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Abstract reduced with link-level and transport-level features

offered by networks such as FibreChannel [18], this

The performance of high-speed network-attached storgqtion is not applicable to the widely deployed Ether-
age applications is often limited by end-system over-

> 2 ) net and IP protocol infrastructure. In this paper, we
head, caused primarily by memory copying and networkgynjore alternative ways to reduce per-byte and per-1/O

protocol processing. In this paper, we examine alternag,erhead in NAS systems over IP networks.

tive strategies for reducing overhead in such systems.

We consider optimizations to remote procedure Ca”One approach to reduce per-byte overhead is to use net-
(RPC)-based data transfer using either remote direciork interface controller (NIC) support for transport
memory access (RDMA) or network interface supportprotocol offload and foremote direct data placement
for pre-posting of application receive buffers. We dem-(RDDP) [17]. An RDDP protocol performs network
onstrate that both mechanisms enable file accesgansfers directly to and from application buffers, elimi-
throughput that saturates a 2Gb/s network link Wherhating the need for memory Copying in the 1/O data
performing large I/Os on relatively slow, commodity path. Remote direct memory access is a user-level net-
PCs. However, for multi-client workloads dominated by Working [36] protoco| achieving RDDP via remote
small 1/Os, throughput is limited by the per-1/O over- memory read and write operations. The emergence of
head of processing RPCs in the server. For such workcommercially-available NICs with RDMA capabilities
loads, we propose the use of a new network 1/Ohas motivated the design of tirect-Access File Sys-
mechanismOptimistic RDMA (ORDMA)ORDMA is  tem(DAFS) [12,20], a network file access protocol opti-
an alternative to RPC that aims to improve Servermized to use RDMA for memory copy avoidance and
throughput and response time for small I/Os. We meatransport protocol offload. DAFS targets resource-inten-

sured performance improvements of up to 32% in servesive NAS applications, such as media streaming and
throughput and 36% in response time with use ofgatabases.

ORDMA in our prototype.

In this paper, we argue that a simpler, alternative RDDP
mechanism can offer similar memory copy avoidance
and protocol offload benefits to those achieved with
RDMA. This mechanism relies gore-posting of appli-
cation buffersat the receiver prior to the arrival of the

1 Introduction

The performance of I/O-intensive applications using

network-attached storage (NAS) systems over high ) .

speed networks is often associated with high CPU an&iipci. c:;trrylnlg t?e daia ps);igad [Zt]. Thls_paptia]i p;{e;grgs

memory system overhead [3,6,9,12,20,23,29,30]. Thighe first evaluation of a system using this
mechanism. Our results show that its benefits can be

overhead is primarily due to unnecessary memory copy-

ing and transport protocol processing, caused by ineffiachieved with a kernel-based NFS client, whose two key

ciencies in transporting file 1/O traffic over general- properties are (a) support for optionally bypassing the

purpose network protocol stacks. Memory copying is akernel buffer cache, and (b) integration with the NIC for

per-byte source of overhead that limits the 1/O busdirect transfer to and from user-level buffers. A draw-

throughput available for network transfers. Protocol pro—baCk of this approach,_m contrast to the platform inde-
cessing, however, is primarily a per-1/0 source of Over_penden_t userl—lt.evel client structure [20.] enabled by
head. For example, in multi-client workloads dominatedDAFS' |§_that itis not as portable due to its dependence
by small (4KB-64KB) I/Os, such as on-line transaction on specific kernel support.

processing, remote memory paging [14], non-IinearW

diti £ video fil 4 standard offi q . hile reduction of per-byte overhead is an important
editing ot video files, and standard oflice an engmeer—goal for NAS systems targeting 1/O-intensive work-
ing applications, performance can be limited by the

loads, per-1/0O overhead can limit performance of NAS
server CPU, due to the per-1/0O control transfer and pro-, P P

. : servers involved in processing a large number of small
cessing overhead of RPC [34]. While overhead can b(?/Os issued by multiple clients. With the server CPU sat-



urated due to the overhead of interrupts, scheduling, andon mechanisms not present in current local file sys-

file processing for small I/O RPCs, the NIC data transfertems. Additionally, storage volumes accessed by user-
engine becomes underutilized, and as a result, throughevel applications over a SAN are not under file system

put is less than the peak achievable by the network. Ircontrol and cannot be accessed using file system tools,
addition, server CPU involvement in each RPCcomplicating data management. In NAS-based systems,
increases file access response time. One way to improvde servers handle sharing and synchronization. In addi-
throughput and response time for small 1/Os is totion, NAS storage volumes are under file system man-
replace RPC by client-initiated RDMAClient-initiated = agement and control.

RDMA does not involve the server CPU in setting up

the data transfer, and therefore, has lower per-I/O overHigh-performance NAS applications are becoming

head on the server compared to RPC. increasingly network 1/O-intensive. This is due to the
emergence of servers with large memory caches and the
This paper makes the following contributions: use of aggressive file caching and prefetching policies in

conjunction with powerful disk I/O subsystems. In the

(@) It shows that end-system overhead reduction fofyture, new storage technologies reducing the $/MB
NAS applications is possible with simple RDDP supportratio of stable storage, such as microelectromechanical
on NICs offering transport protocol offload. systems, or MEMS, are expected to further ease the disk
] ] ) ] 1/0 bottleneck. On the other hand, network hardware

(b) It differentiates betweethroughput-intensive work- performance is rapidly improving, with 2-2.5Gb/s com-
loads performing large I/Qswhich primarily depend on - ecial implementations available today and 10Gb/s
RDDP for copy avoidance, andorkloads performing  jnsjementations expected within a year. To deliver this
small 1/0s for which client-initiated RDMA is neces- atwork performance to applications, NICs should be
sary to reduce server per-1/O overhead. able to transfer data at the speed of the network link. In

