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Abstract
Proportional-share resource management is becoming
increasingly important in today’s computing environ-
ments. In particular, the growing use of the computa-
tional resources of central service providers argues for a
proportional-share approach that allows resource princi-
pals to obtain allocations that reflect their relative
importance. In such environments, resource principals
must be isolated from one another to prevent the activi-
ties of one principal from impinging on the resource
rights of others. However, such isolation limits the flexi-
bility with which resource allocations can be modified
to reflect the actual needs of applications. We present
extensions to the lottery-scheduling resource manage-
ment framework that increase its flexibility while pre-
serving its ability to provide secure isolation. To
demonstrate how this extended framework safely over-
comes the limits imposed by existing proportional-share
schemes, we have implemented a prototype system that
uses the framework to manage CPU time, physical
memory, and disk bandwidth. We present the results of
experiments that evaluate the prototype, and we show
that our framework has the potential to enable server
applications to achieve significant gains in performance.

1 Introduction
In managing computational resources, an operating sys-
tem must balance a variety of goals, including maximiz-
ing resource utilization, minimizing latency, and
providing fairness. The relative importance of these
goals for a particular system depends on the nature of
the system and the ways in which it is used. For super-
computers running compute-intensive applications, the
primary goal may be to maximize throughput, while for
personal computers used to enhance a single user’s pro-
ductivity, the chief goal may be to maximize responsive-
ness.

In today’s computing environments, users increas-
ingly compete for the resources of server systems,
whether to access central databases or to view content
on virtually-hosted Web sites. On such systems, fairness
becomes a critical resource-management goal. Propor-
tional-share mechanisms allow this goal to be met by

providing resource principals (users, application
threads, etc.) with guaranteed resource rights. For ex
ple, customers who pay Internet service providers to v
tually host their Web sites can be given rights to sha
of the hosting machine that are commensurate with 
prices they pay. Service providers who can make su
guarantees can offer larger resource shares to princi
willing to pay a premium for better quality of service. 

Although its full promise is yet to be realized
thin-client computing is another domain in which pro
portional-share resource management is desirab
Administrators of such systems are often forced to h
one application per server to provide predictable lev
of service [Sun98]. Proportional-share techniqu
enable the consolidation of multiple applications onto
single server by giving each application a dedicat
share of the machine.

A system that supports proportional-share resou
management must isolate resource principals from each
other, so that a given principal’s resource rights are p
tected from the activities of other principals. To provid
such isolation, a system must necessarily impose lim
on the flexibility with which resource allocations can b
modified. Such limits work well when the resourc
needs of applications are well-known and unchangin
because a system administrator can assign the appro
ate resource shares and leave the system to run. Unfo
nately, these conditions frequently do not hold. Even
the applications’ current resource needs are adequa
understood, they will typically change over time. Fo
example, as a Web site’s working set of frequen
accessed documents expands, the site may require
increasing share of the server’s disk bandwidth in ord
to offer reasonable responsiveness. Moreover, it wo
be preferable if system administrators could be fre
from the need to make detailed characterizations 
applications’ resource needs. Ideally, the applicatio
themselves should be able to modify their own resou
rights in response to their needs and the current stat
the system.

In this paper, we present extensions to the lo
tery-scheduling resource management framewo
[Wal94, Wal95, Wal96] that allow resource principals t
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safely overcome the limits on flexible allocation that
proportional-share frameworks impose for the sake of
secure isolation. Our extended framework supports both
absolute resource reservations (hard shares) and propor-
tional allocations that change in size as resource princi-
pals enter and leave the competition for a resource (soft
shares). It also introduces a system of access controls to
protect the isolation properties that lottery scheduling
provides. And our framework offers the means for appli-
cations to modify their own resource rights without
compromising the rights of other resource principals.
One of these mechanisms, called ticket exchanges,
allows applications to coordinate their use of the sys-
tem’s resources by bartering over resource rights with
each other. Our extended framework thereby provides
isolation with increased flexibility: the flexibility to
safely overcome the limits on resource allocation that
standard proportional-share frameworks enforce.

We have developed a prototype implementation of
our framework in the VINO operating system [Sel96]
and have used it, in conjunction with several propor-
tional-share mechanisms, to manage CPU time, physical
memory, and disk bandwidth. Our experiments demon-
strate that the extended lottery-scheduling framework
enables server applications to achieve improved perfor-
mance under realistic usage scenarios.

