In Proceedings of the 2000 USENIX Annual Technical Conferé®ae Diego, California), USENIX Association,
2000, pp. 337-350.

Isolation with Flexibility:
A Resource Management Framework for Central Servers

David G. Sullivan, Margo |. Seltzer
Division of Engineering and Applied Sciences
Harvard University, Cambridge, MA 02138

{sullivan,margo}@eecs.harvard.edu

Abstract providing resource principals (users, applications,
Proportional-share resource management is becomirfpreads, etc.) with guaranteed resource rights. For exam-
increasingly important in today’s computing environ- ple, customers who pay Internet service providers to vir-
ments. In particular, the growing use of the computatually host their Web sites can be given rights to shares
tional resources of central service providers argues for af the hosting machine that are commensurate with the
proportional-share approach that allows resource principrices they pay. Service providers who can make such
pals to obtain allocations that reflect their relative guarantees can offer larger resource shares to principals
importance. In such environments, resource principalsvilling to pay a premium for better quality of service.
must be isolated from one another to prevent the activi- Ajthough its full promise is yet to be realized,
ties of one principal from impinging on the resourcethin-client computing is another domain in which pro-
rights of others. However, such isolation limits the flexi- portional-share resource management is desirable.
bility with which resource allocations can be modified Administrators of such systems are often forced to host
to reflect the actual needs of applications. We preserine application per server to provide predictable levels
extensions to the lottery-scheduling resource managest service [Sun98]. Proportional-share techniques
ment framework that increase its flexibility while pre- enaple the consolidation of multiple applications onto a
serving its ability to provide secure isolation. Tosingle server by giving each application a dedicated
demonstrate how this extended framework safely overshare of the machine.
comes the limits imposed by existing proportional-share A system that supports proportional-share resource

schemes, we have implemented a prototype system thﬁ'fanagement mussolateresource principals from each

uses the frdarr(;_evl\(/ol;k tdo ,Z]in%\%e CPU tm;}e, phyls'cgéther, so that a given principal’s resource rights are pro-
memory, and disk bandwidth. We present the results qly .o g trom the activities of other principals. To provide

experiments that evaluate the prototype, and we shoy,q, isolation, a system must necessarily impose limits

that our frameworl-< has.thgl potentlgl t9 enable SEVEON the flexibility with which resource allocations can be
applications to achieve significant gains in performancemodiﬁed_ Such limits work well when the resource

needs of applications are well-known and unchanging,
1 Introduction because a system administrator can assign the appropri-

In managing computational resources, an operating sy§t€ resource share.s- and leave the system to run. Unfortu-
tem must balance a variety of goals, including maximizhately, thes_e conditions frequently do not hold. Even if
ing resource utilization, minimizing latency, and the applications’ cur-rent resource needs are gdequately
providing fairness. The relative importance of thesginderstood, they will typically change over time. For
goals for a particular system depends on the nature &*ample, as a Web site’s working set of frequently
the system and the ways in which it is used. For supe@ccessed documents expands, the site may require an
computers running compute-intensive applications, thdcréasing share of the servgr’s disk bandwidth in order
primary goal may be to maximize throughput, while forto offer reason_able responsiveness. Moreover, it would
personal computers used to enhance a single user’s prlée preferable if system administrators could be freed

ductivity, the chief goal may be to maximize responsive{fom the need to make detailed characterizations of
ness. applications’ resource needs. ldeally, the applications

In today’s computing environments, users increastnemselves should be able to modify their own resource
ingly compete for the resources of server systemdights in response to their needs and the current state of
whether to access central databases or to view contelte System.
on virtually-hosted Web sites. On such systems, fairness In this paper, we present extensions to the lot-
becomes a critical resource-management goal. Propadtery-scheduling resource management framework
tional-share mechanisms allow this goal to be met byWal94, Wal95, Wal96] that allow resource principals to

safely overcome the limits on flexible allocation that
proportional-share frameworks impose for the sake of base

secure isolation. Our extended framework supports both
absolute resource reservatiohard share and propor-
b

tional allocationghat change in size as resource princi-
pals enter and leave the competition for a resosai (

) alice bo
share$. It also introduces a system of access controls to
protect the isolation properties that lottery scheduling
provides. And our framework offers the means for appli- 300|100 33|100| |200|67
cations to modify their own resource rights without
compromising the rights of other resource principals. task1 task2 task3

One of these mechanisms, call¢idket exchanges,
allows applications to coordinate their use of the sysFigure 1. A sample resource hierarchy in which currencies pro-
fem's resources by bartering owsource rights with s sealen efueen he e of diferentusers T hese vl
each other. Our extended framework thereby provides
isolation with mcreas_ed- flexibility the erX|b|I|ty_ to ? Securely Managing Multiple Resources
safely overcome the limits on resource allocation tha
standard proportional-share frameworks enforce. o
We have developed a prototype implementation of2-1 The Original Framework
our framework in the VINO operating system [Sel96] The resource management framework developed for lot-
and have used it, in conjunction with several proportery scheduling [Wal94, Wal95, Wal96] is based on two
tional-share mechanisms, to manage CPU time, physickky abstractiongjcketsandcurrencies Tickets are used
memory, and disk bandwidth. Our experiments demonto encapsulate resource rights. Resource principals
strate that the extended lottery-scheduling frameworkeceive resource rights that are proportional to the num-
enables server applications to achieve improved perforer of tickets that they hold for a resource; changing the
mance under realistic usage scenarios. number of tickets held by a resource principal automati-
This work makes several contributions. First, wecally leads to a change in its resource rights.
extend the lottery-scheduling framework to securely Tickets are issued by currencies, which allow
manage multiple resources, providing both soft and hargesource principals to be grouped together and isolated
resource shares. To our knowledge, our prototype is thgom each other. Principals funded by a currency share
first implementation of a proportional-share frameworkthe resource rights allotted to that currency; currencies
to support both types of shares for multiple resourceghus enable hierarchical resource management.
Second, we point out an important tension between the Each currency effectively maintains its own
conflicting goals of secure isolation and flexible exchange rate with a centiadse currencyand tickets
resource allocation, and we present mechanisms th&om different currencies can be compared by determin-
allow for more flexible allocation while preserving ing their value with respect to the base currency (their
secure isolation. Third, we illustrate the value of a sysbase valug The more tickets a currency issues, the less
tem that can support dynamic adjustments to theach ticket is worth with respect to the base currency,
resource allocations that applications receive. and their total base value can never exceed the value of
In the next section, we review the original lot- the tickets used to back the currency itself.
tery-scheduling framework and describe how we extend The sample currency hierarchy shown in Figure 1
it to securely support proportional sharing of multipleillustrates these concepts. Thebcurrency is funded by
resources. In Section 3, we illustrate how lottery sched100 of the 400 base-currency tickets, and it thus receives
uling (like all proportional-share schemes) imposes bothiights to one-quarter of the resource. These rights are
upper and lower limits on the resource allocations thadivided up by the tasks funded Htpb; for example,
clients can obtain, and we describe the mechanisms thtgtsk3 holds 200 of the 30Mob tickets, and it thus
we use to overcome both sets of limits while maintainteceives rights to two-thirds diobs quarter share, or
ing secure isolation. In Section 4, we describe our protoene-sixth of the total resource rights. In other words,
type implementation of the extended framework,task3s 200 bob tickets have a base value of approxi-
including the scheduling mechanisms that we have chanately 67 (two thirds of 100). thsk2or task3forks off
sen to employ. Section 5 presents experiments designédore tasks, causing tieb currency to issue more tick-
to evaluate the prototype and to test one of our mechats, the value of its tickets will decrease, because its
nisms for flexibly adjusting resource rights. Finally, we resource rights will be shared by a larger number of
discuss related work and summarize our conclusions. tasks. However, the resource rights of processes funded

by other currencies will not be affected. given set of permissions, tHebit indicates whether a
While a lottery-scheduling resource hierarchy typi-user is allowed to fund the currency; théit indicates
cally has a tree-shaped structure like the one shown iwhether a user can “change” the currency by removing

Figure 1, it can more generally take the form of anysome of its funding or destroying it entirely; and ithoé
directed acyclic graph. The lottery-scheduling frame-ndicates if a user is allowed to issue or revoke the cur-
work thus supports a greater variety of configurationgency’s own tickets. Thii collection of bits is compa-
than most other, recently proposed schemes for hierarable to thewx combination in UNIX file modes.

chical resource management (see Section 6). For exam- Table 1 provides more specifics about the permis-
ple, on a system like the one depicted in Figure 1, irsion checks that brokers perform. In most cases, supe-
which each user’s applications are funded by a currencgusers are allowed to override the ordinary permissions
specific to that user, two or more users could pool theichecks. If an attempt to fund a currency would lead to a

resources to support a single application that all of thergycle in the currency graph, the attempt is rejected.
are using (the system developed by Banga et al. [Ban99]

also allows this).