L addition, interaction with the host should take place with
(c) It proposesOptimistic RDMA,a new network 1/0 minimal CPU overhead. High-performance NICs are

mgchamsm that enable_s client-initiated RDMA and ber]_designed to integrate DMA engines able to transfer data
efits workloads performing small 1/Os.

between host memory and the network link at hardware

(d) It evaluatesOptimistic DAFS (ODAFS)our exten- speeds, for both large and small (4KB-64KB) I/Os [26].
sion to DAFS that uses ORDMA, to improve server Low CPU communication overhead is possible with

throughput and response time in workloads dominated/S€/-level communication libraries [26,35,36] com-
by small 1/Os. monly used in distributed scientific computations. NAS

systems, however, are usually implemented over gen-
The rest of this paper is organized as follows: In Sectioreral-purpose network protocols, such as Ethernet and
2, we provide background and discuss related work. InTCP/IP, and communication abstractions, such as RPC,
Section 3, we present the implementations of the NASVhich result in high communication overhead.
systems that use RDDP. In Section 4, we describe the

design and implementation of ORDMA and ODAFS. In A dravyback of using _RPC for_ file 1/0O data transfer is_
Section 5, we use an experimental platform consistinghat this method requires staging of the data payload in

of a Myrinet cluster of commodity PCs to evaluate the INtermediate host memory buffers and copying, to move
systems discussed in this paper. the data to its final destination. One way to solve this

problem is by enabling direct data transfers between cli-

ents and storage nodes over a SAN for large 1/Os, as in
2 Background and Related Work several emerging clustered storage systems, such as

Slice [3], MPFS—HighRoad [13], NASD [15,27], GPFS
Network storage systems can be categorized as Storaggo] and Storage Tank [16]. These systems use file serv-
Area Network (SAN)-based systems, which use a blockers for small I/0 and metadata traffic. An alternative
access protocol, such as FibreChannel and iSCSI, &ojution that does not require a SAN is to take advantage
NAS-based systems, which use a file access protocoh RpDP mechanisms applicable to RPC-based data
such as NFS. SAN-based systems preserve an importaiansfer over IP networks. For example, DAFS [12,20]
property of direct-attached block I/O device interfaces,ang NFS-RDMA [9] are two recently proposed NAS
which is the ability for direct data transfers between thesystems based on NFS and using RDMA for memory
communication device and a user or kernel memorycopy avoidance and transport protocol offload. This
buffer. However, a drawback of using a SAN to share agpproach promises to reduce communication overhead
storage volume is the need for additional synchronizayg |evels comparable to that of block channel protocols.
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Figure 1. Protocol stack with the messaging and transport protocols offloaded to the NIC (a). RDDP is
possible either by separating the data payload when in-lined in the RPC (b) or with RDMA (c).

In Section 2.1, we introduce network protocols that canperformed by an RPC. The data payload can be in-lined

be used to implement high-performance network-in the RPC message or transferred separately, using

attached storage systems. In Section 2.2, we focus oremote direct memory access.

the communication overhead of these protocols. Finally,

in Section 2.3, we examine the impact of communica-RDDP using RPC (RDDP-RPC): One way to

tion overhead on I/O throughput and response time. €mpower RPC with RDDP is to associate the target
buffer with an RPC-specific tag and advertise this tag to

2.1 Network storage communication protocols the remote host. The remote host must include the
advertised tag in the RPC that carries the data payload.

Network storage systems can be implemented based ofhe receiving NIC must match the tag with the target

the interfaces and semantics of the network protocol$uffer, separate the data payload from the protocol head-

shown in Figure 1. The primary communication abstrac-ers fieader splitting, and deposit the data directly into

tion is remote procedure call [5]. RPC can be imple-its target buffer. An RDDP-RPC mechanism evaluated

mented over a messaging layer, which can be offloadetn this paper is described in more detail in Section 2.2.

to the NIC along with the transport protocol, as shown )

in Figure 1(a). The messaging layer can be accessed dyPDPP using RDMA (RDDP-RDMA): Another way to

the host via an interface that exports send and receivdnplement RDDP is using RDMA, which is a network

operations [7,35]. In addition, RDDP [17] enables directdata transfer protocol [8,37]. The RDMA layer exports a

placement of upper-level protocol data payloads intofémote memoryead andwrite interface. RDMA uses
their target host memory buffers, as shown in host virtual memory addresses as RDDP buffer tags. An

Figure 1(b,c). RPC advertises the remote buffer and an RDMA moves
the data to the target buffer. RDMA requires interaction
A communication layer implementing RDDP must per- with the upper-level protocol only to initiate the RDMA
form the following operations: (1) Separate the protocoloperation. It does not require interaction with the upper-
header from the data payload, (2) match the latter witHevel protocol at the target of the remote read or write
its target buffer on the receiver, and (3) deposit itoperation. Only the RDMA initiator receives notifica-
directly into its target buffer. To be able to perform (2), tion of completed events.
the target buffer must beaggedandadvertisedprior to ) ) )
the 1/0. Tag advertisement can be eithimplicit or User-level networking [36] requires that RDMA use vir-
explicit, as shown in Figure 1, depending on whether ittually addressed buffers. NICs with RDMA capabilities
is performed by the RPC protocol or explicitly by the Use a Translation and Protection Table (TPT), which is a
NAS protocol. In either case, however, advertisement i€levice-specific page table, to translate virtual addresses



carried on RDMA requests to physical addresses. Tdoaded transport for the remainder of this paper. The fol-
avoid limiting the size of the TPT, NICs can be designedlowing formula expresses the client or server CPU
to store the entire TPT in host memory, maintainingoverhead of file access in an 1/O transferrimgytes:

only a TLB on-board the NIC [26,37]. Systems using

RDMA need to ensure that the NIC can find virtual to o(m) = MX Operpyte Oper-1/0

physical address translations of exported pages refer-

enced in RDMA requests and that memory pages Usegthere are a number of well-known techniques [10], such
for RDMA are kept resident in physical memory while g5 checksum offloading, interrupt coalescing and
the transfer takes place. Pagmistration through the  ihcreasing the network maximal transfer unit, for reduc-
OS is necessary in conventional NICs on the I/O bus, tqng overhead. These techniques are offered by several
ensure that address translations are available and thﬁbh-speed NICs and supported by mainstream operat-
pages remain resident for the duration of the DMA.  ing systems. Further reductions in per-byte and per-1/0
overhead are possible with the network I1/0 mechanisms

