Making a Cloud Provenance-Aware

Kiran-Kumar Muniswamy-Reddy, Peter Macko, and Margo Seltzer
Harvard School of Engineering and Applied Sciences

Abstract

The advent of cloud computing provides a cheap and
convenient mechanism for scientists to share data. The
utility of such data is obviously enhanced when the
provenance of the data is also available. The cloud, while
convenient for storing data, is not designed for storing
and querying provenance. In this paper, we present de-
sirable properties for distributed provenance storage sys-
tems and present design alternatives for storing data and
provenance on Amazon’s popular Web Services plat-
form (AWS). We evaluate the properties satisfied by each
approach and analyze the cost of storing and querying
provenance in each approach.

1 Introduction

Scientific computing in fields such as astronomy,
physics, climate science, etc. is highly data-intensive.
Recently, large-scale scientific computing endeavors re-
quired scientists to acquire and administer large data
repositories [16, 2, 17, 7] and scientists found themselves
having to take on computing challenges in grid comput-
ing and distributed storage. The advent of cloud comput-
ing introduces the possibility to dramatically change this
landscape. The vision of cloud computing for science
is that scientists can focus on their core competencies
(i.e., conducting scientific research) while large, online
service providers focus on their core competency. Not
only does this relegate tasks to the organizations best
equipped to deal with them, it provides more graceful
storage provisioning and growth. Scientists who cannot
predict, apriori, their exact storage requirements can sim-
ply purchase more storage capacity from their providers,
avoiding large initial investments or hard-to-predict step-
wise cost functions. Ultimately, this reduces the per-byte
cost to the user. Further, since clouds are designed to
be highly available, scientists need not build their own
highly available repositories nor worry about backing up
their massive data sets.

The following is an example of this new architecture
for data-intensive science. Data from the US Census
databases are released on the cloud by US Census Bu-
reau [1]. Scientists who wish to analyze this data for
trends can download the data set to their local com-
pute grid, process it, and then upload the results back
to the cloud, easily sharing their results with fellow re-
searchers. In this model, scientists need only enough lo-
cal storage for their current experiments.

Data stored in the cloud has the potential to be a valu-
able shared resource. Its value, however, can be greatly
enhanced if the cloud stores both data and the provenance
of that data. For example, provenance that includes (or
references) the complete ancestry of a data set reveals
the source of the data as well as the exact processing ap-
plied to that source. Imagine that a researcher discovers
that a particular version of a widely-used analysis tool
is flawed. She can identify all data sets affected by the
flawed software by querying the provenance. Similarly,
if the community discovers that all data produced by a
particular piece of hardware is corrupt, the provenance
facilitates mapping that hardware into all affected data
sets. Consider the efforts of one group attempting to
reproduce the results of another research group. If the
reproduction does not yield identical results, comparing
the provenance will shed insight into the differences in
the experiment. Our goal is to design and analyze alter-
natives for incorporating provenance directly into a cloud
computing infrastructure.

Our vision has a parallel in grid computing in that the
grid is designed to process data and has its own meta-
data services [6] that can be used to record provenance.
The grid is different from the cloud as follows. In a grid,
machines are scheduled in a batch mode based on avail-
ability, i.e., if systems are available, then the user can
run his computing, else he has to wait for machines to be
available. The cloud, on the other hand, is designed to be
highly available as resources are created or allocated on
demand. The difference in availability leads to different

fault tolerance and consistency semantics in grid appli-
cations and cloud applications, thus motivating the need
for our work.

We focus our analysis on the cloud computing ser-
vices offered by Amazon Web Services (AWS) as they
are the most mature products on the market and are rea-
sonably well documented in the literature. AWS services
are designed to be highly available and scalable. How-
ever, they sacrifice perfect consistency and provide even-
tual consistency. Eventual consistency means that at any
instant in time, data may be inconsistent across replicas,
but over time, every update will, in fact, propagate to
every replica. Eventual consistency makes it difficult to
provide strong guarantees about provenance and the data
it describes.

Our system model assumes that we use a Provenance
Aware Storage System (PASS) [11] augmented to use
AWS for backend storage. We present three design al-
ternatives for extending the reach of PASS to the cloud.
Our first architecture uses only the Amazon Simple Stor-
age Service (S3). Our second architecture uses both
S3 and Amazon SimpleDB. Our third architecture uses
S3, SimpleDB, and the Amazon Simple Queueing Ser-
vice (SQS). We begin by outlining the requirements of a
provenance-aware cloud and then evaluate each architec-
ture with respect to those requirements. We then analyze
the cost of storing and querying provenance in each ar-
chitecture.

The contributions of the paper are:

1. We make the case for provenance-aware cloud stor-
age and define the required properties of such a sys-
tem.

2. We present three provenance-aware cloud storage
design alternatives all of which build upon Ama-
zon’s S3, evaluating each architecture with respect
to the requirements we established.