2.2 Resource-Specific Tickets

Although prior implementations of lottery scheduling
have focused exclusively on single resources (primaril
the CPU), the original lottery-scheduling framework
was designed to support multiple resources. Wald
spurger [Wal95] considered two approaches to imple
menting a multi-resource system. In the first approach

tickets can be applied to any resource, allowing resourge

principals to shift tickets from one resource to another a

Table 1. Permission checks performed by brokers

Operation

Permission check

create a currency
y

The caller must match both
the user id and group id
specified for the new
currency?.

destroy a currency

S

The appropriate ¢
(change) bit must be set in
the currency’s mode.

needed, while in the second, tickets are resource-sp

Efund currency A with

cific. Waldspurger favored the former approach becausgtickets issued by

of its greater flexibility and simplicity. However, allow-

ing principals to devote tickets to resources as they see

currency B

The appropriate f(fund) bit
in A’s mode and the
appropriate i (issue) bit in
B’'s mode must be set.

fit violates the insulation properties of currencies,
because it can lead to changes in the total number
tickets applied toward a given resource [Sul99a].

We therefore chose to use resource-specific tickets.
To avoid the overhead of maintaining a separate cu
rency configuration for each resource, we extend curren- a. Note that the user and group ids must be specified—and
cies to encompass all of the resources being managedt_herefore checked—because superusers can create curren-
Concretely, this means that most pieces of currency state”'®S hat have ids other than their own.
are maintained as arrays indexed by resource type. Simi-
larly, many currency-related operations take a parametes-4 Hard and Soft Resource Shares
that specifies the resource type. The standard lottery-scheduling framework was prima-

rily designed to supporsoft resource shares whose

2.3 Currency Brokers absolute value may change over time as principals enter

For the lottery-scheduling framework to be secure in £1d leave the competition for the resource. However,
multi-user setting, a system of access controls ard/aldspurger and Weihl pointed out that absolbtrd
needed. We encapsulate these controlsbrokerasso- ~ '€source .s.hares can be supported using Fhe same frame-
ciated with each currency. A broker stores the owner anork by fixing the total pumber of tickets issued by t_he
group of the user who created the currency, along with §YStem [Wal96]. In particular, they proposed specifying
UNIX-style mode specifying who may perform various 1ard shares by issuing tickets fronhard currencythat
operations on the currency. Before these operations gfaaintains a fixed exchange rate with the base currency.

carried out, the broker verifies that the current threadVhen this hard currency issues additional tickets, some
belongs to a user with the requisite permissions. of the funding of other, “soft” currencies is transferred

Like UNIX file modes, currency modes include to the hard currency so that its exchange rate can be

three sets of permissions: one for the currency’s ownefhaintained.
one for the currency’s group, and one for all others. In a

Either the appropriate ¢
(change) bitin A's mode or
the appropriate i (issue) bit
in B's mode must be set.

DItake tickets issued by
currency B away from
currency A

3.1 Problem: Currencies Impose Upper Limits

When a resource principal is funded by a currency other
than the root currency, its resource rights can usually be
increased by giving it extra tickets from that curre'°r1cy.
For example, in Figure Xask2s resource rights could
be boosted by giving it 2000b tickets rather than 100.

However, doubling the tickets held bgsk2 does not
double its resource rights; rathéask2goes from hav-
| allll B][l ¢ |l ing one-third of thebob currency’s overall resource
Figure 2: Offering Hard Shares of a Currency’s Resource r!ghts (a base value of 33) to_ having Or_‘e'half of those
Rights. The bob currency issues a hard ticket to task D repre- rights (a base value of 50). This smaller increase reflects

senting a fixed 20% (200/1000) _of bob's resource rights. As a the fact that issuing additionddob tickets decreases
result, a special currency (soft_tix) is created and used to fund thei | N it h ticket
bob's soft tickets, isolating the hard tickets from changes in the eir value. No matter how many currency tickets a
number of soft tickets. The funding given to the soft_tix currency resource principal receives, the resource rights imparted
is adjusted as needed to ensure that the total number of hard by those tickets cannot exceed the overall rights given to
tickets issued by bob remains fixed at 1000. . . Lo .

the currency itself. This upper limit is essential to pro-

viding isolation. Without it, the resource rights of princi-

In our framework, We.take a slightly _different pals funded by other currencies could be reduced.
approach based on the notion of hard and sekets Despite the need for the upper limits imposed by

and we allow resource principals to obtain_ hard fshareéurrencies, these limits may often be unnecessarily
from any currency. Under our _approach, tlckgts ISSUEEgestrictive. This is especially true on central servers,
by a currency are ordinarioft ticketsthat specify soft because the large number of resource principals that a

shares of the currency’; resource r!ghts._However, WheEerver must accommodate makes it difficult for a single
a currency issuesfard ticketto specify a fixed percent- 4 5cation policy to adequately address their different

age of its resource rights, a separate_ currency is creatgg q dynamically changing resource needs. Instead,
and used to fund the currency’s soft tickets (Fig. 2). The e simple policy for ensuring fairness is likely to be

number of hard tickets used to fund this soft-ticket Cur'used, such as giving users equal resource rights to divide

rency is adjusted as needed to ensure that the total nu, o0y their applications, or allocating resource shares
ber of the currency’s hard tickets remains fixed. based on how much a user has paid.

Our approach requires no extra overhead in the
common case of a currency issuing only soft tickets, an@ 2 Solution: Ticket Exchanges

yet it still allows hard tiCKEtS. to be issyed by any CUpacause certain resources may be more important than
rency. Users could use hard tickets to givean apphcatlpgthers to the performance of an application, applications
a fixed percentage of their resource rights, or to specﬁynay benefit from giving up a fraction of their resource

tr;:erzrchlcal reservatlor;lg '_3 V:;h_'cth ibsglutebsaares fliorpights for one resource in order to receive a larger share
€ base currency are divided Into hard subshares. FOfd ,nather resource. We have therefore developed a

. . i 0
hard ticket to represent a fixed-share reservation of thfhechanism calleticket exchangethat allows applica-

a}c|t(ua| resogrcel, all platf;]s féomkthe root currency 10 thg, s 1 take advantage of their differing resource needs
ticket must involve only hard tickets. by bartering with each other over resource-specific tick-
ets. For example, a CPU-intensive application could

3 Isolation with Greater Flexibility exchange some of its disk tickets for some of the CPU
Currencies, like all mechanisms for providing isolation, tickets of an I/O-intensive application. .
necessarily impose limits on the flexibility with which While ticket exchanges allow principals to obtain

resource allocations can be modified. In the following@dditional resource rights, they do so without compro-

sections, we demonstrate that currencies enforce bofRiISINg the isolation properties of the lottery-scheduling

upperand lower limits on resource allocations. We also framework. As the scenario depicted in Figure 3 illus-

describe the mechanisms that we have developed féates,only the resource rights of principals participating

safely overcome these limits so that applications cafl! @n exchange are affected by it; the resource rights of
obtain allocations that better meet their differing andnOn-participants remain the same.

dynamically changing needs.