Impl|cat|ons of RDDP tag advertisement Protocols and the NAS systems described in this paper and sum-
using RDDP for direct data placement typically adver—marized in Table 1

tise buffer tags by an RPC on a per-1/O basis. Advertise-

ment of buffer tags on a per-1/O basis, however, meanReducing per-byte overhead.The primary source of
that both sides are involved in setting up each data trangser-pyte overhead is memory copying. Avoiding unnec-
fer. An alternative that reduces the cost of per-1/0 bufferessary memory copying is a challenging problem since
adverti_sement is to cache advertisements in clients gn@ requires either significant NIC support or significant
carry file access operations by RDMA only [33]. Opti- fjle system and network protocol stack changes, such as
mistic DAFS, our extension to DAFS described in jntegration of buffering systems [29,32] or virtual mem-
Section 4.2, uses client-initiated RDMA without requir- ory (VM) re-mapping techniques [6]. To avoid unneces-
ing buffer advertisement, thereby avoiding RPCs, ONsary copying, the 1/O payload should be transferred
each I/O. directly from the source to the destination buffer. Avoid-
ing memory copies on the outgoing path is relatively

. : easy using scatter/gather support at the NIC or VM page
exports aqueue pair(QP) interface [7,35,36] for send- re-rr):appir?g. Avoidi%g copiezpin the receiving patf? ig

ing and receiving messages and for event notlflcatlonmore challenging since it requires NIC support to

'I.'he.messagmg Ia_lyer offers data_transfer and event r]Ot'éleposit incoming data either in a page-aligned location
fication only, leaving event handling to upper-level pro-

"~ or directly at the final destination. In this paper we con-
tocols such as RPQ' An example 9f a proj[ocol prOVIdIngsider two ways to achieve direct data placement in host
user-level messaging and RDMA is the Virtual Interfacememory either within the context of RPC or in combi-
(VI) architecture [35]. The transport layer exports a reli- nation V\;ith RDMA:
able, in-order stream abstraction similar to the TCP
sockets interface. In addition, transport protocol SUpPOrta) RDDP-RPC. As described in Section 2.1, the
for framing, such as in SCTP [31], is required by RDDP Rppp-RPC protocol, which is NAS-specific, enables
in order to preserve upper-level protocol header and datg,e NIC to identify and separate NAS and RPC headers

Messaging and Transport layers.The messaging layer

payload boundaries. from the data payload and deposit the latter directly into
o the target buffer on the host using DMA. In our imple-
2.2 Communication overhead mentation, we use the RPC transaction numbers as

L ) buffer tags. A tag is associated with an application
Host communication overhead in NAS end-system host$, ror at the time when the latter isre-postecby the
is defined as the length of time that the host CPU isioqeiving host, prior to sending the RPC request. Buffer
engaged in the transmission and reception of messagggys aramplicitly advertisedn the context of the RPC
[10,11,22]. It consists of per-bytecomponendyer.pyte  protocol message exchange. RDDP-RPC imposes no
which is the length of time that the CPU is engaged inpyffer size or alignment restrictions on application buff-
data touching operations such as copying or integrityers, Pre-posting of receive buffers (pre-posting for
checking, and er-1/0O componendye. 0 Whichisthe  short) has previously been used in a kernel-resident
length of time that the CPU is engaged in processing th&kRPC-based global shared memory service [2]. In
I/0 request incurred in network and file system protocolSection 3.2, we describe a NAS system based on
stacks. Theer-packetomponent, due to message frag- RDDP-RPC.
mentation and reassembly, disappears if the transport
protocol is offloaded to the NIC. We will assume an off-



Network 1/0O mechanism NAS system Uses RDMA  Per-l/O tag advertisement
RDDP-RPC (82.2) NFS pre-posting (§3.2) No Yes
RDDP-RDMA (82.2) NFS hybrid (83.1), DAFS [20] Yes Yes

Optimistic RDMA (§4) Optimistic DAFS (84.2) Yes No

Table 1. Network I/0O mechanisms and NAS systems evaluated in this papdRDDP mechanisms
target per-byte overhead. Optimistic RDMA combines RDDP and per-1/O overhead reduction.

Untagged RDDP-RPC transfers are also possible and dsuch agatch I/Oin DAFS [12]. Using batch 1/O, a sin-
not require pre-posting. The data payload is placed irgle RPC is used to request a set of server-issued RDMA
intermediate, page-aligned host buffers and the physicadperations, amortizing the per-1/0 cost of the RPC on
memory pages of these buffers are re-mapped into ththe client. Reduction of per-I/O overhead on the file
target buffer, provided that the latter is also page-server is also important, perhaps even more so since
aligned. A low overhead NFS implementation usingservers receive 1/O load from multiple clients. Our solu-
header splitting and VM page re-mapping has been evakion to reducing server per-1/0O overhead uses client-ini-
uated in a recent study [20]. tiated Optimistic RDMA, as discussed in Section 4.