3. We compare the three alternatives in terms of stor-
age and query performance.

The rest of the paper is organized as follows. In sec-
tion 2, we provide background on AWS services, PASS,
and discuss our assumed usage model. In section 3, we
discuss requirements for a provenance-aware cloud stor-
age system. In section 4, we discuss three system design
alternatives for constructing a provenance-aware cloud.
In section 5, we analyze the three design alternatives.
We discuss related work in section 6. We conclude in
section 7.

2 Background

In this section, we introduce the Amazon Web Services
(AWS) used in our design and analysis'. We then discuss

PASS and conclude the section by discussing the usage
model that we assume for the rest of the paper.

2.1 Simple Storage Service (S3)

S3 [12] is Amazon’s storage service. It is an object store
where the size of the objects can range from 1 byte to
5GB. Each object is identified by a unique URI. Clients
access S3 objects using either a SOAP- or REST-based
API. The object operations that are relevant to this work
are: PUT, GET, HEAD, COPY, and DELETE. The PUT
operation stores an object on S3, overwriting an object if
it already exists. With each object, clients can store up
to 2KB of metadata, which is also specified as a part of
the PUT operation. A client can retrieve either complete
S3 objects or partial objects (described by a byte range)
via the GET APIL. The HEAD operation retrieves only
the metadata part of an object. The COPY and DELETE
operations, as the names suggest, create copies of objects
or delete objects.

The cost of using S3 is based on the amount of data
transferred to and from S3, the amount of storage space,
and the number of operations performed. For example,
it costs USD 0.15 per GB for the first 50 TB / month of
storage used, USD 0.10 per GB for all data transferred
in, USD 0.17 per GB for the first 10 TB / month for data
transferred out, USD 0.01 for every 1,000 PUT, COPY,
POST, or LIST requests, and USD 0.01 for 10,000 GET
(and other) requests.

Amazon S3, like other AWS components, provides
eventual consistency. If a client performs a GET oper-
ation on object right after a PUT, the client might receive
an older copy of the object as the replica from which
S3 chooses to return the object might not yet have re-
ceived the latest update. If two clients update the same
object concurrently via a PUT, the last PUT operation is
retained. Again, for an ephemeral time after the PUT, a
GET operation might return either of the two writes to
the client as the replica that is chosen to process the GET
might not have the last PUT operation propagated to it.

2.2 SimpleDB

Amazon SimpleDB [13] is a service that provides the
functionality of indexing and querying data. Sim-
pleDB’s data model consists of items that are described
by attribute-value pairs. Items are synonymous to rows
in traditional databases. Each item can have a maxi-
mum of 256 attributes-value pairs and can have mul-
tiple attributes with the same name (for example, an
item can have two phone attributes with different val-
ues). Each attribute name and value can be as large as
1KB. SimpleDB automatically indexes data as it is in-
serted. New data can be inserted into SimpleDB or ex-

isting data can be modified using the PutAttributes op-
eration. SimpleDB provides three primitives for query-
ing data: Query, QueryWithAttributes, and SELECT.
Query returns items that match predicates specified in
the query expression. QueryWithAttributes also returns
the attribute-value pairs associated with the items that
match the predicate. Further, one can also specify a sub-
set of attributes that are to be returned with the results.
SELECT provides functionality similar to QueryWithAt-
tributes, with the main difference being that the queries
are expressed in the standard SQL form. Attributes can
be deleted using a DeleteAttributes call. All data, items
and attribute-value pairs, are stored in a Domain. Each of
the operations that manipulate items must specify the do-
main in which to perform the operations. Amazon pro-
vides REST and SOAP interfaces for these operations.
The pricing model of SimpleDB is based on the amount
of data transferred in and out, the amount of data stored,
and the number of machine hours consumed for perform-
ing operations.

Like S3, SimpleDB provides eventual consistency. An
item inserted might not be returned in a query that is
run immediately after the insert. In addition, SimpleDB
is idempotent, i.e., running PutAttributes multiple times
with the same attributes or running DeleteAttributes mul-
tiple times on the same item or attributes will not gener-
ate an error.

2.3 Simple Queueing Service (SQS)

SQS [15] is a distributed messaging system that allows
users to exchange messages between various distributed
components in their systems. Clients can create queues
that are identified by a URL that is unique among all of
the user’s queues. Clients can enqueue messages using
the SendMessage operation. SQS imposes an 8KB limit
on the size of the message and the characters in the mes-
sage are restricted to Unicode characters. Clients can
receive messages on the queue using ReceiveMessage.
Clients can request a maximum of 10 messages to be re-
turned as a result of a ReceiveMessage. Messages can
be deleted from the queue using DeleteMessage with a
handle returned on ReceiveMessage. Clients can inter-
act with SQS using either an HTTP or a SOAP interface.
The pricing model of SQS is based on the number of op-
erations, the amount of data transferred in and out, and
the amount of data stored, as in S3.

