
MiSFIT: A Tool for Constructing Safe Extensible C++ Systems
Christopher Small and Margo Seltzer

Harvard University
Abstract

The boundary between application and system is
becoming increasingly permeable. Extensible applica-
tions, such as web browsers, database systems, and
operating systems, demonstrate the value of allowing
end-users to extend and modify the behavior of what
was formerly considered to be a static, inviolate system.
Unfortunately, flexibility often comes with a cost: sys-
tems unprotected from misbehaved end-user extensions
are fragile and prone to instability.

Object-oriented programming models are a good fit
for the development of this kind of system. An extension
can be designed as a refinement to an existing class and
loaded into a running system. In our model, when code
is downloaded into the system, it is used to replace a vir-
tual function on an existing C++ object. Because our
tool is source-language neutral, it can be used to build
safe, extensible systems written in other languages as
well.

There are three methods commonly used to make
end-user extensions safe: restrict the extension language
(e.g., Java), interpret the extension language (e.g., Tcl),
or combine run-time checks with a trusted environment.
The third technique is the one discussed here; it offers
the twin benefits of the flexibility to implement exten-
sions in an unsafe language, such as C++, and the per-
formance of compiled code.

MiSFIT, the Minimal i386 Software Fault Isolation
Tool, can be used as a component of a tool set for build-
ing safe extensible systems in C++. MiSFIT transforms
C++ code, compiled by the Gnu C++ compiler, into safe
binary code. Combined with a runtime support library,
the overhead of MiSFIT is an order of magnitude lower
than the overhead of interpreted Java, and permits safe
extensible systems to be written in C++.

1 Introduction
Software fault isolation is a technique for transforming
code written in an otherwise unsafe language (e.g., C or
C++) into safe compiled code. At transformation time,
each read, write, and jump instruction is analyzed and, if
necessary, transformed to ensure that it will not reach
outside the memory region assigned to the code.

Two other techniques for ensuring the safety of
code are safe languages and interpreted systems. Safe
languages, such as Java and Modula-3, are designed to
make it difficult or impossible to write code that per-
forms illegal or unsafe operations. By definition, safe
languages are restricted; C++, which allows unchecked
array accesses, pointer arithmetic, and arbitrary casting,
is implicitly unsafe.

Scripting languages, such as Tcl and Perl, enforce
safety by validating each data access as it takes place.
Although great strides are being made to improve the
performance of interpreted languages through the use of
dynamic code generation,1 the performance overhead is
at least a factor of two to ten more than native compiled
code.

In earlier work, we measured byte-code interpreted
Java taking ten to seventy times longer than compiled C
code performing the same task.2 The overhead of soft-
ware fault isolation is an order of magnitude less than
that of interpretation, and SFI techniques have the
advantage of operating on assembler-level code, so they
can be used with any source language.

MiSFIT includes runtime support necessary to cre-
ate a sandbox in which the downloaded code will run.
Additional code (not provided as part of MiSFIT) is
needed to verify that the code was processed by MiS-
FIT, and provide a library of safe routines that can be
called by the extension.

MiSFIT accepts as input x86 assembler code from
the Gnu C++ compiler, and produces as output fault-iso-
lated x86 assembler code. MiSFIT can be used as a
component of a safe code system, allowing otherwise
untrusted code to be linked to and run in the context of
an extensible application or system. For example, MiS-
FIT can fault-isolate dynamically linked extensions to
world-wide web browsers (e.g., Netscape Navigator),
kernel extensions (which are supported by a variety of
current systems, such as Solaris, NetBSD, MS-DOS and
Windows NT), and client code linked to a database
server (e.g., the Illustra database server).

Software fault isolation techniques can be imple-
mented in a compiler pass,3 a filter between the com-
piler and assembler, or a binary editing tool.4 MiSFIT
was implemented as an assembler-level filter for several
reasons.

First, the task was tremendously simplified. An x86
binary editing tool needs to parse, disassemble, patch,
and reassemble x86 binary code. A new pass for g++
would require spending time learning and understanding



the current version of g++, and tracking changes to g++
as it evolves.