2. This is not always the case. If a resource principal is the sole recipi-
1. Note that even the base currency’s soft tickets have a base value tleatt of a currency’s tickets, giving it more tickets from the currency
can change over time as the number of its hard tickets changes. does not affect its resource rights.

Before Exchange:

200 200
B B

After Exchange:

150 . 200
250 : 150 200
Task A Task B Task C

ple, consider two Web sites that are virtually hosted on
the same server. Site A has a small number of frequently
accessed files that it could keep in memory if it had
additional memory tickets for its currency. Site B has a
uniformly accessed working set that is too large to fit in
memory; it would benefit from giving up some of its
currency’s memory tickets for some of As disk tickets.
Applications could also apply economic and deci-
sion-theoretic models to determine, based on informa-

tion about their performance (such as how often they are
scheduled and how many page faults they incur) and the
current state of the system, when to initiate an exchange
and at what rate. This determination could be made by
the application process itself, or by a separas®urce
Ticket exchanges are not, however, guaranteed tRegotiator process that monitors the relevant variables
preserve the actual resousstearesthat non-participants and initiates exchanges on the application’s behalf.
received before the exchange. Because the principaj3esource negotiators are similar to #pmlication man-
involved in an exchange typically make greater use Ofagersproposed by Waldspurger [Wal95].
the resource for which they obtain extra tickets than the Applications are free to cancel exchanges in which
principal who traded the tickets away, resource contenthey are involved. This allows them to take a
tion will likely increase. As a result, non-participants trigl-and-error approach, experimenting with exchange
who previously received larger resource shares thapates until they achieve an acceptable level of perfor-
their tickets guaranteed may see those shares reducefance and adapting their resource usage over time.
For example, if a CPU-intensive process trades some of Applications or their negotiators initiate exchanges
its disk tickets to a process that regularly accesses tmiy sending the appropriate information to a central
disk, those previously inactive disk tickets will suddenlydealer The dealer maintains queues of outstanding
become active, and the disk tickets of other process%(change propOSaB, attempts to match up Comp|emen-
accessing the disk may decline in vafugowever, prin- tary requestsand carries out the resulting exchanges. If
cipals should always receive at least the minimal sharemn exchange request cannot be immediately satisfied,
to which their tickets entitle them. the dealer returns a message that includes any proposals
Ticket exchanges and currencies complement eacwith conflicting exchange rates (e.g., process A requests
other. Exchanges allow for greater flexibility in the face20 CPU tickets for 10 memory tickets, while process B
of the upper limits imposed by currencies, while currentequests 10 memory tickets for 10 CPU tickets). In this
cies insulate processes from the malicious use oivay, an application can decide whether to modify its
exchanges. For example, a process could fork off chilproposed exchange rate and try again for a compromise
dren that use exchanges to give the parent process all @¢al. In environments where isolation is less important,
their tickets. With currencies, however, this tactic wouldthe dealer could be modified to carry out exchanges that
only affect the resource rights of tasks funded by theprocesses propose on the processes themselves (e.g., to
same currency as the malicious process. take away 20 CPU tickets from a process and give it 20
o o memory tickets in return), giving an approach equivalent
3.2.1 Determining and Coordinating Exchanges. , the one suggested by Waldspurger (see Section 2.2).
Ticket exchanges enable applications to coordinate with £ tyre research is needed to develop negotiators

each other in ways that are mutually beneficial and thaf,itapie for a wide variety of applications and environ-

may increase the overall efficiency of the system. Variy,ants. Among the questions that still need to be

ous levels of sophistication could be employed by applizqgressed are: How can a negotiator determine what
cations to determine what types of exchanges they aigchanges are beneficial to its associated process?

willing to make and at what rates of exchange. \yhen should a negotiator accept a trade less desirable
Certain types of resource principals may primarilyhan the one it proposed? Will a system involving

need extra tickets for one particular resource. For eXamMyynamic ticket exchanges be stable (i.e., how can oscil-

latory behavior be avoided)? Can general-purpose nego-

3. When a resource principal temporarily leaves the competition for i5tors be written that avoid the need to craft one for
resource (e.g., when a thread is not performing 1/O), its tickets are

i i,
deactivated As a result, the resource rights of other principals fundedeach appllcatlon. In addition, the central dealer must be

by the same currency or currencies are temporarily increased until tfd€signed to d.eal .fa”’ly with requests that have comple-
principal reenters the competition and its tickets are reactivated. mentary but differing exchange rates.

Figure 3: Ticket Exchanges Insulate Non-Participants. Tasks
A and B exchange tickets. Task C is unaffected, because it still
has one-third of the total of each ticket type.

3.2.2 Carrying Out an ExchangeOnce a complemen-
tary set of exchange requests is found, the funding of the II
resource principals involved must be modified to reflect
the exchange. In a non-hierarchical system with only a 300 100
base currency, this could be accomplished by directly .
modifying the number of tickets that the principals hold | ‘ alice | | | | bob | |
for the resources involved. However, the presence of \
non-base currencies complicates matters, because the [100] [100| | 10]
base value of their tickets can change over time, whereas f ! A
tickets used in exchanges should have a constant value. | | taskll | | I task2| | | I hog | |
To address this problem, we issue four tickets
directly from the base currency: two for the amounts

being exchanged, and tweegatively valuedickets for base

the opposite amounts. For example, if task A trades disk ~_
tickets with a base value of 50 for some of task B’s 9 10
memory tickets with a base value of 20, then A is given LT—I

20 base-currency memory tickets arfd base-currency | | alice | | | | bob ‘ |

disk tickets, and B is given 50 base-currency disk tickets

and-20 base-currency memory tickets. Because sched-

uling and allocation decisions are based on the total base

value of a principal’s backing tickets, the negative tick-

ets reduce the principals’ resource rights by the amount | | task1| | | | task2| |

they have traded away. And because principals cannot

manipulate their own backing tickets, exchanged ticket§igure 4: Currencies Impose Lower Limits. The user bob
ies to lower the priority of hog, a CPU-intensive process, by

: ir
CannOt_ be mBused. (e_.g., to .reduce another Currencyg?’ving it only 10 tickets (top). However, if task2 becomes idle,
allocations). If a principal’s tickets for a resource arehog will still receive all of bob's resource rights. One solution is

temporarily deactivated (see footnote 3), the funding if¢ fund hog directly from the base currency (bottom).
has obtained through exchanges for that resource is tem-

porarily transferred to the principal's other funders to# top). The user would presumably be allowed to
preserve isolation. decrease the number of tickets backing the user currency

An exchange is undone if one of the exchangindtse”v but then other jobs funded by that currency would
principals exits, cancels the exchange, or loses th@e adversely affected when they became runnable.
resource rights that it traded away. This last scenario can] o o
occur if the tickets funding the principal decrease in3-4 Solution: Limited Permission to Issue
value to the point that their base value is less than thBase-Currency Tickets

value of the tickets that the principal gave away. In sucly/pijje upper limits are necessary for providing isolation,
cases, the principal’s total base value for that resourcgyer limits are an undesirable side-effect of isolation.
becomes negative, and the exchange must be revoked.These |imits could be overcome by funding CPU-inten-
o sive applications directly from the base currency (Fig. 4,

3.3 Problem: Currencies Impose Lower limits botton). However, for reasons of security, currency
Currencies can also impose lower limits on resourcaccess controls (Section 2.3) would ordinarily prevent
rights. These limits materialize when only one of theunprivileged users from issuing base-currency tickets.
resource principals funded by a currency is actively To circumvent this restriction, our framework
competing for a resource. In such circumstances, thatllows a user to issue base-currency tickets as long as
principal receivesll of the currency’s resource rights, the total value of currencies owned by that user never
no matter how few tickets have been used to fund it. exceeds some upper bound. In this way, users can give

As a result, currencies make it difficult for lottery up a small amount of their currencies’ funding and then
scheduling to support the semantics of tiee utility issue that same amount from the base currency to fund
found on conventional UNIX systems. For example, aresource-intensive jobs. This approach leaves the user’s
user running a CPU-intensive job may reduce its CPUotal resource rights unchanged (preserving the isolation
funding as a favor to other users. But if the other tasksf other users), and it allows jobs to run at a reduced pri-
funded by the same currency are all idle, the CPU-intenerity without crippling the rest of the user’s applications.
sive job will still get the currency’s full CPU share (Fig. Section 4.6 describes how we implement this policy.