As all other AWS services, SQS is designed to be
available and scalable and is eventually consistent. SQS
samples a set of machines on a ReceiveMessage, return-
ing only the messages on those machines. The clients
need to repeat these requests until they receive all the
necessary messages. SQS provides a best effort in-order
delivery of messages. SQS provides a GetQueueAt-

tributes:ApproximateNumberOfMessages operation that
allows a client to estimate the approximate number of
messages on a queue. Due to eventual consistency, the
result of this operation is an approximation. Another im-
portant concept is that of the visibility timeout. When a
message is returned to a client via ReceiveMessage, SQS
blocks the message from other clients for a configurable
amount of time. SQS does not delete the message after
delivering a message to a client as there is no guarantee
that the client actually received the message. However,
this leaves the message open for other clients to simulta-
neously process it. In order to prevent such a situation,
SQS blocks the message for a period of time. If the client
processing the message does not call a DeleteMessage
by the end of the visibility timeout, the message is visi-
ble again. Thus SQS ensures that there is only one client
processing a message at a single point of time?.

2.4 PASS

A Provenance-Aware Storage System (PASS) [11] is a
storage system we built that collects provenance for ob-
jects stored on it. PASS observes system calls that appli-
cations make and captures relationships between objects.
For example, when a process issues a read system call,
PASS creates a provenance record stating that the pro-
cess depends upon the file being read. When that pro-
cess then issues a write system call, PASS creates a
record stating that the written file depends upon the pro-
cess that wrote it. Further PASS stores data and prove-
nance records together, ensuring that the provenance is
consistent with the data. Since persistent objects (files)
are related to each other via data flows through transient
objects like processes and pipes, PASS also records the
provenance of the transient objects. PASS also versions
objects appropriately in order to preserve causality.

2.5 Usage Model

Amazon’s storage service, S3, is appropriate to store
large files that are often read and rarely updated. This
model is not appropriate for applications that concur-
rently update data, and precludes some of the problems
associated with distributed systems and provenance sys-
tems (such as provenance cycles [4]). However, multiple
clients can concurrently update different objects at the
same time.

Amazon hosts public data sets for free as Amazon
Elastic Block Store (Amazon EBS) snapshots [1]. EBS
is a service that provides block level storage volumes
for use with Amazon’s virtual machine service (Elastic
Compute Cloud (EC2)). The disadvantage of using EBS
volumes is that users have to clone the whole EBS vol-
ume even if they are interested only in a part of the data

set. Making data available as S3 objects allows users
to selectively copy the data they need. Furthermore, the
EBS sharing model requires that users be able to access
the file system format that was used in the EBS volume.
S3 objects are more convenient for sharing as users can
download data using HTTP. Hence, we assume that users
share data directly as S3 objects. The discussions in the
rest of the paper assume the model that we have estab-
lished here.

3 Provenance System Properties

There are three properties of provenance systems that
make their provenance truly useful. In this section, we
introduce these properties and explain their value.

1. Read Correctness This property states that a read
must return objects that have consistent provenance.
A system should not return an object without prove-
nance or with an out-dated provenance. This prop-
erty allows users to verify the provenance of an ob-
ject before using it. For example, a scientist might
know that data sets generated from a particular ex-
periment run were flawed. Before using any data,
the scientist should verify that the data is not from
the flawed run. Read Correctness in turn requires
two sub-properties to hold: atomicity and consis-
tency.

(a) Atomicity The atomicity property states that
provenance must be recorded atomically with
the data it describes, i.e., both data and prove-
nance should be recorded or neither should be
recorded. Protocols that are not designed to
be atomic violate the read correctness prop-
erty. Consider the case where a client records
data and crashes before recording the prove-
nance. This violates read correctness property
and may render the data set useless. Now con-
sider the case where a client records prove-
nance and crashes before the data on the server
is updated. This can cause an old version of
data to be interpreted as being a new version
(because the provenance says it is). In current
systems, atomicity is violated because they are
designed to provide either storage or query,
but not both. If we continue to use disparate
systems to store provenance and data, the pro-
tocols must be designed to support atomicity.

(b) Consistency The consistency property states
that data and provenance must match. This
differs from atomicity in that atomicity per-
tains to provenance storage, whereas con-
sistency pertains to provenance and data re-

trieval. For example, consistency can be
violated due to AWS’s eventual consistency
model. If the provenance and data are stored
on different services (say S3 and SimpleDB),
S3 might return an older version of data while
SimpleDB returns the latest provenance (or
vice versa), thus violating consistency. Con-
sistency violation leads to read violations that
can result in a scientist using the wrong data
set.

2. Causal Ordering This property entails that the
provenance and data of an ancestor object must be
recorded in the provenance system. If the prove-
nance of an object refers to an ancestor object and
neither the provenance nor data of the ancestor have
been recorded, then the object is disconnected from
its provenance tree, and its provenance is therefore
incomplete. Causal Ordering violations occur when
the descendant and its provenance are evicted to
persistent store before the ancestor, and the system
crashes before the ancestor’s provenance and data
are recorded. We are designing systems to accept a
weaker form of the property called Eventual Causal
Ordering in which the ancestor object and its prove-
nance might not be available at the same instant that
a descendant becomes persistent, but will eventually
be available.

3. Efficient Query Provenance must be accessible to
users who want to verify properties of their data or
simply be aware of its lineage. Thus, provenance
systems must support efficient query. If a system
stores provenance, but that provenance is not readily
accessible, the provenance is of questionable value.