(b) RDDP-RDMA. In this method, tag advertisementis 5 3 /0 throughput and response time

performed using RPC but data transfer is performed

using RDMA, as described in Section 2.1. RDMA Throughput and response time are standard /O metrics
imposes no buffer size or alignment restrictions. Inused to assess performance in NAS systems. In this sec-
Section 3.1, we describe NAS systems using RDDP+ion we describe how CPU overhead affects these met-
RDMA. rics.

Both techniques rely on transport protocol offload to theThroughput is important for applications that can sus-

NIC. They differ, however, in the complexity of imple- tain several simultaneously outstanding transfers, either
mentation and in their generality. RDMA is a general- by having some knowledge of future accesses, or by
purpose data transfer mechanism: it is independent afwolving a number of simultaneous synchronous activi-

any NAS protocol and exports a user-level API. NICsties, such as concurrent transactions in OLTP. From the
supporting RDDP-RPC are simpler to design and imple-overhead equation of Section 2.2 and with the per-byte
ment. They are customized, however, for particular NAScomponent of overhead associated with memory copy-
protocols and export a kernel API. ing eliminated using RDDP, overhead is dominated by

] ] its per-1/0O component.
Reducing per-1/0 overhead. The primary source of

per-1/O CPU overhead is RPC processing. The mairn addition to host CPU overhead, the performance of
components of RPC are event notification, either bynetwork storage applications may also depend on other
interrupt or polling, process scheduling, interaction with parameters [11] such as the network link laterdyand

the NIC to start network operations or to register mem-bandwidth BWjequord: and the NIC transfer rate

ory, and execution of the file protocol processing han—(va\“C)_ Modern NIC architectures using DMA

QIers. Par’F of the overhead of RPC is expected toengines for transfers between the network link and host
improve with advances in core CPU technology. Othermemory [26] ensure that the NIC is not the bandwidth

parts of the pgr-l/ O overhead, however, suc.h as Inf[erbottleneck for messages larger than a certain threshold,
rupts and device control, are due to the interactio e B > BW.
g- " VVNIC network

between the NIC and the host over the I/O bus an

therefore not expected to improve as quickly as CO®rhe 110 throughput achievable with a stream of 1/O

CPU performance. requests, each of size, can be limited either by the net-

RDMA has fundamentally lower per-1/0 overhead than work or by the (client or server) CPU:

RPC for remote memory transfers since it does not
involve the target CPU. Reducing per-1/0O overhead in m O

file clients using RDMA is possible with techniques Throughput (m) = min EBW“HWO”“ Oper-io0]



For large 1/0 blocks, even a low I/O request rate can satpossible, however, with NIC support for RDDP-RDMA
urate the network, and the throughput is determined byr RDDP-RPC.

BWpetwork FOr small I/O blocks, however, the CPU is

more likely to become the resource limiting throughput. TO take advantage of a direct transfer /0 facility, file
This is because the CPU is saturated processing RPCs %Ystem clients must be modified so that their I/O opera-
lower /O rates than necessary to keep the NIC datdionS bypass the buffer cache and propagate memory
transfer engine fully utilized. It is therefore important to Puffer information to the NIC. A drawback of using
reduce the per-I/O overhead for small file accesses. Alirect transfer file 1/0 is the need to register and pin
previous study found that file server throughput in NFSUSer-level buffers, as shown in Figure 2. In the case of

workloads modeled by SPECsfs is most sensitive to hodf€él file clients, registration has to happen on-the-fly
CPU overhead [23]. and for each 1/O to be transparent to user-level applica-

tions. One problem with this requirement is the possibil-

Besides throughput, response time is also important ity that the kernel may be unable, due to per-process
transactional-style network storage applications thatesource limits, to pin the user-level buffers required for
perform short transfers and cannot hide network latencghe transfer. Besides introducing additional failure
using read-ahead prefetching or write-behind policiesmodes, the need for on-the-fly memory registration and
Such applications usually have unpredictable access pafle-registration introduces a performance penalty in the
terns involving small file blocks or file attributes. data transfer path.

Response time is the delay to satisfy a remote file 1/0

request and consists of the transmission round-trip tim&.1 Direct transfer file 1/O using RDDP-RDMA

on the network link, the NIC latencies, control and data

transfer costs on the host I/O buses, and interrupt an§ne way to support direct transfer I/O is with RDDP-
scheduling costs in the case of remote procedure calRPMA, used in the recently proposed DAFS [12] and
based 1/0 [34]. For a heavily loaded server, respons&FS-RDMA [9] systems. DAFS is a file access protocol

time increases by the amount of queueing delays [23]. [20] that performs data transfers using server-initiated
RDMA read and write operations, after explicitly adver-

. ) . tising buffer addresses using RPC. In Sun’s NFS-
3 Direct transfer file /0 in NAS systems RDMA, buffer addresses are implicitly advertised by the
RPC protocol. NFS-RDMA uses client- or server-initi-

File I/0 in traditional operating systems is staged in the;;oq RDMA read operations issued from within the RPC
file system buffer cache, and memory copies are “S“a"}f)rotocol to pull data from remote buffers.