4 Prototype Implementation of the tasks. Users can also create currencies and fund

We have implemented the extended framework ifhem with tickets from their user currency. However,
VINO-0.50 (vww.eecs.harvard.edu/~vino/vino) they cannot increase the funding of their user currency

and we use it to manage CPU time, memory, and disitself, because they do not have permission to issue other

bandwidth. In the following sections, we describe the’currencies’ tickets. Thus, each user’s tasks are securely
key details of our implementation, including the Sched_lsolated from the tasks of other users, and each user has
the same total resource rights.
Other currency-configuration policies could also be
4.1 Threads and Currencies specified. On extensible operating systems like VINO
[Sma98], superusers could safely download specialized

A thread can be thought of as a special type of CUTeNCYo sions of thecid_for_client function (which is

Like all cgrrenmes, threads hold. backing tickets, andalso called when a process' real group id (gid) changes)
they also issue tem.p.oratpansfer tIC.ketSIO threads N o specify arbitrary configuration schemes based on uid
Wh'Ch, they are waiting (sge Sect!on 4.3). By having, gid, as well as alternative access-control policies for
VINO's thread class inherit from its currency class currencies. Approaches that do not involve extensibility

threads can issue and receive fickets using the sa Buld also be employed to accommodate a more limited

methods as non-thread currencies, and other rpetho ﬁnge of possible configurations and access controls.
(e.g., the one that recursively computes a ticket's base

value) can also treat threads and currencies interchangg
ably. Threads also reuse currency data members to ke
track of the tickets that they hold and have issued.
Currencies that are also threads are identified by th A " :
process id of the thread. All other currencies are identi@n active ticket and traversing the runnable queue to find
fied by a unique currency identifier (cid). the thread that holds the ticket. In searching for the win-
ning thread, the system computes the base value of each
thread’s CPU backing tickets. We cache these base val-

es to avoid unnecessary computation, although the

By.default, TE;] systef[m creacggtsfong (t:urrency for eacEached values must be invalidated whenever a change
active user of the system, and it funds Curren= — oeeurs in a currency’s count of active tickets (e.g., when

cies equally from the base currency. Each user’s CUrS, thread starts up, blocks, or exits).

rency in turn funds the tasks of that user. The user Our prototype also uses two other features of the
currencies are created by means of a funCtIcmoriginal lottery-scheduling frameworkgcompensation

cid_for_client() . that is invoked when a process tickets and ticket transfers Compensation tickets are

c_hanges i.tS real user id .(Uid); this function uses a uid tﬁjssued to threads who do not use their full quantum,
cid mapping to determine V¥hICh currency ShOUIO]! bE‘temporarilyinflating their resource rights to give them a
used to fund the process. If no mapping exists for %igher probability of being chosen when they next

g.lvhen user, a:}new curr?ncy tI'S c;eaggd "’?”d funkdead. 'Become runnable. Ticket transfers occur when a thread
either case, the process' existing funding Is revoked an locks attempting to acquire a kernel mutex or to allo-

replaced with fund’mg ffom the. appropriate user CUcate memory. Because the thread is itself a currency (see
rency. Once a user’s login shell is correctly funded, pro

fork h hell tunded by th Section 4.1), it issues a ticket and uses it to fund the
cesses forked by that shell are funded by the SaMfread on which it is waiting (the holder of the mutex or

currency. More generally, child processes are funded b%e pageout daemon), transferring its resource rights to

the issuer of the first ticket in the parent’s list of baCkingthat thread. This can reduce the time that the waiting

tickets fc;]r that resource. . d by th i thread spends blocked, and it prevents priority inversion
Each user currency is owned by the correspondin om occurring. When the thread is made runnable

user and has a currency mode (see Section 2.3) th%ain its transfer tickets are revoked
allows the user to manipulate it using a set of system A number of deterministic algorithms, including

galls added fpr this purpose. A user's tasks rece_zive equg{ride scheduling [Wal95] and EEVDF [Sto96], can also
ticket allocations by default; the user can modify thesg) | used within the lottery-scheduling framework to pro-
allocations and thereby alter the relative resource righr\:;ide increased accuracy and lower response-time vari-

ability for interactive processes. Because our work
4. VINO is written in C++ primarily addresses ways of overcoming the limits that
5. Actually, if a process holds tickets from more than one currency, itfroportional-share frameworks impose on flexible

children should be funded by all of these currencies. We plan to extentesource allocation, the algorithms used are not crucial.
our implementation to deal with this case.

uling and allocation mechanisms that we employ.

.3 Managing CPU Time

e
C;)ur prototype uses the original lottery-scheduling algo-
gthm [Wal94] to schedule the CPU, randomly choosing

4.2 Currency Configuration and Permissions

4.4 Managing Memory 4.5 Managing Disk Bandwidth

Effective proportional-share memory management iOur prototype supports proportional sharing of disk
complicated by the difficulty of determining which pro- bandwidth using the hierarchical YFQ algorithm
cesses are actively competing for memory and by thEBru99b]. YFQ approximates ideal proportional sharing
undesirability of a strict partitioning of memory among by maintaining a virtual time function and per-disk
processes. When scheduling the CPU, threads that ageieues of outstanding disk requests for each resource
blocked are simply ignored and the values of their tick-principal. Each of the queues has an associfitésh

ets are not counted. Our data [Sul99b] indicates that tag that reflects the principal’s past disk activity, its cur-
similar approach to memory management is not effecrent share of the disk, and the length of the request at the
tive. When the system experiences heavy memory presiead of the queue. Requests from queues with the small-
sure, any process that blocks, even momentarily, caest finish tags are forwarded to the device driver in small
lose a large number of pages to the activity of the pagedatches that can be reordered by the driver or device to
out daemon, resulting in erratic paging behavior andachieve better aggregate throughput.

poor throughput. The obvious alternative, namely leav- A principal’s disk tickets are active whenever it has
ing the memory tickets of all processes active at alln outstanding request. To adjust to dynamic changes in
times, is also not viable, because pages belonging to idtee number of active tickets, the base value of a princi-
processes tend to remain in memory indefinitely, reducpal’s disk tickets is recomputed (using cached values if
ing the number of pages available to active processgmossible) whenever a request reaches the head of its
and effectively partitioning the total memory of the sys-queue, and this value is used to compute the queue’s
tem. We have therefore chosen to give memory guaramew finish tag.

tees only to privileged processes that explicitly request

them. Other processes compete for the unreserved pat:6 Emulating Nice

tion of memory, which we ensure comprises at least fiverg support the semantics oice , we created a utility
percent of the memory not wired by the kernel. Whileihat runs with root privileges and executes programs
this approach is limited (e.g., it can easily lead to thrashyith funding from the base currency. This utility reduces
ing), it allows us to experiment with the resourceine funding of the caller's user currency by the amount
trade-offs that applications can make. requested for the new job, thus preserving isolation. The
Processes running as root can obtain hard memolyiility actually creates a new currency for the task, funds
shares from the base currency. Once a currency i§at currency with the requested number of tickets, and
funded with memory tickets, resource principals withyses the new currency’s tickets to fund the task (see Fig.
appropriate permissions can obtain soft or hard suby potton. This level of indirection is needed in case the
shares of its allocation. As with any resource, hardask spawns any children; if so, they will share the fund-
shares are obtained using tleserve() system call ng of the new currency. While this utility would typi-
and soft shares using ttiend() system call. In the ¢qjly pe used to give a small percentage of the CPU to
common case of obtaining a hard share from the baﬂ@ng-running, CPU-intensive jobs, it can be used with
currency, users simply specify the size in kilobytes ofpther resources as well. It successfully overcomes the
the memory share they are requesting. In other casegyyer limits imposed by currencies without employing
users either specify a number of memory tickets (for sof{/|NO's extensibility mechanism, as we had originally
shares) or a percentage of the issuing currency’s shagganned [Sul99a]. The other broker methods could also