We consider the three properties described above as re-
quirements. Other properties, for example idempotency
of operations, may become necessary depending on the
system architecture. Some properties are precluded by
the usage model. For example, read correctness also re-
quires isolation to hold. Isolation implies that other pro-
cesses cannot see data in an intermediate state. However,
such scenarios do not arise because our usage model pre-
cludes concurrent access to the same object.

4 Design Alternatives

In this section, we present three architectures that explore
the design space in storing provenance with data in S3.
We start with an architecture that stores data and prove-
nance directly in S3. We then present an architecture that
stores the data in S3 and the provenance in SimpleDB to
allow for efficient provenance query. Our last architec-
ture stores the data in S3 and provenance in SimpleDB,

Clientl Client2 Clientl Client2
Application Application Application Application
Syscall T | Syscall T |
Boundary ' * Boundary v *
PASS PASS PASS PASS

Provenance+Dat\ ﬁenance+Data

Figure 1: PASS with S3 as the storage substrate

but uses SQS to provide read correctness. For each archi-
tecture, we present a protocol that is used to store prove-
nance and discuss the advantages and limitations of stor-
ing provenance using the architecture.

4.1 Standalone S3

Architecture: Figure 1 shows the S3-only architec-
ture. We have a PASS system using S3 as the storage
layer, storing both provenance and data. Each PASS file
maps to an S3 object. We store an object’s provenance as
S3 metadata. We mirror the file system in a local cache
directory, reducing traffic to S3. We also cache prove-
nance locally in a file hidden from the user. When the
application issues a close on a file, we send both the
file and its provenance to S3.

We considered storing the provenance in a separate
database (like MySQL or Berkeley DB) that exists on
S3 instead of storing provenance records with each indi-
vidual object. We discarded this approach for the follow-
ing reason. For this approach to be feasible, we need to
cache the provenance database at the client, else we need
to download (using GET) and upload (using PUT) the
entire database to and from the client for all provenance
database updates. However, caching the database at the
client is infeasible as the database can become corrupt if
two clients pick up the same version of the database and
update it independently.

Protocol: The protocol for storing provenance and
data is simple. On a file close, we perform the follow-
ing operations:

1. Read the data cache file and provenance cache file
of the object.

2. Convert the provenance into attribute value pairs, as
required by S3.

— Data
*== Provenance

SimpleDB

Figure 2: PASS layered on S3 and SimpleDB. Data is
stored in S3 and provenance in SimpleDB.

3. Initiate a PUT call that has as arguments, the object,
the size of the object, and the provenance attribute
value pairs.

Discussion: This architecture provides read correct-
ness and maintains eventual causal ordering. Since the
data and provenance are shipped to S3 using a single
PUT call, provenance is stored atomically with the data,
i.e., either both provenance and data are stored or they
are both not stored. Provenance is consistent with data as
the data and provenance are stored together using a sin-
gle PUT call. This ensures read correctness. The even-
tual causal ordering is maintained as long as we send all
the ancestors of an object and their provenance to the
S3 before sending the provenance of an object to S3.
Querying, however, can be inefficient. The only way to
read provenance is by issuing a HEAD call on an ob-
ject. However, if we do not know the exact object whose
provenance we seek, then we might need to iterate over
the provenance of every object in the repository, which
is so inefficient as to be impractical. We are also limited
by S3’s 2KB metadata limit. This is a serious limitation
in environments where the provenance of a process ex-
ceeds the 2KB limit (which we see regularly). We might
address this problem by storing provenance overflowing
the 2KB limit in separate S3 objects. However, this intro-
duces read correctness challenges and only worsens the
query problem.

4.2 S3 with SimpleDB

Architecture: Figure 2 shows the combined S3 and
SimpleDB architecture. PASS stores each file as an
S3 object and sends the corresponding provenance to
SimpleDB. We considered storing both the data and
the provenance in SimpleDB, but that is not feasible,
because SimpleDB values are limited to 1 KB. The

provenance of each version of a file is stored as a
SimpleDB item. The item name is the concatenation
of the object name and the version. Each provenance
record is converted to an attribute-value pair that
describes the item. For example, if version 2 of an
object named foo has two provenance records (input,
bar:2) and (type, file). This is represented as follows:
(ItemName=foo_2;attribute-name=input,attribute-
value=bar:2;attribute-name=type,attribute-value=file).
We store any provenance values larger than the 1KB
SimpleDB limit as separate S3 objects, referenced from
SimpleDB.

As in the previous architecture, we cache files and the
provenance in a local cache directory. When the applica-
tion issues a close on a file, we send the data to S3 and
the provenance to SimpleDB. Apart from the provenance
that has been collected by PASS, we store one additional
record in SimpleDB: the MD5sum of the file contents
concatenated with a nonce (the nonce is typically the file
version). We use the MD5sum and the nonce to ensure
consistency of the provenance and data.