necessary to move data between network buffers, the file

system cache and application buffers. In Section 2.2, WRDDP-RDMA requires registration and pinning mem-
discussed network 1/O mechanisms to achieve direcpry buffers on both the client and the file server. This is a
data placement and avoid the cost of data movement. Igisadvantage not found in RDDP-RPC, which requires
this section, we examine the use of those mechanisms t@gistration and deregistration only on the receiving side
implementdirect transfer file I/O. This differs from (e g., the client in the case of reads). An advantage of
what is commonly referred to afirect file /Oand asso- RDDP-RDMA, however, is that the frequency of host
ciated with theO_DIRECT flag of the POSIX open nteraction with the NIC can be reduced by caching reg-
system call. While direct file I/O implies a disabled file jstrations at the client and the server. With RDDP-RPC,
cache, which does not necessarily reduce memory|C interaction is required on each I/O to pre-post
copying, direct transfer file I/O additionally implies application receive buffers.
copy-free data transfer between the storage device and
user-space buffers. This is easily achievable in local otn Section 5.1, we evaluate the performance of a kernel-
network-attached storage systems, over parallel or seriddased NFS-derivative system that performs data trans-
SCSI, by programming the disk controller to DMA the fers using server-initiated RDMA. Our implementation
requested data blocks directly to application buffers. modifies the NFS wire protocol to enable remote mem-
ory pointer exchange between client and server, like
Direct transfer file 1/O in network file systems is more DAFS, but leaves the NFS client APl unchanged, like

challenging, as general-purpose NICs are not aware o{FS-RDMA. In Section 5.1, we refer to this system as
upper-level transport protocol packet formats andNES hybrid

semantics and cannot usually be programmed to DMA
the data payload directly into application buffers. This is
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3.2 Direct transfer file I/O using RDDP-RPC

safety issues. These issues can be addressed by requir-
ing supervisor privileges to program the NIC. Another
drawback is that by bypassing the buffer cache, which
abstracts the device layer, the file client is no longer part
of the device-independent part of the kernel. Since not
all NICs are expected to support an RDDP-RPC API,
the file client depends on the availability of a device-
specific APl. However, making NIC-assisted direct
transfer file I/O a mount option is expected to work well

in practice.

This paper presents the first evaluation of a NAS system
using RDDP-RPC. In Section 5.1, we refer to this sys-
tem asNFS pre-posting

4 Optimistic RDMA

The need for buffer tag advertisement on a per-I/O basis
in RDDP systems requires the use of RPCs. These RPCs
contribute to per-I/O CPU overhead, reducing server
throughput and increasing response time in workloads
dominated by small I/Os, as discussed in Section 2.3.
One way to address these problems is toalgat-initi-

ated RDMAwithout wrapping the RDMA in an RPC to
prepare the server on a per-1/0O basis. In this section, we
introduceOptimistic RDMA a novel network 1/0 mech-
anism that enables RDMA with these properties. The
following design challenges must be addressed in an

Another way to support direct transfer 1/O is with a NIC ORDMA mechanism:
that supports RDDP-RPC. The implementation of an

RDDP-RPC-based kernel client requires a device interEnsuring safety One way to avoid accidental corrup-

face that communicates the following information to thetion or malicious buffer access by mutually untrusted

NIC: clients is to use cryptographically strong hashing. Each
exported memory segment is associated witapabil-

(a) A description of the user memory buffer, including ity [24], which is a keyed message authentication code

the physical address pointing to the buffer, where datgMAC) computed and stored at the server TPT entry for

coming from the network is to be directly placed. the memory segment and given to the client. A capabil-

. . , ity protecting a memory segment is sent back to the
(b) A description of the request including the RPC trans-goyer NIC with every ORDMA request for that seg-

action number and the type of request, enabling the NIGnent The server NIC verifies the validity of a capability
to recognize the data payload in the RPC response.  pqtore allowing a memory access. The server may

revoke access privileges to an exported memory seg-
ment, for example, when protecting or invalidating VM
page translations, by locally invalidating its capability in
the TPT.

This scheme requires simple modifications in tinede
layer of existing network file clients to avoid the
user/kernel copy, pin the user-level buffer in physical
memory and give the NIC the description of the user-

level buffer rather than a pointer to an intermediateHand"ng remote memory access faultsClient-initi-

buffer cache location. Both synchronous and asynchroziq RpmA may be faced with a number of exception
nous file I/O over an NFS client offering such support ¢,ngitions at the target NIC. For example, some of the
enjoys zero-copy, uncached data transfer. targeted VM pages may no longer be resident in physi-

One drawback of this scheme is that the NIC needs to bgal memory. In addition, targeted pages may be locked
or protected. In the case of non-resident pages, one

able to parse transport and application-level headers tg tion is to enable the NIC to trigger a page-in disk I/O.

understand RPC responses, which raises security arﬁj‘D ; ) g .
owever, this solution significantly increases the com-



plexity of the NIC design and most importantly, it may 1/O bus. All pages in the TPT, except those with transla-
not be supported by the OS. The ORDMA modeltions loaded on the NIC TLB, may be locked and invali-
enables clients to initiate RDMA that is guaranteed todated by the host. The NIC updates the state of TPT
succeed only if the target buffer is valid and exported byentries by interrupting on each TLB miss. These inter-
the server and is neither locked nor protected. In theupts increase CPU overhead but have the side-effect of
opposite case, a recoverable access fault is signaled gpeeding up the loading of TPT entries into the NIC,
the client by a network exception. After catching an which is now done via a host-initiated programmed 1/0O
ORDMA exception, a client handler may recover by operation, instead of (possibly several) NIC-initiated
retrying the access using an alternate access metho®MA on the PCI bus.

such as RPC.
A drawback of having to synchronize via a device-spe-

Two important design choices in any ORDMA-basedcific page table is that the OS has to be aware of and
system are: (a) how a client finds references to serveadapt to the idiosyncrasies of the NIC. For example, it
memory buffers, and (b) how a client handles exceptionshould always check with the NIC TPT before reclaim-

due to failed ORDMAs. Section 4.2 describes theing a page and account for the fact that attempts to
choices we have made in the Optimistic Direct Accessreclaim a physical page may fail until the page is evicted

