchmarks.

9.1 Benchmarking Lessons

e Do not overlook ZCAV effects. To reduce the in-
terference of ZCAV effects on your benchmarks,
confine your benchmarks to a small section of the
disk, and use the largest possible disk in order to
minimize the difference in transfer speed between
the innermost and outermost tracks. If the goal of
your benchmark is to minimize the impact of seeks
or rotational latency, use the innermost tracks. For
the best possible performance, use the outermost

tracks.

e Know your hardware. Typical desktop workstations
use PCI implementations that have a peak transfer
speed slower than typical disk drives, and cannot
drive a gigabit Ethernet card at full speed.

e Check for Unexpected Variation. The disk sched-
uler can order I/O in a different order than you
expect — and tagged command queues can reorder
them yet again. This can cause unexpected effects;
watch for them.

e Know your protocols. Are you using TCP or UDP?
Does it make a difference for your test? Would it
make a difference in other situations?

Acknowledgments

The paper benefited enormously from the thoughtful
comments from our reviewers and Chuck Lever, our pa-
per shepherd. This work was funded in part by IBM.

Obtaining Our Software

The source code and documentation for the changes to
the NFS server and disk scheduler described in this pa-
per, relative to FreeBSD 4.6 (or later), are available at
http://www.eecs.harvard.edu/~ ellard/NFS.

References

[1] Timothy Bray. The Bonnie Disk Benchmark, 1990.
http://www.textuality.com/bonnie/.

[2] Angela Demke Brown and Todd C. Mowry. Taming
the Memory Hogs: Using Compiler-Inserted Releases to
Manage Physical Memory Intelligently. In The Fourth
Symposium on Operating Design and Implementation
OSDI, October 2000.

[3] John Bruno, Jose Brustoloni, Eran Gabber, Banu Ozden,
and Abraham Silberschatz. Disk Scheduling with Qual-
ity of Service Guarantees. In IEEE International Confer-
ence on Multimedia Computing and Systems, volume 2,
Florence, Italy, June 1999.

[4

—

[5

—

[6

—

[7

—

[8

—

(9]

(10]

(11]

[12]

[13]

(14]

(15]

(16]

[17]

(18]

Michael Dahlin, Randolph Wang, Thomas E. Anderson,
and David A. Patterson. Cooperative Caching: Using
Remote Client Memory to Improve File System Perfor-
mance. In Proceedings of the First USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), pages 267-280, Monterey, CA, 1994.

Harvey M. Deitel. Operating Systems, 2nd Edition.
Addison-Wesley Publishing Company, 1990.

Rohit Dube, Cynthia D. Rais, and Satish K. Tripathi. Im-
proving NFS Performance Over Wireless Links. IEEE
Transactions on Computers, 46(3):290-298, 1997.

Paul DuBois. MySQL, 2nd Edition. New Riders Publish-
ing, 2003.

Daniel Ellard, Jonathan Ledlie, Pia Malkani, and Margo
Seltzer. Passive NFS Tracing of Email and Research
Workloads. In Proceedings of the Second USENIX Con-
ference on File and Storage Technologies (FAST 03),
pages 203-216, San Francisco, CA, March 2003.

J. Howard, M. Kazar, S. Menees, S. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and Per-
formance in a Distributed System. ACM Transactions on
Computer Systems, 6(1):51-81, February 1988.

Rick Macklem. Not Quite NFS, Soft Cache Consis-
tency for NFS. In Proceedings of the USENIX Winter
1994 Technical Conference, pages 261-278, San Fran-
sisco, CA, USA, 17-21 1994.

K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer,
J. Chase, A. Gallatin, R. Kisley, R. Wickremesinghe, and
E. Gabber. Structure and Performance of the Direct Ac-
cess File System. In Proceedings of USENIX 2002 An-
nual Technical Conference, Monterey, CA, pages 1-14,
June 2002.