Protocol:
performed:

On a file close, the following operations are

1. Read the data cache file and provenance cache file
of the object.

2. Convert each provenance record into attribute-value
pairs and construct one big provenance record for
the file. If any of the values are larger than the
1KB limit that SimpleDB imposes, store the object
in S3 and update the attribute-value pair to contain
a pointer to the S3 object. We add an additional
attribute-value pair that has the MD5sum of the data
file concatenated with a nonce.

3. Store the record in SimpleDB by issuing a PutAt-
tributes call. Since SimpleDB allows us to store
only 100 attributes per call, we might have to issue
multiple PutAttributes calls to store all the prove-
nance.

4. Initiate a PUT call to S3 that stores the object. In
the same PUT call, set as metadata, the nonce that
was used in computing the MDS5sum record stored
in SimpleDB.

Discussion: This architecture provides efficient prove-
nance queries and maintains causal ordering. It however,
does not provide read correctness. Efficient provenance
query results from: First, our ability to retrieve prove-
nance at finer granularity from SimpleDB. Second, Sim-
pleDB’s automatic indexing of the records stored in it.

Clientl Client2

Application Application
Syscall T I AI
Boundary v *

PASS

Provenahsg+Data Provenange+Data

Client2 WAL Queue

[T]]

Clientl WAL Queue

—— Data

=== Provenance

Figure 3: PASS layered on S3 and SimpleDB. SQS is
used to provide atomicity.

This architecture maintains eventual causal ordering, in
the same manner as the previous architecture.

However, this architecture violates Read correctness
as there is no mechanism to maintain atomicity, although
we do retain consistency via the MD5sums. Due to even-
tual consistency, we can encounter a scenario in which
SimpleDB returns old versions of provenance when S3
returns more recent data (and vice versa). We can de-
tect this, however, using the MDSsum provenance value
in the database, comparing it to the MDS5sum of the data
and the nonce. If they are not consistent, we can reissue
the query, retrieving data from S3 until we get consis-
tent provenance and data. The MD5sum of the data itself
(without the nonce) is sufficient to detect inconsistency
in most cases, except when a file is overwritten with the
same data. In such cases, new provenance will be gen-
erated but the MD5sum of the data will be the same as
before.

However, there are scenarios that violate atomicity.
Consider the following scenario: A client crashes after
storing the provenance of object on SimpleDB but be-
fore storing the object on S3. Clearly atomicity is vio-
lated here as provenance is recorded but not the data. On
restart, the client could recover by scanning SimpleDB
for “orphan provenance” and remove provenance of ob-
jects that do not exist. However, this is an inelegant solu-
tion as it involves a scan of the entire SimpleDB domain
to clean up the orphans. The next architecture offers a
better solution.

4.3 S3 with SimpleDB and SQS

Architecture: Figure 3 shows our final architecture.
As in the previous architecture, we store data in S3 and
provenance in SimpleDB. We retain the MDSsum and
nonce from the previous architecture. We also cache files
and the provenance in a local cache directory. This archi-
tecture differs from the previous one in that it uses SQS
queues and transactions to ensure atomicity and as a re-
sult, read consistency. Each client has an SQS queue that
it uses as a write-ahead log (WAL). The technique of us-
ing SQS queues to ensure atomicity is inspired by the
work of Branthner et. al. [3] that explores using S3 as a
backend for a database.

The basic protocol is as follows: When an application
at the client issues a close on a file, the client starts
a transaction, recording the data and provenance on the
WAL queue. We tag each record with the transaction id.
Once the client successfully records provenance and data
on the WAL queue, it issues a commit record to indicate
that it has successfully completed the transaction.

A separate daemon on the client, the commit daemon,
reads the log records from transactions that have a com-
mit record and pushes them to S3 and SimpleDB appro-
priately. After transmitting all the operations for a trans-
action, the commit daemon deletes the log records in the
WAL queue. If the client crashes before it can log all the
information to the WAL queue, i.e., before it can commit
a transaction, the commit daemon ignores these records.

The messages on SQS cannot exceed 8KB, hence
we cannot directly record large data items on the WAL
queue. We could split large objects into 8KB chunks
and store them on the WAL log, but this is quite ineffi-
cient. Instead, we store the file as a temporary S3 object,
recording a pointer to the temporary object in the WAL
queue. The commit daemon, while processing the WAL
queue entries, copies the temporary object to its correct
name and then deletes the temporary file. Once items are
in the WAL queue, they will eventually be stored in S3 or
SimpleDB, so the order in which we process the records
does not matter.

Another important property is idempotency. That is,
the result does not change even if the operation exe-
cutes multiple times. Idempotency is important because
a commit daemon might process transactions whose
records have already been stored on S3/SimpleDB. For
example, a commit daemon might crash after storing the
data and provenance but before deleting the messages
from the WAL queue. Upon system restart, the commit
daemon will process these records once again, since they
are still on the WAL queue. Re-issuing those operations
will not cause any errors as S3 and SimpleDB operations
are idempotent.