Second, our implementation model conforms to the
Unix tool-oriented approach for building systems. By
not building MiSFIT into g++, it gains a degree of com-
piler independence. Although MiSFIT makes a small
number of assumptions about the format of its input, it
could easily be modified to work with output from other
compilers, such as lcc or Microsoft C++. We found that
any need we had for platform independence was out-
weighed by our need for high performance and the abil-
ity to write extensions in C++.

2 SFI Is Not Enough
MiSFIT is not a complete solution to the problem of
protection from misbehaved extensions.

First, protection from errant writes and calls is not
sufficient; the application or kernel must provide a safe
interface to the extension, or a safe environment in
which it can run. Protection against illegal stores is use-
less if the extension can call bcopy() with arbitrary
arguments. Safe equivalents of many other commonly
used routines, such as read(), write(), and printf() will
also be needed.

Second, and more importantly, software fault isola-
tion (or any other memory protection mechanism) is not
a substitute for a resource management strategy. An
extension should not be allowed to allocate memory,
obtain a lock for a critical data structure, or even be
given the freedom to run on the CPU, unless some
mechanism is provided for the resource to be revoked if
the extension fails to release it in a reasonable amount of
time. In related work we explored wrapping each exten-
sion invocation in a transaction; if the extension aborted,
or failed to complete promptly, our system could abort
the transaction and nullify any changes made by the
extension.5

The third way in which MiSFIT is not a complete
solution is that it, by itself, does not ensure that a given
piece of binary code has been processed by MiSFIT.
There are at least two methods for solving this problem.
First, extension writers can distribute source code for
their extensions, and the person installing the extension
could compile and MiSFIT the code before installing it.
This technique may be reasonable for installing operat-
ing system extensions, as is done now with loadable ker-
nel modules in NetBSD and Linux.

The second method is more end-user-friendly, but is
logistically more complex. Code processed by MiSFIT
would be given a cryptographic digital signature, either
by the tool itself or by a signing authority. This signature
would then be checked at load time. In order to support
this scheme it would be necessary to find a trustworthy
authority willing to MiSFIT and sign code, or somehow

safely hide the apparatus for generating the signature
within MiSFIT itself.

Although there are pieces missing from MiSFIT to
make it a complete environment for building extensible
systems, they are both technically tractable and applica-
tion specific. For our project (the VINO extensible oper-
ating system) we have developed a protected runtime
environment, resource management infrastructure, and
code signature scheme for use with MiSFIT. Other
applications of MiSFIT would necessarily have a differ-
ent safe runtime environment and resource management
infrastructure.

3 Related Work
The term Software Fault Isolation was introduced by
Wahbe et al..4 They proposed a type of software fault
isolation, sandboxing, which has low overhead on a pro-
cessor with a large number of registers. Their tool was
originally targeted for the MIPS and Alpha processors.
The initial results of their work show overheads of
roughly five to ten percent.

A follow-on to that work is the Omniware Portable
Code system. The Omniware compiler generates porta-
ble code for an abstract virtual machine (OmniVM),
which is translated to native fault-isolated code at runt-
ime.6 Along with the source language independence
provided by software fault isolation techniques, the
Omniware system also offers target-independent porta-
ble code.

Silver has developed a version of gcc, the Gnu C
compiler, that generates software fault isolated code for
the DEC Alpha processor.3 Most of the modifications to
gcc were made in the machine-independent portion of
the compiler, although some changes were needed in the
machine dependent portion of the code. The implemen-
tation takes advantage of the large number of registers
available on the Alpha processor. A port to x86, which
has a severely limited register set, would be difficult.

Several other researchers in the area of extensible
operating systems have developed one-off software fault
isolation tools, including Banerji7 and Engler.8 Unfortu-
nately these tools suffer from working on less widely
used platforms, working only with domain-specific lan-
guages, or not being publicly available.