This work makes several contributions. First, we
extend the lottery-scheduling framework to securely
manage multiple resources, providing both soft and hard
resource shares. To our knowledge, our prototype is the
first implementation of a proportional-share framework
to support both types of shares for multiple resources.
Second, we point out an important tension between the
conflicting goals of secure isolation and flexible
resource allocation, and we present mechanisms that
allow for more flexible allocation while preserving
secure isolation. Third, we illustrate the value of a sys-
tem that can support dynamic adjustments to the
resource allocations that applications receive.

In the next section, we review the original lot-
tery-scheduling framework and describe how we extend
it to securely support proportional sharing of multiple
resources. In Section 3, we illustrate how lottery sched-
uling (like all proportional-share schemes) imposes both
upper and lower limits on the resource allocations that
clients can obtain, and we describe the mechanisms that
we use to overcome both sets of limits while maintain-
ing secure isolation. In Section 4, we describe our proto-
type implementation of the extended framework,
including the scheduling mechanisms that we have cho-
sen to employ. Section 5 presents experiments designed
to evaluate the prototype and to test one of our mecha-
nisms for flexibly adjusting resource rights. Finally, we
discuss related work and summarize our conclusions.

2 Securely Managing Multiple Resources

2.1 The Original Framework
The resource management framework developed for 
tery scheduling [Wal94, Wal95, Wal96] is based on tw
key abstractions, tickets and currencies. Tickets are used
to encapsulate resource rights. Resource princip
receive resource rights that are proportional to the nu
ber of tickets that they hold for a resource; changing t
number of tickets held by a resource principal automa
cally leads to a change in its resource rights. 

Tickets are issued by currencies, which allo
resource principals to be grouped together and isola
from each other. Principals funded by a currency sh
the resource rights allotted to that currency; currenc
thus enable hierarchical resource management. 

Each currency effectively maintains its ow
exchange rate with a central base currency, and tickets
from different currencies can be compared by determ
ing their value with respect to the base currency (th
base value). The more tickets a currency issues, the le
each ticket is worth with respect to the base curren
and their total base value can never exceed the valu
the tickets used to back the currency itself. 

The sample currency hierarchy shown in Figure
illustrates these concepts. The bob currency is funded by
100 of the 400 base-currency tickets, and it thus recei
rights to one-quarter of the resource. These rights 
divided up by the tasks funded by bob; for example,
task3 holds 200 of the 300 bob tickets, and it thus
receives rights to two-thirds of bob’s quarter share, or
one-sixth of the total resource rights. In other word
task3’s 200 bob tickets have a base value of approx
mately 67 (two thirds of 100). If task2 or task3 forks off
more tasks, causing the bob currency to issue more tick-
ets, the value of its tickets will decrease, because 
resource rights will be shared by a larger number 
tasks. However, the resource rights of processes fun

Figure 1.  A sample resource hierarchy in which currencies pro-
vide isolation between the tasks of different users. The base val-
ues of the tasks’ backing tickets are shown in italics.

300 100

alice bob

100 100 200
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task1 task2 task3

300 33 67
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by other currencies will not be affected.
While a lottery-scheduling resource hierarchy typi-

cally has a tree-shaped structure like the one shown in
Figure 1, it can more generally take the form of any
directed acyclic graph. The lottery-scheduling frame-
work thus supports a greater variety of configurations
than most other, recently proposed schemes for hierar-
chical resource management (see Section 6). For exam-
ple, on a system like the one depicted in Figure 1, in
which each user’s applications are funded by a currency
specific to that user, two or more users could pool their
resources to support a single application that all of them
are using (the system developed by Banga et al. [Ban99]
also allows this).

2.2 Resource-Specific Tickets
Although prior implementations of lottery scheduling
have focused exclusively on single resources (primarily
the CPU), the original lottery-scheduling framework
was designed to support multiple resources. Wald-
spurger [Wal95] considered two approaches to imple-
menting a multi-resource system. In the first approach,
tickets can be applied to any resource, allowing resource
principals to shift tickets from one resource to another as
needed, while in the second, tickets are resource-spe-
cific. Waldspurger favored the former approach because
of its greater flexibility and simplicity. However, allow-
ing principals to devote tickets to resources as they see
fit violates the insulation properties of currencies,
because it can lead to changes in the total number of
tickets applied toward a given resource [Sul99a].

We therefore chose to use resource-specific tickets.
To avoid the overhead of maintaining a separate cur-
rency configuration for each resource, we extend curren-
cies to encompass all of the resources being managed.
Concretely, this means that most pieces of currency state
are maintained as arrays indexed by resource type. Simi-
larly, many currency-related operations take a parameter
that specifies the resource type.