It is important to COPY the temporary objects to their

permanent locations before deleting them to maintain
idempotency. If we instead rename the temporary ob-
ject to its permanent name and the client crashes before
it can process provenance records from the WAL queue,
it cannot re-run the operations on system restart. Finally,
we should garbage collect state left over by uncommitted
transactions. SQS automatically deletes messages older
than four days, so we do not need to perform any ad-
ditional reclamation (unless the 4-day window becomes
too large). However, the temporary objects that have
been stored on S3, must be explicitly removed if they
belong to uncommitted transactions. We use a cleaner
daemon to remove temporary objects that have not been
accessed for 4 days.

Protocol: We divide the protocol into two main phases:
log and commit.

1. Log The log phase begins when an application is-
sues a close on a file.

(a) Read the data cache file and provenance cache
file of the object.

(b) Compute the number of records that will be
necessary to log both the provenance and the
data. Create a transaction, allocate it a unique
transaction id, and record a begin record that
has both the id and the number of records in
the transaction on the WAL queue.

(c) Store a copy of the data file with a tempo-
rary name on S3. Enqueue a record that has
a pointer to this temporary object. The record
is tagged with the transaction id and a nonce.
We use the nonce in conjunction with the data
to compute an MD5sum that is used to verify
consistency between the data and provenance.

(d) Group the provenance records into chunks of
8KB and store each of these groups as log
records on WAL queue. Tag each of these
records with the transaction id. Enqueue
an additional provenance record that has the
MD5sum of the data and the nonce.

(e) Finally, we tag the commit record with the
transaction id and enqueue it.

2. Commit

The commit daemon executes the commit phase.
The daemon periodically monitors the WAL queue
for the number of messages using the GerQueueAt-
tributes:ApproximateNumberOfMessages call.
Once it exceeds a threshold, the daemon executes
the commit phase.

(a) Receive as many messages from WAL queue
as possible using the SQS ReceiveMessage
method. Assemble messages into transac-
tions. Due to SQS’s eventual consistency,
there may be times where the daemon receives
the commit record of a transaction but does
not receive all rest of the records for the trans-
action. In those cases, we need to execute Re-
ceiveMessage until we receive all the missing
pieces.

(b) For data records, execute an S3 COPY oper-
ation and copy the object from its temporary
name to its real name. Update the MDS5sum of
the data and nonce as part of the COPY.

(c) Store the provenance records in SimpleDB by
issuing a PutAttributes call. Since SimpleDB
allows us to store only 100 attributes per call,
we might have to issue multiple PutAttributes
calls to store all the provenance.

(d) Delete all the messages related to the trans-
action from the WAL queue using the SQS
DeleteMessage method. Also delete the tem-
porary copy of the data file using the S3
DELETE method.

Discussion: The architecture provides read correct-
ness, causal ordering, and allows for queries to be exe-
cuted efficiently. We maintain consistency by using the
MD5sum of the data and the nonce, as in the previous
architecture. Queries are efficient as SimpleDB provides
rapid, indexed lookup. Similar to the previous architec-
tures, this architecture maintains eventual causal order-
ing.

Table 1 presents a summary of the provenance proper-
ties satisfied by each of the design alternatives.

5 Analysis

In this section, we estimate the cost of storing and query-
ing provenance in each of the three architectures. We
generated provenance for three workloads on a PASS
system: a Linux compile, a Blast workload [11], and the
Provenance Challenge Workload [10]. We use the com-
bined provenance generated from all three benchmarks
as one single dataset for the rest of the discussion. Us-
ing the provenance generated, we extrapolate the quan-
tity of data and provenance that would be transferred to
AWS in the three alternatives and the number of bytes
that would be transferred out of AWS for three repre-
sentative queries. These numbers provide a reasonable
basis for comparison as Amazon charges for its services
based on the amount of data transferred in and out, the

amount of data stored, and the number of operations per-
formed. SimpleDB currently does not charge for num-
ber of operations but instead charges based on the num-
ber of machine hours that were consumed. To compare
the architectures using uniform metrics, we estimate the
number of operations performed on SimpleDB instead of
machine hours consumed in our comparisons.

Table 2 shows storage comparison estimates. We esti-
mate the amount of storage space required to store prove-
nance in S3 by converting each provenance record gen-
erated by PASS into the S3 metadata format. The prove-
nance takes up 121.8MB (9.3% overhead over raw data).
In general, storing provenance in S3 requires no addi-
tional operations as we store provenance as part of the
data PUT operation. The only exception occurs when
provenance grows larger than S3’s 2KB metadata limit.
To avoid this, we store any record larger than 1KB in a
separate S3 object. There are 24,952 such records that
result in an equal number of additional PUT operations.

We estimate the space required for the second archi-
tecture (S3+SimpleDB) by converting the provenance
records into the SimpleDB data model format. We store
in each SimpleDB item, all the provenance of an ob-
ject version using attribute value pairs. SimpleDB lim-
its values to 1KB, so we store any objects larger than
this in a separate object in S3. This architecture requires
177.9MB for provenance storage. We compute the num-
ber of operations to store provenance as:

NSimpleDBitems + Nprovrecs>1KB

where N stands for number. The number of operations
is less than the total number of provenance records, as
all the provenance records of a version are stored as at-
tributes of one item, using a single PutAttributes call.