Some extensible systems designers have followed a
different route, proposing that extensions be written in a
safe language (e.g., the SPIN operating system,9 which
uses Modula-3, and Netscape Navigator, which uses
Java). Safe languages can perform as well or better than
software-fault-isolated unsafe languages, but have the
two disadvantages that there is no possibility of reusing
existing C or C++ code, and that programmers need to
develop extensions in the safe language, and not the
more familiar and common unsafe languages. The per-



formance overhead of Modula-3 relative to compiled C
or C++ appears to be negligible, but interpreted Java is
20 to 50 times slower than equivalent compiled C code.2

Netscape Navigator supports extensions written in
Java. Because of this, a complete implementation of the
Java interpreter and its runtime environment must be
available on each platform. It is arguably less work to
construct a simple software fault isolation tool for a
given platform than it is to develop or port a Java inter-
preter and runtime environment.

In previous work we have seen interpreted Java run-
ning ten to seventy times slower than compiled C. Sev-
eral “just-in-time” native code compilers for Java are
available, which convert Java bytecode into native code
as it is loaded or first run. “Just-in-time” compiled code
has been shown to take two to ten times as long as con-
ventionally compiled code,1 which would give Java
roughly the same performance as code protected by
MiSFIT.

Microsoft offers the ActiveX extension mechanism,
which provides no technical guarantee of safety, but
instead supplies only a method for verifying the identity
of the provider of the code, through the use of digital
signatures. Software fault isolation techniques can be
used in concert with digital signatures, to guarantee both
the identity of the provider and the safety of the code.

4 MiSFIT Design and Implementation
Software fault isolation can be used to protect against
illegal jumps, stores, and loads. Protecting against ille-
gal stores and jumps is necessary for correctness, but
protection from illegal reads is usually a security issue,
not a correctness issue. (If an extension can read outside
its memory bounds, it may be able to find data it should
not be allowed to see, but if an extension can write or
jump to an arbitrary location in memory, the stability
and correctness of the host program can be compro-
mised.)

MiSFIT can be used to fault isolate indirect loads,
stores, and calls. It acts as a filter, sitting between the
compiler and the assembler. MiSFIT scans the output of
the compiler and builds an in-memory representation for
the module. It then processes each instruction of the
module in turn. If any implicitly unsafe instruction (e.g.,
halt) appears, the module is rejected. The arguments for
each store, call, and (optionally) load instruction are
examined and, if necessary, transformed. Once the mod-
ule has been processed, simple peephole optimization is
performed (to remove any redundancies introduced by
the transformations).

4.1 Indirect Loads and Stores
Loads and stores that use an indirect address (one com-
puted at run-time) are potentially unsafe. MiSFIT inserts
code to sandbox arguments of these instructions to force
the indirect address, to fall within a legal range.

Each user extension is assigned a contiguous region
of memory into which it can write, and a region from
which it can read. (These regions would normally over-
lap, but it is not necessary that they do so.) In order to
preclude the code from modifying itself (and thus poten-
tially circumventing MiSFIT’s transformations), the
writable region must not overlap with the region
assigned to the extension’s code.

MiSFIT requires that each memory region be a
power of two bytes in size. Because of this, the high bits
of all addresses in the memory region (the region tag)
will be the same. To sandbox a memory reference, MiS-
FIT inserts code that sets the high bits of the reference
so that it matches the region tag of its associated mem-
ory region. Any load or store that would have accessed
memory outside its region is thus forced to fall some-
where inside the extension’s memory region.

Note that if the fault isolated target address was
already in the extension’s memory region, the target
address does not change. The fault isolated address dif-
fers from the original target address only if the original
target address was outside the extension’s memory
region (and therefore illegal). Examples of this transfor-
mation are shown in Figure 1.

MiSFIT modifies the loads and stores in the follow-
ing way. First, it inserts code to load the target address

Figure 1: Example Transformations. In this example, the
region tag is the top sixteen bits of the address and has the
value 0xabcd. In the first example, the original address is
invalid, so the fault-isolated address is different. In the
second example, the original address is within the region,
so the fault-isolated address is the same as the original
address.

0x00000000

0x-----0000

Original address

Offset into region

0xabcd----

0xabcd0000

Region tag

Fault-isolated address

0xabcd1234

0x-----1234

Original address

Offset into region

0xabcd----

0xabcd1234

Region tag

Fault-isolated address



into a register, if it is not already in a register. The high
bits of the register are then cleared, and the region tag of
the associated memory region is then OR’d into the reg-
ister. The register is then used in place of the operand in
the original instruction.