(for hard shares). be overridden using similar setuid-root utilities.
To maintain guaranteed shares, we altered the

behavior of VINO's pageout daemon so that pages; 7 Carrying Out Exchanges

owned by processes that have not exceeded their mem-

. ; S discussed in Section 3.2.1, a number of challenging
ory guarantee are not reclaimed. This approach does ng .
questions must be answered before a system that fully

limit processes to their memory shares, but merely o .)
ensures that they can receive at least that amount. In tﬁgpports dynamic ticket exchanges can be built. At this

. int, we have implemented a framework that allows us
absence of memory pressure, processes receive as myc : .
0 easily test the effects of ticket exchanges and thereby
memory as they need. If a process holds soft memo

tickets, the number of pages to which it is entitled cagaIn insight |r.1to the issues qulved. . .

. s We provide two mechanisms for experimenting
change dynamically as the value of its tickets change%v.th exchanaes. First. users with appropriate permis-
The pageout daemon thus needs to compute the current ges. ' pprop P

, .) ions can employ ourreserve() , fund() , and
base value of the processes’ memory tickets; cached val- ; .

. unfund() system calls to implemestatic exchanges,
ues are used whenever possible.

preset modifications to the default ticket allocations.

AL+ A2 ' '
A2 ---oee-
40000 Al 4
z
C
g 32000 | E
3
‘ B ‘ § 24000 - 4
Y
S 16000 | .
1000 [200 11000 2004 3000 g
= gooo | g
[au] (o] [ou]] [[e2] [os] S
0 =k 1 1 1
Figure 5. The CPU funding used for the experiment described 0 50 100 150 200
in Section 5.2. Currencies A and B receive equal funding from T T T -
the base currency, which they divide among the tasks they fund. Bl+B2+Bs -
A2 receives twice the funding of A1, B2 receives twice the fund- 40000 | B1 - i
ing of B1, and B3 has three times the funding of B1. g B3 - -~
§ 32000 | .
Second, we have implemented a simple central dealer in 8
the kernel, and we allow applications to propose g 24000 -
exchanges dynamically using a system call £ 16000
(exch_offer) added for this purpose. When an @& i
. . . . <] =
exchange is carried out, the four tickets involved (see = g, | i
Section 3.2.2) are linked to each other in a circular
gueue so that the exchange can be invalidated when on 0 '0 (I)o/ '0 200
of the principals exits, loses too much funding, or 0 > Timt (sec) 15

retracts the eXChange' If one of the tickets is deleted, aHigure 6: Hierarchical Proportional Sharing of CPU Time.

four of them are, thereby cancelling the exchange. Five CPU-intensive tasks, with funding shown in Figure 5, com-
pete for the CPU. Shown above are the number of iterations
completed by each task as a function of time. Task B3 sleeps

5 Experiments for the first half of the test.

We conducted a number of experiments to test the effec-

tiveness of our extended framework and to assess iﬁsle?lrgj; stjlzler:gst?oer %F;L:{i::tng;fgo?:ﬁg?eg Follﬂlrjize SWEIZE
ability to provide increased flexibility in resource allo- P P ’ 9

cation while preserving secure isolation. In the foIIow-t'meFlgslj'rcekegssirgv\?smtsg“xihber of iterations accom-
ing sections, we first discuss tests of the 9

proportional-share mechanisms that we implementeEIIShed as a function of time for the jobs funded by each

and demonstrate that they provide accurate proporqurrency. In all cases, the relative levels of progress of

tional-share guarantees and effective isolation. We theth:§3 gcfglfessse;sn};gligt;hzlrrer?g:::\;ﬁ/;?:o?m:sIzvfleséu\::lht?\r]e
present experiments that test the impact of ticke ' : ;

- other tasks funded by currency B receive reduced CPU
ts of lications. .
exchanges on two sets of applications shares, while the tasks funded by currency A are unaf-
fected because of the isolation that currencies provide.

5.1 Experimental Setup

All of these experiments were conducted using our modg 3 Providing Memory Shares
ified kernel. We ran it on 200-MHz Pentium Pro pro-
cessor with 128 MB of RAMand a 256-KB L2 cache.
The machine had an Adaptec AHA-2940 SCSI control
ler with a single 2.14-GB Conner CFP2105S hard disk.

The next experiment tests our prototype’s ability to
guarantee fixed shares of physical memory. To create
enough memory pressure to force frequent page recla-
mation, we limited the accessible memory to 8 MB.
. . After subtracting out the pages wired by the kernel as
5.2 PrOV|d!ng Shares .Of CPU Tlme. well as the desired number of free pages in the system,
To test our implementation of the basic lottery-schedulypere were approximately 4.2 MB of memory that prin-
ing framework, we replicated an experiment from thegipa|s could reserve. We ran four concurrent instances of
original lottery-scheduling paper (Wal94, Section 5.5).5 memory-intensive benchmark; each instance repeat-
We ran five concurrent instances of a CPU-intensiveed|y reads random 4-KB portions of the same 16-MB
program (the dhrystone benchmark [Wei84]) for 200fjje into random locations in a 4-MB buffer. This load

800 T

500—|page reservation - 50% reservaticlm —mX--
700 | 350-page reservation ------- 4 3500 L no reservation ------
no reservation no reservation —+—
ti no reservation &
600 - ,) o reservation 7 3000 - no reservation - -m--
E 500 _J : B o 2500 |
2 S
O 400 A A g g 2000
8 ,,,//, Lo N E
j=2) =
$ 300 1500
200 1000 |
100 500
0 1 1 1 0 1 1 1 1
0 50 100 150 200 0 20 40 60 80 100
Time (seconds) Time (seconds)
Figure 7: Providing Hard Memory Shares. Four mem- Figure 8: Providing Proportional Shares of Disk Bandwidth.
ory-intensive tasks run concurrently on a system with approxi- Five I/O-intensive tasks compete for the disk. One of them
mately 4.2 MB of available memory. Two have guaranteed receives a 50% hard share, while the others receive equal fund-
memory shares; two do not. Shown are the number of 4-KB ing from their user’s currency and thus divide up the other 50%
pages owned by each process as a function of time. of the bandwidth. Each iteration corresponds to paging in one

4-KB page of a memory-mapped file.

keeps the pageout daemon running more or less continu- . . .

ously. We gave one of the processes a 2-MB memory-> Ticket ExchangesCPU and Disk Tickets
guarantee (500 pages) and another a 1.4-MB guarantd@ study the impact of ticket exchanges, we first con-
(350 pages); the other two processes ran without mengiucted experiments involving the CPU-intensive dhrys-
ory reservations. Figure 7 shows the actual memorjone benchmark [Wei84] and the I/O-intensive iohog
shares of the tasks as a function of time. The tasks withenchmark (see Section 5.4). In the first set of runs, we
hard shares lose pages only when they own more thagave the benchmarks allocations of 1000 CPU and 1000
their guaranteed shares. The tasks without memory tickdisk tickets from the base currency. We then experi-
ets end up owning much less memory than the ones witiented with a series of one-for-one exchanges in which

guaranteed shares. dhrystone gives iohog disk tickets in exchange for
CPU tickets, wheren = 100, 200,..., 800. To create
5.4 Providing Shares of Disk Bandwidth added competition for the resources—as would typically