File System. from the NIC TLB. To avoid starvation, the OS must
increase its minimum free page threshold by the maxi-
4.1 ORDMA implementation mum amount of physical memory with page translations

loaded on the NIC TLB. The OS must also be able to
The two main ORDMA implementation issues are (a)limit the effective size of the NIC TLB to avoid exces-
how to synchronize between the NIC and the host CPsive pinning by the NIC.
when accessing VM pages, and (b) how to report NIC—
to—NIC network exceptions in case of remote memoryNIC—to-NIC exceptions ORDMAs may fail due to a
access faults. variety of conditions, such as invalid address translation,
protection violation, failure to lock page(s). We decided
NIC-host CPU synchronization in accessing VM to support such exceptions by extending the VI protocol
pages Synchronization is necessary because the NIC igvith recoverable RDMA failure semantics. Since Vlis a
allowed to set up DMA transfers between the networklayer on top of Myrinet's GM in our prototype, we first
and main memory, independently of the CPU. The kindmodified the Myrinet GM Control Program to report
of NIC-host CPU synchronization depends critically onsuch conditions as exceptions in low-levgét (i.e.,
OS support for multiple processors. An ORDMA-capa- RDMA read) andput (i.e., RDMA write) operations.
ble NIC in a multiprocessor OS can fully participate in These exceptions are reported as “soft” or recoverable
the VM system, by pinning/unpinning and lock- transport errors in the VI descriptor status flags, and can
ing/unlocking VM pages in response to network eventsbe appropriately handled by higher-level software, such
This is because a multiprocessor OS offers the necessags the DAFS client and the ODAFS user-level cache
synchronization structures for the NIC to appear indis-described in Section 4.2.1.
tinguishable from an additional CPU to the OS, except
for its performance. On the other hand, a NIC in a uni-4 2 Optimistic DAFS
processor OS may not be able to pin pages from inter-
rupt handlers if, for example, the OS is non-preemptive. The Optimistic Direct Access File System is our exten-
In this case, synchronization via the host memory resision of the DAFS [12] protocol. Just like DAFS,
dent TPT is necessary. ODAFS can use RPCs for all file requests. In addition to
RPC requests, ODAFS clients may issue ORDMASs to
The NIC should ensure that the following two condi- directly access exported data and metadata buffers in the
tions hold for the duration of DMA: First, pages server file cache.

involved in DMA have to remain resident in physical

memory. Second, conflicting accesses by another CPI@WDAFS is based on the following key principles:

or NIC should not be allowed. We chose to satisfy both

requirements by treating VM pages with translations(2) Clients maintain directoryor cache of remote refer-
loaded in the NIC TLB as both pinned and locked. The€nces to server memory. These directories can be built
alternative of locking pages only for the duration of an €ither eagerlywhen clients ask the server for memory
I/0 requires frequent NIC—host CPU interaction andreferences, ofazily when the server piggybacks mem-
was deemed too expensive in the case of a NIC on thery references with each RPC response.



(b) Directory entries need not be eagerly invalidatedalways enough virtual address space to map large
when the server invalidates VM mappings for exportedamounts of physical memory for long periods of time.
references. Instead, invalid ORDMAs are caught at thelhus, we ensure that NIC TLB invalidations are due to
server NIC, which throws exceptions reported to clientsthe OS reclaiming a VM page due to memory pressure
An important advantage of this consistency mechanisnand never due to having to share a small virtual address
is that the server does not need to keep track of clientspace. This 64-bit address space is addressable only by
caching memory references. the NIC and never by the CPU. It is therefore indepen-

dent of whether the CPU has a 32- or 64-bit architecture.
(c) The client is always prepared to catch an exception

for each ORDMA operation. In such a case, the clientldeally, the replacement algorithm used in the server
issues an RPC to access the data. NIC TLB should be the same as the algorithm used in

the client ORDMA directory.
Other important considerations for ODAFS clients are

determining the size of the ORDMA directory, particu- 4 2 2 Benefits and limitations

larly in relation to the memory requirements for file data

and attribute caching, and the replacement policieDDAFS is targeted for workloads performing small
appropriate for maintaining the ORDMA directory. In |/Os. ODAFS is most beneficial with significant mem-
this paper, we assume that the size of the ORDMAgry-to-memory 1/O traffic, such as that caused by small
directory is small compared to the size of the data cachefiles and attribute accesses, and high server cache hit
and use the LRU replacement algorithm for ORDMA rates. The benefit comes mainly from the low server
references. However, since ORDMA accesses ar¢€pu overhead of the ORDMA mechanism. However,
expected to be issued in response to client cache missegere are a number of workload characteristics that limit
a more appropriate strategy would be similar to thethe applicability of ORDMA, and consequently the
multi-queue algorithm for storage server caches [38]. effectiveness of ODAFS. These are:

4.2.1 ODAFS implementation Few remote memory accessegy., when client caching

is effective in locally satisfying most file requests [25].
We implemented prototypes of an ODAFS client andNote that this factor reduces the usefulness of any
server by extending the following existing DAFS com- remote file access protocol.
ponents: a user-level DAFS file cache [1], a user-level
DAFS API implementation [20] and a DAFS kernel Low ORDMA success rate, i.e., low server cache hit

server [21]. We rely on the ORDMA support for Myri- rates If many ORDMAs result in failure, ODAFS per-

net described in Section 4.1. formance is similar to that of DAFS as the cost of
ORDMA exceptions and subsequent RPCs is masked by

The ODAFS server piggybacks remote memory referthe high latency of server disk 1/O.

ences to data blocks in its kernel file cache onto RPC

responses to the client. The ODAFS client stores thesdany file accesses that cannot be satisfied via ORDMA

references in cache block headers. As data blocks ar€his could be because the remote memory location of

reclaimed by the client cache, memory references aréhe target data may not be exportable. Examples are

allowed to live in “empty” headers. The client cache is directory name lookups, which require significant pro-

configured with many more empty headers than dat&£€ssing on the server besides the actual data transfer.