The estimate for space required for the last scheme
(S3+SQS+SimpleDB) is given by the following equa-
tion:

2 x S5Qs + SsimpleDB

where S stands for storage space. We store each prove-
nance record once in SQS, then read it once from SQS for
processing and storage in SimpleDB. The size of prove-
nance stored in SQS is the same as the size of provenance
stored in the first architecture (S3). The fact that we have
to first store data in a temporary file and then copy the
data over to its real name does not impose any data over-
head as the COPY operation is not billed for data trans-
fer.

We estimate the number of operations required to store
provenance in this scheme as follows: First, we have to
store each object as a temporary name and then copy it to
the final name, resulting in 2 x N (S3o0bjects) operations.
We store provenance records larger than 1KB as separate

Architecture Read Correctness Causal Ordering | Efficient Query
Atomicity | Consistency
S3 v v v x
S3+SimpleDB v v 4
S3+SimpleDB+SQS v v v 4

Table 1: Properties Comparison. A check mark indicates that the property is supported, otherwise it is not.

Raw S3 S3+SimpleDB S3+SimpleDB+SQS
Data | 1.27GB | 121.8MB (9.3%) | 167.8MB (13.6%) | 421.4MB (32.2%)
ops | 31,180 24,952 (0.8x) 168,514 (5.4x) 231,287 (7.41x)

Table 2: Storage cost comparison. The Raw column shows the amount of data that will be stored in S3 and number of ops that
will be needed to store the data in S3 without any provenance. The other columns show the amount of space that will be occupied
by provenance and the estimated number of ops required to store the provenance. We show in brackets, the overhead over the Raw

column for storage and operations.

S3 objects. We store the remaining provenance records
in groups of 8KB in SQS and later read them from SQS,
resulting in 2 X prov/8K B SQS operations. Finally, we
store all these records in SimpleDB. Hence, the number
of operations required to store provenance is given by:

provsize

7] +
8KB

NSianleDBitems + Nprovrecs> 1KB

2 % [NS30bj€CtS

The results indicate that all the properties can be sat-
isfied at a reasonable space overhead of 32% (22.9%
over the first architecture). At first blush, the number
of operations seems excessive. However, operations are
much cheaper (in USD) than storage in the AWS pricing
model.

Query S3 SimpleDB
Data ops Data ops
Q.1 | 121.8MB | 56,132 | 51.24MB | 71,825
Q.2 | 121.8MB | 56,132 | 2.8KB 6
Q.3 | 121.8MB | 56,132 | 13.8KB 31

Table 3: Query comparison. The data column shows the esti-
mate of the amount of data returned by executing the queries.
The ops column shows the number of operations estimated to
be executed to return the results

Table 3 shows the query results. The query results are
the same for the last two architectures (as they both query
SimpleDB), hence we omit the results for the third archi-
tecture. We show results for the following three queries.

Q.1: Given an object and version, retrieve the provenance
of that object version. The table shows the result for
performing the query Q.1 on all objects. We chose
to perform the query on all objects as the query re-
sults for one object are insufficient to differentiate
the two methods.

Q.2: Find all the files there were outputs of blast.
Q.3: Find all the descendants of files derived from blast.

The three queries represent varying levels of complex-
ity. In Q.1, we already know the object and therefore,
the query requires only a lookup on the object (filtering
out unnecessary information). In Q.2, we do not know
the object, so we need to lookup all objects that satisfy
a given property. In Q.3, we need to lookup all files that
satisfy a property and then try to find the descendants of
such a file.

Q.1 is an easy query for both S3 and SimpleDB. Since
we ran the query on all objects, S3 has to effectively
retrieve the metadata of all objects in the store. Sim-
pleDB can be more selective and retrieve only the perti-
nent items. SimpleDB, however, needs to execute around
72K operations to retrieve the items. This is because
there is no way for SimpleDB to generalize the query
and needs to issue one query per item.

Q.2 is executed in two phases: First, retrieve all ob-
jects that correspond to instances of blast. Second, re-
trieve all objects that have a blast object in their ancestry.
For each phase, S3 has to scan the provenance all objects
as it has no search capabilities (the second phase can,
of course, be executed from a cache). SimpleDB does
much better as it only needs to execute one query cor-
responding to each phase. First, execute a QueryWith-
Attributes to retrieve all objects that are blast instances.
Then execute a second QueryWithAttributes to retrieve
all objects that have as ancestor, objects in the result of
the first query. Thus, SimpleDB is much more selective
in terms of the objects it needs to lookup.

For Q.3, S3 is inefficient as in Q.2. SimpleDB per-
forms worse than in Q.2 as it does not support recur-
sive queries or stored procedures. Hence, for ancestry
queries, it has to retrieve each item with a QueryWith-
Attributes, then examine each item for its ancestors and

then lookup further ancestors. Despite this limitation,
SimpleDB performs an order of magnitude better than
S3 for Q.3.

In summary, maintaining all the properties discussed
in section 3 imposes a reasonable overhead for storage
and proves to be extremely efficient for queries.