We tested our implementation of the YFQ algorithm forbe the case on a central server—we ran additional tasks
proportional-share disk scheduling by running five con-,(One dhrystone and four iohogs) in the background dur-

current instances of an 1/O-intensive benchmark (iohogbng each expe.nment. Each of the extra tasks rgcelved the
that maps a 16-MB file into its address space and;tand_ard funding of 1000 CPU and 1OQO disk tickets.
touches the first byte of each page, causing all of the Figure 9.shows t.he .performance improvements O,f
pages to be brought in from disk. Each copy of thethe exclhangmg ap.pl|cat|ons under each exchange, in
benchmark used a different file. Throughout the testcOMparison tp their performance gnder the original,
each process almost always has one outstanding diggual allocations. Dhrystone benefits from all of the

request. We limited YFQ'’s batch size to 2 for this and a”exchanges, and the degree of its improvement increases

of our tests to approximate strict proportional sharing.as it receives additional CPU tickets. lohog also benefits

We gave one process a 50% hard share of the disk (i.d/0™ all of the exchanges, but the degree of its improve-
one-half of the base currency’s hard disk tickets), Wh”ement decregses for exchanges involving more than 500
the other four tasks received the default number of disIE'Ckets' While d_hrystone does almost no ”,O and can
tickets from their user’'s currency. Figure 8 shows theFhus afford to give up a Iargg number of disk tickets,
number of iterations that each process accomplishég)hog needs to be_scheduled.m o.rder tq make progress,
over the first 100 seconds of the test. Because one taﬁ?d thus the benefit of ex.tra disk tickets is gradually Pﬁ'
has reserved half of the disk, the other four tasks dividﬁet by the loss of CPU .tlckets. H.owever, both applica-
up the remaining bandwidth and effectively get at|or.15 can clearly benefit from thls .type of exchange,
one-eighth share each. Thus, the process with the hay&l’uch takes advan_tage of their differing resource needs.
share makes four times as much progress as the others; We also exammepl the effect of the ticket e.xchang.es
when it has finished touching all 4096 of its file’s pages;,On the non-exchanging tasks. As discussed in Section

the other four have touched approximately 1000 page§'2' the resourceights of these tasks should be pre-

(a 4.1:1 ratio). served, but their actual resoustearesmay be affected.

35 4 W guaranteed dextra

=
@ 30 -
% 25 | Exchanging and Non-Exchanging Dhrystones
>
]
g 201 70
E 15 5 60
5 10 & 0
o «— 40
o 5] 30
o 9
0+ & 20
100 200 300 400 500 600 700 800 & 10
0
Number of Tickets Exchanged
0 100 200 300 400 500 600 700 800
Odhrystone Miohog Number of Tickets Exchanged
Figure 9: Performance Improvements from Ticket
Exchanges. A CPU-intensive task (dhrystone) exchanges disk Exchanging and Non-Exchanging lohogs
tickets for some of the CPU tickets of an I/O-intensive task < 70
(fohog). The improvements are with respect to runs in which S
both tasks receive the default ticket allocations. All results are -% 60
averages of five runs. g 50
Q40
Such an effect is especially likely in these experiments 5
because the two benchmarks rely so heavily on differer © ig
resources. For example, dhrystone uses almost no di: §

bandwidth. As a result, the iohogs obtain more band .
width than they would if the dhrystones were competing
for the disk. However, when the exchanging iohog
receives some of the exchanging dhrystone’s disk tickFigure 10: Resource Shares under Exchanges. ~ Shown are
ets, it obtains rights to a portion of this “extra” band- the CPU shares of the exchanging and non-exchanging dhrys-
) . . tones (top) and the disk-bandwidth shares of the exchanging
width, and the other iohogs thus end up with smalleryng non-exchanging iohogs (bottom). The dark portion of each
bandwidth shares. Exchanges affect the CPU share ofr represents the share guaranteed by the task’s tickets, while
the non-exchanging dhrystone in the same way the full bar indicates its actual share. In each pair, the left bar is
. : .lile exchanging copy, and the right bar is the non-exchanging
However, the non-exchanging processes should still,,, Al results are averages of five runs.
obtain at least the resource shares that they would
receive if all of the tasks were continuously competing .
for both resources. To verify this, we used 5.6 T'Ck.et Exchanges Betwgen I?atabase
getrusage (2) to determine each task's CPU and Applications: Memory and Disk Tickets
disk usage during the first 100 seconds of each run. Thé/e further experimented with ticket exchanges using
results (Fig. 10) show that the minimal resource rightdwo simple database applications that we developed
of the non-exchanging processes are preserved by all oking the Berkeley DB package [Ols99]. Both applica-
the exchanges. The top graph shows the CPU shares tidns emulate a phone-number lookup server that takes a
both the exchanging and non-exchanging dhrystonegjuery and returns a number; when run in automatic
and the bottom graph shows the disk-bandwidth sharesiode, they repeatedly generate random queries and ser-

of the exchanging and non-exchanging iohBgs. Vice them. One of the applicationsnfal) has a 4-MB
Because there are seven tasks running during each tedfitabase with 70,000 entries, while the otibég)(has a

the non_exchanging tasks are each guaranteed raUCh Iarger, 64-MB database Witl‘FOZentries. Both
one-seventh share (approximately 14.3%). Theapplications use a memory-mapped file as a cache.
non_exchanging iohogs are affected less than the We ran these applications ConCUrrently for a series
non_exchanging dhrystone because each of them |03@§ 300-second runs. We disabled the Update thread for
0n|y a portion of the bandwidth gained by the exchang.the sake of ConSiStency, because its periOdiC ﬂUShing of
ing iohog_ In generaL as the number of tasks Competingirty blocks from the applications’ cache files can cause

for a resource increases, the effect of exchanges darde performance variations. To emulate the environ-
non-exchanging tasks should decrease. ment on a busy server, we created added memory pres-

sure—limiting the available memory to 16 MB—and we
ran four iohogs in the background. After subtracting out

6. The four non-exchanging iohogs have approximately equal shareghe pages wired by the kernel and the system'’s free-page
In each case, the graphed value is the smallest share of the four.

0 100 200 300 400 500 600 700 800
Number of Tickets Exchanged

target, there was approximately 11.1 MB of memory

that principals could reserve. Whemallruns alone, it

uses up to 8 MB as a result of double buffering betwee Trading 200 Memory Tickets from Big to Small
the filesystem’s buffer cache and its own 4-MB cache 40

With only 70,000 entries, it makes a large number of
repeated queries, and it should thus benefit from add
tional memory tickets that allow it to cache more of its
database. On the other habiy uses a smaller, 500-KB
cache because it seldom repeats a query; it should ber
fit from more disk tickets.

20

-20

Perc. Improvement
o

-40

We started by giving the applications equal alloca- 100 200 300 400 500 600 700 800
tions: 1000 CPU tickets, 1375 hard memory tickets Base Value of Disk Tickets Exchanged
and 1000 disk tickets, all from the base currency. Wk
then experimented with exchanges in whéahall gives ¢
up some of its disk tickets for some loify's memory Trading 400 Memory Tickets from Big to Smalll
tickets, trying all possible pairs of values from the fol- _ 150
lowing set of exchange amounts: {100, 200, 800}8. é 100
The iohogs had 1000 CPU and 1000 disk tickets each. ¢ 1

While the exchanges in Section 5.5 were preset, th £ 5q |
exchanges in these experiments were proposed and ci E
ried out dynamically using thexch_offer() system S 01
call (see.Section 4.7)$ig proposes the ethgnge as & ;|
soon as it starts running, bamall waits until it has 100 200 300 400 500 600 700 800

made 10,000 queries (approximately one-third of the
way through the run), at which point the exchange is
carried out. By waitingsmall is able to use its original O smell @ big * 10

Q|sk-t|cket aIIocapon to brmg a po_rtlor_1 of its database Trading 700 Memory Tickets from Big to Small
into memory quickly, at which point it can afford to