blocks. Ideally, it should have enough buffer headers to ) ) ) )

be able to map the entire server physical memory availSMall read-write ratio Writes require the update of

able for file caching. assoqlated file state, such as time of Ia§t modification
and file block status on the server, besides the actual

We also modified the DAFS API to allow passing of data transfer. Append-mode writes are harder as they
ORDMA references, and the DAFS client implementa-further require allocating disk blocks on the server,
tion to include ORDMA operations in its event loop. On checking resource limits, and potentially serializing
ORDMA exceptions, the DAFS client retries the opera-0Vver concurrent appending accesses.

tion using RPC in order to guarantee success. At RPC

completion, the fresh piggybacked reference to thd-0W NIC TLB hit rates Satisfying TLB misses for a
server buffers is passed to the ODAFS client. NIC on the I/O bus can be significantly more expensive
than for a CPU TLB. In addition, network storage work-
The ODAFS server maps file blocks on a private 64-biting sets can be very large and access patterns may not
virtual address map. This is to ensure that there id)ave enough locality to render NIC TLBs effective.
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has implications on the atomicity of file I/O. RPC-based =

file access guarantees that the entire I/O operation i€ ,qq

atomic by locking the entire file for the duration of the ”23

I/0. However, ORDMA-based file access guarantees_ DAFS « NFS hybrid

/ ?
//"NFS pre-posting
/)

that at most one memory word is read or written atomi- 2 150

cally. By using both access methods, ODAFS effectively§

offers ORDMA’s atomicity semantics. For UNIX file o 100 o
I/O semantics, client applications should explicitly lock g 4 )
files for the duration of I/O. S 50p NFS
(14
i 0
5 Experimental Results 8 16 32 61 1% 256 512

. . Block size (KB
Our experimental setup consists of a cluster of four PCs KB)

each with a 1GHz Pentium |1l processor, 2GB SDRAM FLQGUJS 3-.t%'i%’:Fa%?Q%WiO'IFQaFt’%m;gig?OEiad' .

and the ServerWorks LE chipset. The PCs are connected® with vari pplicat siz€.

via a 2Gb/s switch over full-duplex ports. Each NIC has . , .

a 200MHz LANai9.2 network processor with 2MB of writes to client memory buffers. Given the very low

on-board SRAM in 64MHz/66-bit PCI slots. PCI bus transmission error rates of Myrinet, we use UDP as our
throughput is measured at 450MB/s AIII PCs runtransport protocol to avoid the higher overhead of TCP.

FreeBSD 4.6. The LANai drivers and firmware are This configuration approximates the benefits of offload-

based on GM-2.0 alphal release featuring support foi?g TCP if it were supported by the NIC. Table 2 reports

remote direct memory accegstandputprimitives. The aseline network performance of the protocols used
VI library is based on the Myricom VI-GM 1.0 release. °Ve' the Myrinet network. These numbers are collected

This is a host-based user-level library mapping VI oper-using thegm_allsizepingpongandnetperfprograms for

ations to GM operations and used by the user-levepM’ VI-GM and UDP/IP protocols respectively.

DAFS client [20]. A kernel port of the VI library sup- .

ports the DAFS/ODAFS server [21]. Ethernet emulation®-1 Client overhead

is implemented in the standard LANai GM-2.0 firmware In this section, we measure read throughput with a sim-
and drivers and supports UDP and IP checksum of'fload-I lient d, licati ¢ ith the Berke-
ing and interrupt coalescing. The Ethernet packet mTyP e client and application performance wi € berke

is 9KB. GM data transfers, however, are fragmented ant!le y DB database.

reassembled by the LANai using a 4KB MTU. The GM (jient read throughput. This experiment measures file
drlve_r and firmware are modified as d_escrlbed Nread throughput with a simple client performing asyn-
Section3.2 for RDDP-RPC and Section4.1 for . ion6us read-ahead without any data processing. We
ORDMA (except for capabilities, which are not yet sup- compare DAFS to the two optimized NFS implementa-
ported in our implementation)NFS pre-postingand  yjong NFS pre-postingndNFS hybrid and to standard
NFS hybrid are implemented by modifying the Nps The client reads data sequentially, using a varying
FreeBSD 4.6 kernel, as shown in FigureNES pre- pqcy size, from a 1.5GB file warm in the server file
posting uses the RDDP-RPC device interfadSFS  j.he Read-ahead prefetching at the application level is
hybrid uses GMputto perform server-initiated RDMA  jjhe via the DAFS and POSDéio APIs. NES is

mounted with the readahead parameter set to zero in all

Protocol Roundtrip Bandwidth cases. UDP/IP is modified so that the NFS transfer size
(us) (MB/s) can match the application block size up to 512KB.
GM 23 244 ) .
Figure 3 shows that for block sizes larger than 32KB
VI 23 poll 244 DAFS can sustain read throughput of about 230 MB/s.
53 block 244 As shown in Figure 4, it achieves this throughput con-
UDP/Ethernet 80 166 suming less than 15% of the client CPU for 64KB or

larger blocks, by offloading the transport to the NIC and
Table 2. Baseline Myrinet performance. One-byte by being able to avoid all memory copies. Per-1/0 over-
roundtrip time. head is progressively better amortized since the unit of
data movement always matches the application block
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Figure 4. Client CPU utilization performing read- Figure 5. Berkeley DB performing asynchronous 1/O.

ahead with variable application I/O block size.