Marshall K. McKusick, William N. Joy, Samuel J. Lef-
fler, and Robert S. Fabry. A Fast File System for UNIX.
Computer Systems, 2(3):181-197, 1984.

Marshall Kirk McKusick, Keith Bostic, Michael J.
Karels, and John S. Quarterman. The Design and Im-
plementation of the 4.4 BSD Operating System. Addison-
Wesley Publishing Company, 1996.

Larry W. McVoy and Carl Staelin. Imbench: Portable
Tools for Performance Analysis. In USENIX Annual
Technical Conference, pages 279-294, 1996.

Rodney Van Meter. Observing the Effects of Multi-Zone
Disks. In Proceedings of the Usenix Technical Confer-
ence, January 1997.

J. Mogul. Brittle Metrics in Operating Systems Research.
In The Seventh Workshop on Hot Topics in Operating Sys-
tems: [HotOS-VII]: 29-30 March 1999, Rio Rico, Ari-
zona, pages 90-95, 1999.

Todd C. Mowry, Angela K. Demke, and Orran Krieger.
Automatic Compiler-Inserted I/0 Prefetching for Out-
Of-Core Applications. In Proceedings of the 1996 Sym-
posium on Operating Systems Design and Implementa-
tion, pages 3—17. USENIX Association, 1996.

Mendel Rosenblum and John K. Ousterhout. The De-
sign and Implementation of a Log-Structured File Sys-

[19]

[20]

(21]

[22]

(23]

[24]

(25]

(26]

[27]

(28]

[29]

tem. ACM Transactions on Computer Systems, 10(1):26—
52, 1992.

Thomas M. Ruwart. File System Performance Bench-
marks, Then, Now, and Tomorrow. In /8th IEEE Sym-
posium on Mass Storage Systems, San Diego, CA, April
2001.

Margo Seltzer, Peter Chen, and John Ousterhout. Disk
Scheduling Revisited. In Proceedings of the USENIX
Winter 1990 Technical Conference, pages 313-324,
Berkeley, CA, 1990.

Margo Seltzer, Greg Ganger, M. Kirk McKusick, Keith
Smith, Craig Soules, and Christopher Stein. Journaling
versus Soft Updates: Asynchronous Meta-data Protection
in File Systems. In USENIX Annual Technical Confer-
ence, pages 18-23, June 2000.

Margo I. Seltzer, David Krinsky, Keith A. Smith, and Xi-
aolan Zhang. The Case for Application-Specific Bench-
marking. In Workshop on Hot Topics in Operating Sys-
tems, pages 102-107, 1999.

Elizabeth Shriver, Christopher Small, and Keith A.
Smith. Why Does File System Prefetching Work? In
USENIX Annual Technical Conference, pages T71-84,
June 1999.

Keith A. Smith and Margo I. Seltzer. File System Aging -
Increasing the Relevance of File System Benchmarks. In
Proceedings of SIGMETRICS 1997: Measurement and
Modeling of Computer Systems, pages 203-213, Seattle,
WA, June 1997.

Sleepycat Software. Berkeley DB. New Riders Publish-
ing, 2001.

SPEC SFS (System File Server) Benchmark, 1997.
http://www.spec.org/osg/sfs97r1/.
Diane Tang. Benchmarking Filesystems. Technical

Report TR-19-95, Harvard University, Cambridge, MA,
USA, October 1995.

Peter Triantafillou, Stavros Christodoulakis, and Costas
Georgiadis. A Comprehensive Analytical Performance
Model for Disk Devices Under Random Workloads.
Knowledge and Data Engineering, 14(1):140-155, 2002.
John Wilkes, Richard Golding, Carl Staelin, and Tim
Sullivan. The HP AutoRAID Hierarchical Storage Sys-
tem. In High Performance Mass Storage and Parallel
1/O: Technologies and Applications, pages 90-106. IEEE
Computer Society Press and Wiley, 2001.