Depending on whether the target address was
already in a register, this technique adds either two or
five instructions. If the original operand is an indirection
through a single register (with no constant offset) only
two instructions are needed, an AND to clear the high
bits of the register and an OR to set the region tag. If the
target address is not already in a register, MiSFIT inserts
five instructions: MiSFIT obtains a scratch register (by
pushing its current value on the stack), loads the effec-
tive target address into the scratch register, masks in the
region tag as above, and restores the scratch register.

Examples of these transformations are shown in
Figure 2. Note that in the second case it would be possi-
ble to save the scratch register push and pop if MiSFIT
were able to determine that there was a register available
for use as a scratch register. The MiSFIT performance
impact is low enough that we have not yet been tempted
to perform this optimization..

4.2 Virtual Function Calls
When a virtual function call takes place, MiSFIT must
verify that the target address is one that the extension is
permitted to call. If the extension were allowed to indi-

rectly call to any address, it not only might obtain access
to an unsafe function, it also might jump into the middle
of an instruction or into data space, which would open
all sorts of security and safety holes.

MiSFIT restricts the extension by searching a table
of valid function targets on each indirect call from an
extension. Runtime code (provided with MiSFIT) cre-
ates this table at program startup, using the application’s
symbol table to find the start address of each function
that extensions may call.

Although there may be an arbitrarily large number
of valid target addresses, search time is limited by stor-
ing the valid addresses in a sparse, open addressed, hash
table, which has near-linear search time.

An open addressed hash table is implemented as an
array, and the hash value of the key gives the index of
the array to check. When an item is added to the table,
the insertion function hashes the key to some value n. If
location n of the table is already in use, the insertion
function check locations n+1, n+2, and so on, until it
finds a free slot. When searching the table, the search
function hashes the key, yielding n, and then checks
location n of the table. If location n has a value (but not
the key) it checks location n+1, n+2, and so on, until it
either finds the key (signifying success) or finds an
empty slot (signifying failure).

One subtle advantage of using an open addressed
hash table is that if the search function does not find the
key at location n, because the next location checked is at
an adjacent memory location (at index n+1), it is likely
to be in the cache. So, even if the search function fails
on the first probe of the table, the cost of subsequent
probes is reduced.

By decreasing the density of the table, it is possible
to reduce the number of probes needed nearly to unity
(the theoretical minimum). With a table that has a 50%
density (half the slots are empty) an average of fewer
than 1.5 probes per indirect call are required. The over-
head of each probe is roughly six to ten cycles (assum-
ing everything hits in the L1 cache), adding, on average,
approximately ten to fifteen cycles to each indirect call.

Indirect calls are common in C++ code, as virtual
functions are implemented as indirect calls. When pro-
tecting C++ code with MiSFIT the table of valid func-
tion targets can become quite large, but the per-
invocation cost remains low, because the number of
probes into the table is independent of the size of the
table, depending only on its density, which is under
MiSFIT’s control.

4.3 Global Data, Virtual Function Tables
Because MiSFIT sandboxes global memory references,
any data accessible to the extension must be placed in
the memory region assigned to the extension. If there is

movl eax,0(edx) ; do the store
is transformed into:

andl $0xffff,edx ; clear old region tag
orl destmask,edx ; set our region tag
movl eax,0(edx) ; do the store

movl eax,12(ebx,ecx) ; do the store
is transformed into:

pushl edx ; obtain scratch register
leal 12(ebx,ecx),edx ; load target address
andl $0xffff,edx ; clear old region tag
orl destmask,edx ; set our region tag
movl eax,0(edx) ; do the store
popl edx ; restore scratch register

Figure 2: Sandboxing transformations for a store
instruction. In the first case the target is a simple
indirection through a register; in the second case it is a
complex indirection, so a scratch register is first made
available and the target is loaded into the scratch register
before sandboxing. In this example, the size of the assigned
memory region is 64KB (the argument to the andl is
0xffff). Note that all of the added instructions take one
cycle on the Pentium (assuming that the stack targets of the
push and pop are in the first level cache). Note: the general
format of x86 assembler instructions here is instr src, dest.



global data that the extension should be able to access,
the data should be placed in the memory region assigned
to the extension. This applies not only to global program
data, but other shared state, such as virtual function
tables.