size. For small block sizes, DAFS achieves low per-I/0In this experiment, an application uséisto compute a
overhead by using polling instead of interrupts. Simi-Simple equality join with 60KB records. The result of
larly to DAFS,NFS hybridsustains 230 MB/s for block the join is a large list of keys, retrieved from the data-
sizes of 32KB or larger with CPU utilization dropping base file located on the serv@b pre-computes the list
exponentially with increasing block size. However, evenof required pages and performs read-ahead, maintaining
though both DAFS andNFS hybriduse RDMA,NFS  a window of outstanding 1/Os. To vary the computa-
hybrid uses more of the client CPU due to its higher per-tional requirements of the application, we increase the
RPC overhead. Both DAFS and th&=S hybridclients ~ amount of data copied from thab cache into the appli-
avoid registering application buffers with the NIC on cation buffer for each record, from one byte to 60KB,
each I/O by caching registrations. and report the application throughput in Figure 5. The
throughput sustained by the application when there is
NFS pre-postingsustains 235 MB/s for block sizes little memory copying is close to the wire throughput for
32KB or larger, performing data transfer in 8KB IP frag- all systems except standard NAE:S pre-postinger-
ments. It slightly outperforms systems using RDMA forms slightly better than the other systems, as is also
because the size of Ethernet packets (8KB) is twice thehe case in Figure 3. As the amount of copying
size of the 4KB GM fragments. The decline in its client increases, performance becomes limited by the client
CPU utilization is eventually limited for large block CPU. Relative system performance is inversely propor-
sizes as the total number of IP fragments is independertional to each system’s client CPU overhead for 64 KB
of the block size. In addition, thdFS pre-postinglient  network I/O transfers.
interacts with the NIC for pre-posting application
receive buffers on each I/0. Standard NFS (not shown irg 2 Server 1/O throughput and response time
Figure 4) achieves a maximum throughput of 65 MB/s,
limited primarily by memory copying, which saturates In this section we present microbenchmark and Post-
the client CPU. Mark results highlighting the properties of ORDMA and
the upper bounds for performance improvements in
Berkeley DB performing asynchronous I/Q In this  ODAFS applications. In all cases, a file cache based on
experiment, we use Berkeley DB to show the effect of DAFS open delegations [12] is interposed between the
client CPU overhead in application performance. Berke-application and the DAFS/ODAFS API. To avoid intro-
ley DB [28] (db) is an embedded database managemenducing platform-specific parameters, such as the cost of
system that provides recoverable, transaction-protecteIC memory registration and TLB misses, we ensure
access to databases of key/data pairs. It is linked into ththat RDMA is done on pre-registered buffers and always
application address space and maintains its own usehits in the NIC TLB. The cost of a NIC TLB miss is
level cache of recently accessed database p&fess  about s for ORDMA in our prototype. This penalty
modified to asynchronously prefetch database pagesan be reduced in NICs that have large TLBs, are inte-
when it is possible to pre-compute a set of requiredgrated on the memory bus, or share a TLB with the host
pages. CPU [4]
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Figure 6. PostMark 1/0 throughput. Single client Figure 7. Server throughput. Two clients reading a
with variable cache hit ratio. large file using a large block size.

the file cache. ORDMA vyields about 36% lower

Microbenchmarks. We measure /O response time in response time than direct RPC.

reading a 4KB block from server memory using (a) in-

line RPC read, that is, the data payload in-lined with thegffect of client caching.In this experiment, we model a
RPC response, (b) direct RPC read, that is, the data payjje client accessing a set of small files synchronously
load transferred by server-initiated RDMA write, and gyer DAFS and ODAFS. The file set size exceeds the
(c) client-initiated ORDMA read. The file cache is con- cjient cache size in all cases. We model such a latency-
figured with a small number of data blocks but with a gensitive workload by configuring the PostMark [19]
large number of headers that can retain remote memorngenchmark for read-only transactions without file cre-
references. In this microbenchmark, a simple applicaztions or deletions. Each read 1/0 is preceded by a file
tion sequentially reads a 1GB file warm in the servergpen and followed by a file close operation. After the
cache tWice, in increments of 4KB. The client cache isﬁrst open of a f”e, which grants the client an open dele-
configured with a 4KB block size and is cold prior to gation, each subsequent open or close for that file is sat-
starting the experiment. isfied locally. We use a 4KB average file size and
configure the client cache with a 4KB block size. The

Response Time (us) client cache hit ratio determines th.e frequency of remote
I/O mechanism : : memory access. By varying the size of the client cache
in mem. | in cache and keeping the file set size constant we progressively
RPC in-line read 128 153 increase its hit ratio from 25% to 50% to 75%. We find
that in all cases ODAFS yields about 34% higher
RPC direct read 144 144 throughput than DAFS (Figure 6), reflecting the differ-
ORDMA read 92 92 ence in response time between ORDMA and direct
RPC. This is because, despite the benefit of client cach-
Table 3. I/O response time with 4KB block size. ing, overall performance is sensitive to the cost of

remote memory accesses. The DAFS server CPU utili-
During the first pass, all I/O requests miss in the clientzation drops from 30% to 25% to 20% as the client
cache, which, in response, initiates remote file accessasache hit ratio improves. However, ODAFS uses no
using either in-line or direct RPC. RPC responses carrgerver CPU after it manages to collect remote memory
remote memory references to file blocks on the servefeferences for the entire server cache, which occurs after
cache. During the second pass, 1/Os still miss in the clithe client has accessed each file at least once.
ent cache. However, this time remote I/O may also be
performed by ORDMA since the client cache managedServer throughput. In this experiment, we show the
to map the entire file on the server after having accesseeffect of per-I/O overhead on server throughput. We
it once during the first pass. Table 3 shows the I/Omodel a multi-client, throughput-intensive workload
response time during the second pass using differerdominated by small I/Os by configuring two clients to
network I/O mechanisms. RPC in-line involves a mem-sequentially read a 1GB file warm in the server cache
ory copy in the client from the communication buffers to twice, using a large block size. For reads larger than the
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