6 Related Work

Several prior research projects have explored the area of
capturing provenance in workflow-based and grid com-
puting [14, 9, 8]. The prior work is quite different from
that presented here in that it assumes the ability to con-
trol and alter the components in the system, while we
are developing a provenance solution atop an infrastruc-
ture over which we have no control. Additionally, with
the exception of recent work on provenance store failure
analysis [5], previous work does not consider provenance
collection in the face of failure. Since we are presenting
designs that build atop highly available and reliable com-
ponents, our system is fault tolerant.

7 Conclusions and Future Work

We have identified the properties that need to be satis-
fied for storing provenance in the cloud: read correct-
ness, causal ordering, and efficient query. We presented
various design and protocols for storing provenance and
data on the Amazon cloud. We analyzed the different ar-
chitectures using bandwidth and storage costs. Our anal-
ysis show that the architecture satisfying all the proper-
ties poses a reasonable storage overhead compared to a
strawman architecture (22.9%) while performing orders
of magnitude better on the query overhead.

We are currently engaged in implementing the alter-
natives to confirm the conclusions of our analysis. Fur-
thermore, while the impact of the extra operations on
the cost — in terms of USD is low, a prototype will al-
low us to measure the impact of the extra operations on
elapsed time. AWS is currently agnostic of the metadata.
The provenance stored with the data presents AWS cloud
with many hints about the application storing the data. In
the future, we plan to investigate how a cloud might take
advantage of this provenance.

References

[1] Public data sets on Amazon Web Services (AWS). http://
aws.amazon.com/publicdatasets.

[2] BARCLAY, T., GRAY, J., AND CHONG, W. Terraserver bricks -
high availability cluster alternative. Tech. rep., 2004. MSR-TR-
2004-107.

[3] BRANTNER, M., FLORESCU, D., GRAF, D., KOSSMANN, D.,
AND KRASKA, T. Building a database on S3. In SIGMOD ’08:

10

Proceedings of the 2008 ACM SIGMOD international conference
on Management of data (New York, NY, USA, 2008), ACM,
pp. 251-264.

BRAUN, U., GARFINKEL, S., MUNISWAMY-REDDY, K.-K.,
HOLLAND, D. A., AND SELTZER, M. Issues in automatic prove-
nance collection. In Proceedings of the 2006 International Prove-
nance and Annotation Workshop (May 2006).

(4]

[S] CHEN, Z., AND MOREAU, L. Implementation and evaluation of
a protocol for recording process documentation in the presence
of failures. In Proceedings of Second International Provenance

and Annotation Workshop (IPAW’08).

DEELMAN, W., SINGH, G., ATKINSON, M., CHERVENAK, A.,
HONG, N., KESSELMAN, C., PATIL, S., PEARLMAN, L., AND
Su, M. Grid-based metadata services. In Scientific and Statistical
Database Management (SSDBM) (June 2004).

(6]

(71
(8]

Ensembl. http://www.ensembl.org/index.html.

FOSTER, I., VOECKLER, J., WILDE, M., AND ZHAO, Y. The
Virtual Data Grid: A New Model and Architecture for Data-
Intensive Collaboration. In CIDR (Asilomar, CA, Jan. 2003).

GROTH, P., MOREAU, L., AND LUCK, M. Formalising a proto-
col for recording provenance in grids. In Proceedings of the UK
OST e-Science Third All Hands Meeting 2004 (AHM’04) (Not-
tingham, UK, Sept. 2004). Accepted for publication.

(9]

[10] MOREAU, L., ET AL. The First Provenance Challenge. Con-
currency and Computation: Practice and Experience. Published

online. DOI 10.1002/cpe.1233, April 2008.

MUNISWAMY-REDDY, K.-K., HOLLAND, D. A., BRAUN, U.,
AND SELTZER, M. Provenance-aware storage systems. In Pro-
ceedings of the 2006 USENIX Annual Technical Conference.

[11]

[12] Amazon Simple Storage Service (Amazon S3). http://aws.

amazon.com/s3.

Amazon SimpleDB.
simpledb.

[13] http://aws.amazon.com/

[14] SIMMHAN, Y. L., PLALE, B., AND GANNON, D. A framework
for collecting provenance in data-centric scientific workflows. In
ICWS ’06: Proceedings of the IEEE International Conference on

Web Services (2006).

Amazon Simple Queue Service (SQS).
amazon.com/sgs.

[15] http://aws.

[16] SzALAY, A. S., KUNSzT, P. Z., THAKAR, A., GRAY, J.,
SLUTZ, D., AND BRUNNER, R. J. Designing and mining multi-
terabyte astronomy archives: the Sloan Digital Sky Survey. SIG-

MOD Rec. 29, 2 (2000), 451-462.

WLCG Worldwide LHC Computing Grid. http://1lcg.web.
cern.ch/LCG/public.

[17]

Notes

T AWS constantly updates their services with new features. The fea-
tures discussed in the paper are a snapshot from January 2009.

2Thus, messages can also be used as a distributed locking mecha-
nism.