The restriction on global program data is a problem
if multiple extensions are to be granted access to the
same datum. A work-around is for the application to
provide functions to access the data; each extension will
be given permission to call these accessor functions, and
use them instead of directly reading and writing the
data.

This technique has an impact on performance that is
difficult to quantify, as the cost is a function of the
amount of data that is protected in this way, the fre-
quency of access, and the type of interface the functions
provide. We do not quantify this cost in the tests dis-
cussed in this paper.

Virtual function tables are a different matter. If
MiSFIT is configured to use read protection, virtual
function tables need to be in a region of memory that is
readable by the extension. The solution we have chosen
for VINO is to store all virtual function tables in a con-
tiguous region of memory (by making a one-line change
to g++), and mapping that region into the read-only
region of each extension.

4.4 Block Instructions
Unlike RISC processors, the x86 includes memory-to-
memory move and comparison instructions, movs and
cmps. These instructions can be used to construct block
move and compare sequences, using the x86 rep
instruction as a prefix. The rep prefix instructs the pro-
cessor to repeat the memory-to-memory instruction for
count times, where count is the value in the %ecx regis-
ter. The block move instruction sequence has a lower
per-move overhead than a sequence or loop of individ-
ual memory-to-memory move instructions, and can be
used to perform structure copies and in-line expansions
of strcmp() and bcopy().

MiSFIT transforms the base addresses and repeat
count of arguments to the block instruction, sandboxing
the compound instruction as a whole. Although this
adds a high fixed overhead to the block instruction
(roughly 26 cycles), there is no per-element cost. The
alternative, transforming the block instruction into a
loop and sandboxing the instructions in the loop, has a
high per-element overhead; the break-even point for the
two techniques is at three or four movs instructions.
Block instructions are typically used for copying or
moving more than four data elements, so the fixed over-
head imposed by MiSFIT’s technique is preferable.

4.5 Saved Registers and Return Addresses
Protecting the contents of the stack is problematic. The
stack is used not only for local variables (which must be
accessible to the user extension) but also saved registers
and the function return address (which should not be
accessible to the user extension). If the user extension
can write to arbitrary locations on the stack, the return
address of the function can be set to an arbitrary value,
circumventing the call protection offered by MiSFIT.

A second problem is that the process stack is nor-
mally not in the same region of memory as the heap and
global data; MiSFIT’s technique depends on all valid
memory references falling within a single region of
memory. In a multi-threaded environment (either a
multi-threaded operating system kernel or multi-
threaded end-user application) each thread of control is
assigned its own stack. In environments where the
extension can be run as a separate thread of control,
MiSFIT can co-locate the stack assigned to the thread
(i.e., assigned to the extension) with the memory region
assigned to the extension. Then all valid memory refer-
ences made by the extension will fall within a single
region.

In environments where there is a single thread of
control, MiSFIT can provide the same type of protection
by providing each extension with its own stack, located
in its memory region. When the extension is invoked,
the application switches to the stack associated with the
extension. When the extension returns to the applica-
tion, the process switches back to the original stack.

To solve the problem of an extension overwriting a
return address on the stack, MiSFIT stores the return
address of the function in per-thread state stored outside
the extension’s writable region. MiSFIT then replaces
each ret instruction with a jump to a support routine that
loads the saved return address and jumps to it. If the
extension overwrites the contents of its stack, the system
still returns to the correct location.

Similarly, to ensure that register values are pre-
served across the invocation of the extension, MiSFIT
saves the contents of all callee-saved registers on entry
to an extension, and restores them when it returns.

4.6 Dynamic Linking
MiSFIT modifies the operands of load, store, and call
instructions that are computed at runtime. It does not
modify operands that are labels, assuming that refer-
ences to addresses within the module (i.e. local jumps,
and loads and stores of module-level variables) are
implicitly safe (generated by the compiler), and refer-
ences to addresses outside the module will be checked
by the dynamic linker when the extension is loaded.
This implies that the dynamic linker is responsible for
keeping track of which symbols may be linked to by an



extension. Under some circumstances it may be the case
that not all extensions will be given access to the same
set of entrypoints. If this is so, the dynamic linker is
responsible for determining to which entrypoints a given
extension should be given access.