Base Value of Disk Tickets Exchanged

0 ; 2000 -
exchange some disk tickets for memory tickets. =
Smallbenefits from most of the exchanges, includ- % 1500 1
ing any in which it obtains 400 or more memory tickets. g 1000 -
It fails to benefit when it gains only 100 memory tickets g g |
(not shown), or when it gives away a large number o ; ol
disk tickets for 300 or fewer memory tickets (Fig. 11, @
top). Becausesmall can only fit about three-quarters of -500 -
its database in memory with this allocation, it cannot 100 200 300 400 500 600 700 800

afford to give away a large number of disk tickets. Wher
smallobtains 700 or 800 memory tickets, it can hold all
of its database in memory, and it thus sees performandegure 11. Results of exchanges in which an application with a

i ; i like. large working set (big) exchanges memory tickets for some of
g"?"ns of OYer 1000 percent (Fig. Tiottor). .Blg “k.e the disk tickets of a similar application with a small working set
wise pen_eﬂts frpm mOSt.Of the exchanges, including anYsmajy. The graphed changes compare the number of requests
in which it obtains disk tickets worth 600 or more. serviced in a 100-s interval after the exchange has occurred

It is interesting to note that these applications Can-With the requests serviced during the same interval with no
exchange. Results are averages of at least five runs. There is a

r?Ot simply specify an eXChang.atio’ such as two disk different vertical scale for each graph, and the values for big in
tickets for every one memory ticket, because what conthe third graph are scaled by 10 to make them more visible.

stitutes an acceptable ratio depends on the number §ee related work [Sul99b] for graphs of the other exchanges.
tickets being exchanged. For exampmall should not
accept a ratio of 2 disk for 1 memory if only 100 or 200 memory tickets are offered, but it should accept
exchanges with this ratio to obtain 300 or more memory

7. Eachhard memory ticket from the base currency represents onéleEtS' More generally, What constltut.es an acgeptaple
page of physical memory, so 1375 tickets confer a 5.5-MB reservatior£Xchange depends heavily on the environment in which

8. Because these exchanges were carried out by the kernel, the valtére tasks are running. For example, because tasks need

given represent thease valueof the tickets exchanged, whereas the 1o wait until a synchronous /10 completes before
values given in Section 5.5 are tigmberof soft tickets exchanged.

Base Value of Disk Tickets Exchanged

enqueueing a new one, they receive at most 50% of th#escribed in Sections 3.1 and 3.3. Principals restricted to
bandwidth in the absence of prefetching. Thereforea particular activity, reservation domain, SPU, or
without extra tasks competing for the digkg cannot resource container cannot obtain more than their group’s
benefit from extra disk tickets, because it alreadyoverall resource rights. If only one principal in a group
obtains 50% of the disk by default. Applications likg is actively competing for a reserved resource, it will
will need to use negotiators that can assess the currerdgceive the entire reservation, even if it would be prefer-

system conditions before proposing an exchange. able for it to receive less than that amount. Mechanisms
like ticket exchanges would be needed to allow these
6 Related Work frameworks to provide more flexible resource allocation

-) while preserving secure isolation.
In addition to lottery scheduling, other frameworks can Verghese et al.s work on SPUs explicitly addresses

be used to provide proportional-share m‘j‘”ag?f_“em Ghe need to provide both secure isolation and flexible
multiple resources. In particular, Rialto'activities 5 qcation. However, their system starts by giving abso-

[Jon97], Eclipse’s reservation domains [Bru98, |t resource shares to each SPU, and it gains added
Bru99a], Verghese et al.Software Performance Units qeyinility by dividing unused portions of these shares

(SPUs)[Ver98], and Banga et al.eesource containers ,mqng 'spus that need additional resources. The origi-

[Ban99] function similarly to currencies in their ability 5 ottery-scheduling framework naturally supports this
to isolate resource principals from each other. - type of resource sharing by deactivating the tickets of
Reservation domaln's and resource containers als@|e tasks. Our extended framework provides added flex-
share lottery scheduling’s ability to suppo_rt h'er"".rCh'Calibility through ticket exchanges and a utility that emu-
resource management. However, the hierarchies SUpsies the semantics ofce. One advantage of SPUs is
ported by reservation domains are limited 10 &4t they were designed for use with shared-memory
tree-shaped structure in which the resource shares gf tiprocessors. Extending the lottery-scheduling
non-leaf domains are divided among their children. Ao ework for use with SMPs remains future work.
discussed in _Section 2.1, lottery scheduling allows — iher systems have allowed applications to negoti-
resource principals to be funded by more than one Culye thejr resource usage with the operating system
rency and to thus share the resource rights of multiplgy,n95 Nob97]. Our extended lottery-scheduling frame-
currencies. Resource containers similarly allow thread§,, i |ets applications coordinate their resource usage
to be multiplexed over several containers and to receivgii, each otheras well as with the system as a whole.
their combined allocations.) Besides Waldspurger’'s own prototypes, others have
Moreover, most of these alternative frameworksjmhiemented portions of the lottery-scheduling frame-
only support hard shares; resource principals that lack gqr [Arp97, Nie97]. Petrou et al. [Pet99] retrofitted
reservation either share the remaining CPU capacityyiery scheduling into FreeBSD to schedule the CPU,
equally (as in Rialto and Eclipse) or are scheduledienging the framework to better support interactive
according to a traditional time-sharing scheduling dISCI-JObS_ VINO currently has a small, 10-ms quantum, so
pline. Lottery scheduling, on the other hand, can SUppol,,ch extensions have not been needed in our prototype.
both hard and soft shares. In their prototype implemenpe o, et al. also suggest an alternative approach to
tation, resource containers were used with both,ercoming the lower limits that currencies impose.
fixed-share C.PU guarantees and time-sharing, but they aq giscussed in Section 4.4, our scheme for manag-
could potentially be used to support soft propor-jng memory is a temporary one. The Nemesis operating
tional-share guarantees as well.) system [Han99] provides a more complete solution that
The alternative approaches do provide advantagegisq allows applications to obtain guaranteed memory
over our lottery-scheduling framework. In particular, shares. Nemesis ensures complete isolation by requiring

activities and resource containers offer finer-grained, applications handle their own page faults
resource management, addressing applications such as

Web servers in which a single thread is associated with .

more than one independent activity. In addition,/ Conclusions

resource containers account for kernel-mode processir@ur extended lottery-scheduling resource management

done on behalf of an activity. We plan to extend our lotframework gives applications increased flexibility in

tery-scheduling framework to support these features. modifying their resource allocations while preserving
Regardless of the framework used to provide prothe ability to isolate groups of processes. We believe that

portional-share resource management, the need to isit-could be particularly useful on systems in which many

late resource principals from each other necessarilysers compete for the resources of a central server, as in

involves imposing limits on allocations of the typesthin-client networks or Web servers used for virtual

hosting. Ticket exchanges allow processes to adjust thefijon97] Jones, M.B., Rosu, D., Rosu, M-C., “CPU Reserva-

allocations while insulating resource principals that do tSio?]s dafl‘_d Tirp:a dCO”St;ai”tSA E_ff_i(_:ier;, Pre(f:iicr:able
; ; cheduling of Independent ActivitiesProc. of the

n - . - -
.Ot take part .|n an exF:hange, and they ehable applica 16th ACM Symposium on Operating System Princi-
tions to coordinate their resource usage with each other. ples October 1997.

Currency brokers provide secure access controls to CuNie97] Nieh, J., Lam, M., “The Design, Implementation and
rencies, while setuid utilities can be used to circumvent Evaluation of SMART: A Scheduler for Multimedia
the default controls in ways that preserve isolation. Applications,” Proc. of the 16th ACM Symposium on

In order for our extended framework to be fully Operating System Principle®ctober 1997.

effective on lar [(le\lob97] Noble, B.D., Satyanarayanan, M., Narayanan, D.,

ge central servers, more work needs to b Tilton, J.E., Flinn, J., Walker, K.R., “Agile Applica-
done to develop negotiators that can intelligently carry tion-Aware Adaptation for Mobility,”Proc. of the
out ticket exchanges on behalf of users and applications. 16th ACM Symposium on Operating System Princi-
Developing such negotiators will be a challenging task ples October 1997.