Relinquishing responsibility for protecting external
symbols has a limitation. The assembler does not mark
external symbols as being for read or write use; the
same type of external reference marker is generated by
the assembler for all reads and writes. If there is no read
protection, but there is write protection, there is no way
for the dynamic linker to determine which references
are source (read) references and which are destination
(write) references — in other words, which should be
allowed, and which should be disallowed.

To solve this problem, MiSFIT generates a table of
addresses of instructions that write operands that are
labels. The dynamic linker can use the information in
this table, in addition with the external reference table,
to differentiate between read references and write refer-
ences at link time.

4.7 Optimizations
In general, we have found that the performance of MiS-
FIT-protected code is close enough to that of unpro-
tected code that we have not been tempted to implement
complex code optimizations. However, two simple code
optimizations are performed.

The first is a peephole optimization that removes or
performs strength reduction on pop/push instruction
pairs, which are generated by the sandboxing code in
order to obtain a scratch register. If the register that is
popped and immediately pushed is known to be dead at
the point of the pop (because the immediately following
code is sandboxing code that will overwrite it) both
instructions can be removed. If the register is not known
to be dead, the pop/push pair is transformed into a single
instruction that loads the value from the top of the stack
into the register.

The second optimization performs live/dead analy-
sis of the condition codes (stored in the x86 flags regis-
ter) and uses this information to determine whether it is
necessary to save and restore the condition codes when a
register is sandboxed. The latter optimization is both
effective and important: we have found no instances
where the state of the condition codes needs to be saved
when sandboxing, and saving and restoring the flags
register on the x86 is an expensive operation.

4.8 Stubs
When an extension is invoked, a small stub function,
similar to an RPC stub, is called. This stub is responsi-
ble for configuring the extension’s sandbox, saving
callee-saved registers and initializing the global vari-

ables that hold the region tags for the read and write
regions assigned to the extension. It copies any argu-
ments passed to the extension onto the extension’s stack,
switches the stack pointer to the extension’s stack, and
jumps to the extension. When the extension completes,
the stub copies any returned values to the caller’s stack
and then returns to the caller.

The stub generator is driven by annotated C++ class
declarations, which specify parameters as input, output,
or in/out. The stub generator uses standard techniques
for creating the stubs. Unlike RPC stubs, arguments do
not need to be marshalled, but simply copied from the
caller’s stack to the extension’s stack (on entry) and the
results copied back (on exit), hence the MiSFIT stubs
can have less overhead than RPC stubs.

5 MiSFIT Overhead
This section compares the performance of unprotected
code (written in C or C++) with the MiSFIT-protected
versions. Performance numbers for both write-call pro-
tection (where store and call instructions are protected)
and read-write-call protection (where load, store, and
call instructions are protected) are included. As pointed
out above, read protection is typically a requirement for
security, not for correctness.

The following tests were run on a 200MHz Pentium
Pro running BSD/OS 3.0. All results are the mean of 20
runs, and in all cases the standard deviation was less
than 1.1%, which yields a 95% confidence interval of
less than 2.5%. The values reported are relative to
unprotected code. In order to best estimate the overhead
of protection, time spent in the operating system (and
hence unprotected code) was factored out.

5.1 Operating System Extension Benchmarks
In previous work we examined the suitability of various
extension technologies for constructing operating sys-
tem extensions.2 Three tests were developed and used,
with each test representing a class of possible OS exten-
sions. Following is a short description of each test; for
more detail, the reader is directed to the earlier paper.
• hotlist: choose which page to evict from a linked list

of page descriptors.
• lld: simulate the operation of a logical disk layer.10

• md5: compute the MD5 checksum of 1MB of data.
Each test and its data fit into main memory. The

results are shown in Table 1.
The write-call overhead for these tests ranges from

11% to 27%, but the overhead for read-write-call protec-
tion can be much higher, for example, 144% for hotlist.

In our earlier work we computed a break-even point
for each operating system extension. If the cost of using
the extension is below the break-even point, the exten-
sion will improve overall system performance; if it



above this point, it will degrade system performance.
The three write-call protected tests fall far below the
break-even point, and the read-write-call protected of lld
and md5 are both below it. The read-write-call protected
hotlist is at or just above the break-even point for this
example extension.

The performance of the write-call protected hotlist
is close to that of the unprotected version. This is
because there are only a small number of calls and very
few write instructions executed during the test. The core
of the test repeatedly scans a linked list of page descrip-
tors, hence the number of read instructions executed is
very high. This bias is reflected in the performance of
the read-write-call protected version of this test, where
the overhead is over 140%.

The lld test has a write-call overhead of 27%, and
read protection adds another 24%. This test is not as
read-intensive as hotlist, so the added overhead of read
protection is much lower. The md5 test has similar per-
formance characteristics, with a 23% write-call over-
head, and an additional 14% overhead for read
protection.

5.2 SPECInt Benchmarks
This experiment shows the performance overhead of
MiSFIT protection on several SPEC benchmarks from
the 1992 and 1995 integer suites. We ran tests using
write-call and read-write-call protection. The results are
shown in Table 2, and are relative to unprotected code.

It is highly unlikely that anyone would want to load
a SPEC benchmark into a web browser or database
server. However, these results give a feeling for the over-
head imposed by MiSFIT on “typical” code. To better
estimate the overhead imposed by MiSFIT, the tables
only include time spent at user level.

The write-call MiSFIT overhead for the SPECInt
code is comparable to that of MiSFIT on the operating
system extension benchmarks, ranging from a factor of
28% to 59%. As is seen above, the overhead of read-
write-call protection is higher than the overhead for
write-call protection, from 73% to 93%.

For memory-intensive applications, such as data
copies, a higher overhead should be expected. The over-
head seen is, of course, a function of the ratio of pro-
tected instructions to unprotected instructions.

5.3 Performance Summary
With read-write-call protection, MiSFIT-protected code
takes from 37% to 144% times as long as unprotected
code. Although this overhead may seem large, it should
be compared to the overhead of an interpreted language,
which can be 20 to 50 times slower than compiled C
code, or the disadvantage of writing extensions in an
unfamiliar, but safe, compiled language, such as Mod-
ula-3.

6 Putting Together the Pieces
As discussed in Section 2, SFI in and of itself is not a
complete solution. The MiSFIT package does not
include a safe runtime support library, which would be
specific to the base system. This support library would
be responsible for ensuring that extensions do not vio-
late their resource limitations.

Extensions are usually dynamically linked, and to
further that end, a minimal ELF dynamic linker is
included with the MiSFIT distribution. The dynamic
linker can load object files that have been processed by
MiSFIT into a running program. The linker is derived
from the VINO graft loader.

7 Conclusions
The overhead imposed by MiSFIT when it is used for
write and call protection is small. It allows applications
and kernels to be protected from end-user extensions
written in otherwise unsafe languages. Unlike other
tools, it is freely available. As part of an end-to-end
solution to the problem of constructing an extensible
system, MiSFIT can provide safety at low cost.

Test

MiSFIT
Write-Call
Protected
(MiSFIT/

unprotected)

MiSFIT
Read-Write-Call

Protected
(MiSFIT/

unprotected)
hotlist 1.11 2.44

lld 1.27 1.51

md5 1.23 1.37

Table 1: Overhead of MiSFIT protection on operating system
extension benchmarks.

Test

MiSFIT
Write-Call
Protected
(MiSFIT/

unprotected)

MiSFIT
Read-Write-Call

Protected
(MiSFIT/

unprotected)
compress95 1.59 1.73

eqntott92 1.28 1.76

espresso92 1.63 1.80

go95 1.45 1.93

Table 2: Overhead of MiSFIT protection on SPECInt
benchmarks. Results only include time spent at user level.



8 Availability
MiSFIT is covered by a BSD-style license, and is avail-
able for public use without fee. Contact the author
(chris@eecs.harvard.edu) to obtain a copy of the MiS-
FIT source code or the benchmarks used in this paper.