[OIs99] Olson, M., Bostic, K., Seltzer, M., “Berkeley DB,”

but one with potentially significant rewards. Proc. of the USENIX 1999 Annual Tech. Conference

A June 1999.
Availability [Pet99] Petrou, D., Milford, J., Gibson, G., “Implementing
Source code and binaries for the version of VINO used Lottery Scheduling: Matching the Specializations in

Traditional Schedulers,Proc. of the USENIX 1999
Annual Tech. Conferencéune 1999.
[Sel96] Seltzer, M., Endo, Y., Small, C., Smith, K., “Dealing

in this paper, as well as source code for the test pro-
grams, can be obtained froftp:/ftp.eecs.har-

vard.edu/pub/vino/vino-usenix2000 - with Disaster: Surviving Misbehaved Kernel Exten-
sions,”Proc. of the Second Symposium on Operating
Acknowledgments System Design and Implementati@ctober 1996.

; ; Sma98] Small, C.Building an Extensible Operating System
This research was supported in part by a USENIX Assdl Ph.D. thesis, Division of Engineering and Applied

ciation Scholarship. Robert Haas contributed to the Sciences, Harvard University, October 1998.
development of our framework. Special thanks to Car{sto96] Stoica, I., Abdel-Wahab, H., Jeffay, K., Baruah, S.,
Waldspurger, the anonymous reviewers, and our shep- Gehrke, J., Plaxton, C.G., “A Proportional-Share

herd, Yoonho Park, who all offered helpful comments _IFf_esouSrﬁe Qusocattion PAlgoriftf;rr? IIfEOErE I;eall-Tl_i_me,
: ime-Shared SystemsProc. of the eal-Time
on earlier drafts. Systems Symposiudecember 1996.
[Sul99a] Sullivan, D., Haas, R., Seltzer. M., “Tickets and Cur-

References rencies Revisited: Extending Multi-Resource Lottery

[Arp97] Arpaci-Dusseau, A.C., Culler, D.E., “Extending Pro- Scheduling,”Proc. of the Seventh Workshop on Hot
portional-Share Scheduling to a Network of Worksta- Topics in Operating Systepdarch 1999.
tions,” Proc. of the Intl Conf. on Parallel and [Sul99b]Sullivan, D., Seltzer, M., “A Resource Management
Distributed Processing Techniques and Applicatjons Framework for Central Servers,” Computer Science
June 1997. Technical Report TR-13-99, Harvard University,

[Ban99] Banga, G., Druschel, P., Mogul, J.C., “Resource Con- December 1999.
tainers: A New Facility for Resource Management in [Sun98] “Solaris Resource Manager 1.0: Controlling System
Server Systems,Proc. of the Third Symposium on Resources Effectively: A White Paper,” http://
Operating Systems Design and Implementatiah- www.sun.com/software/white-papers/wp-srm/.
ruary 1999. [Ver98] Verghese, B., Gupta, A., Rosenblum, M., “Perfor-

[Bru98] Bruno, J., Gabber, E., Ozden, B., Silberschatz, A., mance lIsolation: Sharing and Isolation in Shared
“The Eclipse Operating System: Providing Quality of Memory Multiprocessors,Proc. of the Eighth Intl
Service via Reservation DomainsProc. of the Conf. on Architectural Support for Programming
USENIX 1998 Annual Tech. Conferepndene 1998. Languages and Operating Systei@stober 1998.

[Bru99a]Bruno, J., Brustoloni, J., Gabber, E., Ozden, B., Sil{Wal94] Waldspurger, C.A., Weihl, W., “Lottery Scheduling:
berschatz, A., “Retrofitting Quality of Service into a Flexible Proportional-Share Resource Manage-
Time-Sharing Operating System,Proc. of the ment,” Proc. of the First Symposium on Operating
USENIX 1999 Annual Tech. Conferendene 1999. System Design and Implementatiblovember 1994.

[Bru99b]Bruno, J., Brustoloni, J., Gabber, E., Ozden, B., Sil{Wal95] Waldspurger, C.A.Lottery and Stride Scheduling:
berschatz, A., “Disk Scheduling with Quality of Ser- Flexible Proportional-Share Resource Management
vice Guarantees,”Proc. of the Intl Conf. on Ph.D. thesis, MIT/LCS/TR-667, MIT Laboratory for
Multimedia Computing and Systendsne 1999. Computer Science, September 1995.

[Han99] Hand, S.M., “Self-Paging in the Nemesis Operating[Wal96] Waldspurger, C.A., Weihl, W., “An Object-Oriented
System,”Proc. of the Third Symposium on Operating Framework for Modular Resource Management,”
Systems Design and ImplementatiBabruary 1999. Proc. of the Fifth Int'l Workshop on Object Orienta-

[Jon95] Jones, M.B., Leach, P.J., Draves, R.P., Barrera, J.S., tion in Operating System®ctober 1996.

“Modular Real-Time Resource Management in the [Wei84] Weicker, R.P., “Dhrystone: A Synthetic Systems Pro-
Rialto Operating System,Proc. of the Fifth Work- gramming Benchmark,”Communications of the

shop on Hot Topics in Operating SysteMay 1995. ACM, October 1984.

	Isolation with Flexibility:
	A Resource Management Framework for Central Servers
	David G. Sullivan, Margo I. Seltzer
	Division of Engineering and Applied Sciences
	Harvard University, Cambridge, MA 02138
	{sullivan,margo}@eecs.harvard.edu
	Abstract
	1 Introduction
	2 Securely Managing Multiple Resources
	2.1 The Original Framework
	Figure 1. A sample resource hierarchy in which currencies provide isolation between the tasks of ...

	2.2 Resource-Specific Tickets
	2.3 Currency Brokers

	Table 1. Permission checks performed by brokers
	2.4 Hard and Soft Resource Shares
	Figure 2: Offering Hard Shares of a Currency’s Resource Rights. The bob currency issues a hard ti...

	3 Isolation with Greater Flexibility
	3.1 Problem: Currencies Impose Upper Limits
	3.2 Solution: Ticket Exchanges
	Figure 3: Ticket Exchanges Insulate Non-Participants. Tasks A and B exchange tickets. Task C is u...

	3.3 Problem: Currencies Impose Lower Limits
	Figure 4: Currencies Impose Lower Limits. The user bob tries to lower the priority of hog, a CPU-...

	3.4 Solution: Limited Permission to Issue Base-Currency Tickets

	4 Prototype Implementation
	4.1 Threads and Currencies
	4.2 Currency Configuration and Permissions
	4.3 Managing CPU Time
	4.4 Managing Memory
	4.5 Managing Disk Bandwidth
	4.6 Emulating Nice
	4.7 Carrying Out Exchanges

	5 Experiments
	5.1 Experimental Setup
	5.2 Providing Shares of CPU Time
	Figure 5. The CPU funding used for the experiment described in Section 5.2. Currencies A and B re...

	5.3 Providing Memory Shares
	Figure 6: Hierarchical Proportional Sharing of CPU Time. Five CPU-intensive tasks, with funding s...
	Figure 7: Providing Hard Memory Shares. Four memory-intensive tasks run concurrently on a system ...

	5.4 Providing Shares of Disk Bandwidth
	5.5 Ticket Exchanges: CPU and Disk Tickets
	Figure 8: Providing Proportional Shares of Disk Bandwidth. Five I/O-intensive tasks compete for t...
	Figure 9: Performance Improvements from Ticket Exchanges. A CPU-intensive task (dhrystone) exchan...

	5.6 Ticket Exchanges Between Database Applications: Memory and Disk Tickets
	Figure 10: Resource Shares under Exchanges. Shown are the CPU shares of the exchanging and non-ex...
	Figure 11. Results of exchanges in which an application with a large working set (big) exchanges ...

	6 Related Work
	7 Conclusions
	Availability
	Acknowledgments
	References