References

1. U. Hölze and D. Ungar, “Optimizing Dynamically-
Dispatched Calls with Run-Time Type Feedback”,
PLDI ‘94, Orlando, FL, June 1994.

2. C. Small and M. Seltzer, “A Comparison of OS
Extension Technologies,” Proc. 1996 USENIX Tech-
nical Conference, New Orleans, LA, January 1996,
pp 41-54.

3. S. Silver, “Implementation and Analysis of Soft-
ware-Based Fault Isolation,” Dartmouth College
Technical Report PCS-TR96-287, 1996.

4. R. Wahbe et al., “Efficient Software-Based Fault Iso-
lation,” Proc. 14th SOSP, Asheville, NC, December
1993, pp. 203–216.

5. M. Seltzer et al., “Dealing With Disaster: Surviving
Misbehaved Kernel Extensions,” Proc. 2nd OSDI,
Seattle, WA, October 1996, pp. 203–216.

6. A. Adl-Tabatabai et al., “Efficient and Language-
Independent Mobile Programs,” PLDI ‘96, Philadel-
phia, PA, May 1996, pp. 127-136

7. A. Banerji et al., “Quantitative Analysis of Protec-
tion Options,” University of Dame Technical Report
TR-96-20, 1996.

8. D. Engler, M. F. Kaashoek, and J. O’Toole, “Exoker-
nel: An Operating System Architecture for Applica-
tion-Level Resource Management,” Proc. 15th
SOSP, Copper Mountain, CO, December 1995, pp.
251–266.

9. B. Bershad et al., “Extensibility, Safety, and Perfor-
mance in the SPIN Operating System,” Proc. 15th
SOSP, Copper Mountain, CO, December 1995, pp.
267–284.

10. W. de Jonge, M. F. Kaashoek, and W. Hsieh, “The
Logical Disk: A New Approach to Improving File
Systems,” Proc. 14th SOSP, Asheville, NC, Decem-
ber 1993, pp. 15–28.


	MiSFIT: A Tool for Constructing Safe Extensible C+...
	Christopher Small and Margo Seltzer
	Harvard University
	Abstract
	1 Introduction
	2 SFI Is Not Enough
	3 Related Work
	4 MiSFIT Design and Implementation
	4.1 Indirect Loads and Stores
	Figure 1: Example Transformations. In this example...
	Figure 2: Sandboxing transformations for a store i...

	4.2 Virtual Function Calls
	4.3 Global Data, Virtual Function Tables
	4.4 Block Instructions
	4.5 Saved Registers and Return Addresses
	4.6 Dynamic Linking
	4.7 Optimizations
	4.8 Stubs

	5 MiSFIT Overhead
	5.1 Operating System Extension Benchmarks

	hotlist
	1.11
	2.44
	lld
	1.27
	1.51
	md5
	1.23
	1.37
	Table 1:� Overhead of MiSFIT protection on operati...
	5.2 SPECInt Benchmarks

	compress95
	1.59
	1.73
	eqntott92
	1.28
	1.76
	espresso92
	1.63
	1.80
	go95
	1.45
	1.93
	Table 2:� Overhead of MiSFIT protection on SPECInt...
	5.3 Performance Summary
	6 Putting Together the Pieces
	7 Conclusions
	8 Availability
	References
	1. U. Hölze and D. Ungar, “Optimizing Dynamically-...
	2. C. Small and M. Seltzer, “A Comparison of OS Ex...
	3. S. Silver, “Implementation and Analysis of Soft...
	4. R. Wahbe et al., “Efficient Software-Based Faul...
	5. M. Seltzer et al., “Dealing With Disaster: Surv...
	6. A. Adl-Tabatabai et al., “Efficient and Languag...
	7. A. Banerji et al., “Quantitative Analysis of Pr...
	8. D. Engler, M. F. Kaashoek, and J. O’Toole, “Exo...
	9. B. Bershad et al., “Extensibility, Safety, and ...
	10. W. de Jonge, M. F. Kaashoek, and W. Hsieh, “Th...