2.3 Currency Brokers
For the lottery-scheduling framework to be secure in a
multi-user setting, a system of access controls are
needed. We encapsulate these controls in a broker asso-
ciated with each currency. A broker stores the owner and
group of the user who created the currency, along with a
UNIX-style mode specifying who may perform various
operations on the currency. Before these operations are
carried out, the broker verifies that the current thread
belongs to a user with the requisite permissions.

Like UNIX file modes, currency modes include
three sets of permissions: one for the currency’s owner,
one for the currency’s group, and one for all others. In a

given set of permissions, the f bit indicates whether a
user is allowed to fund the currency; the c bit indicates
whether a user can “change” the currency by removi
some of its funding or destroying it entirely; and the i bit
indicates if a user is allowed to issue or revoke the c
rency’s own tickets. This fci collection of bits is compa-
rable to the rwx combination in UNIX file modes. 

Table 1 provides more specifics about the perm
sion checks that brokers perform. In most cases, su
rusers are allowed to override the ordinary permissio
checks. If an attempt to fund a currency would lead to
cycle in the currency graph, the attempt is rejected.

2.4 Hard and Soft Resource Shares
The standard lottery-scheduling framework was prim
rily designed to support soft resource shares whose
absolute value may change over time as principals en
and leave the competition for the resource. Howev
Waldspurger and Weihl pointed out that absolute, hard
resource shares can be supported using the same fra
work by fixing the total number of tickets issued by th
system [Wal96]. In particular, they proposed specifyin
hard shares by issuing tickets from a hard currency that
maintains a fixed exchange rate with the base curren
When this hard currency issues additional tickets, so
of the funding of other, “soft” currencies is transferre
to the hard currency so that its exchange rate can
maintained.

Table 1. Permission checks performed by brokers

Operation Permission check

create a currency The caller must match both 
the user id and group id 
specified for the new 
currencya.

a. Note that the user and group ids must be specified—and
therefore checked—because superusers can create curren-
cies that have ids other than their own.

destroy a currency The appropriate c 
(change) bit must be set in 
the currency’s mode.

fund currency A with 
tickets issued by
currency B

The appropriate f (fund) bit 
in A’s mode and  the 
appropriate i (issue) bit in 
B’s mode must be set.

take tickets issued by 
currency B away from 
currency A

Either the appropriate c 
(change) bit in A’s mode or  
the appropriate i (issue) bit 
in B’s mode must be set.



er
 be
.

se
cts

a
ted
 to

o-
i-

by
rily
rs,
t a
le
nt
ad,
e
ide

res

han
ns
e
are
 a

ds
k-
ld
U

n
o-
g
s-
ng
 of

ipi-
cy
In our framework, we take a slightly different
approach based on the notion of hard and soft tickets,
and we allow resource principals to obtain hard shares
from any currency. Under our approach, tickets issued
by a currency are ordinarily soft tickets that specify soft
shares of the currency’s resource rights. However, when
a currency issues a hard ticket to specify a fixed percent-
age of its resource rights, a separate currency is created
and used to fund the currency’s soft tickets (Fig. 2). The
number of hard tickets used to fund this soft-ticket cur-
rency is adjusted as needed to ensure that the total num-

ber of the currency’s hard tickets remains fixed.1

Our approach requires no extra overhead in the
common case of a currency issuing only soft tickets, and
yet it still allows hard tickets to be issued by any cur-
rency. Users could use hard tickets to give an application
a fixed percentage of their resource rights, or to specify
hierarchical reservations in which absolute shares from
the base currency are divided into hard subshares. For a
hard ticket to represent a fixed-share reservation of the
actual resource, all paths from the root currency to the
ticket must involve only hard tickets.

3 Isolation with Greater Flexibility
Currencies, like all mechanisms for providing isolation,
necessarily impose limits on the flexibility with which
resource allocations can be modified. In the following
sections, we demonstrate that currencies enforce both
upper and lower limits on resource allocations. We also
describe the mechanisms that we have developed to
safely overcome these limits so that applications can
obtain allocations that better meet their differing and
dynamically changing needs. 

3.1 Problem: Currencies Impose Upper Limits
When a resource principal is funded by a currency oth
than the root currency, its resource rights can usually
increased by giving it extra tickets from that currency2

For example, in Figure 1, task2’s resource rights could
be boosted by giving it 200 bob tickets rather than 100.
However, doubling the tickets held by task2 does not
double its resource rights; rather, task2 goes from hav-
ing one-third of the bob currency’s overall resource
rights (a base value of 33) to having one-half of tho
rights (a base value of 50). This smaller increase refle
the fact that issuing additional bob tickets decreases
their value. No matter how many currency tickets 
resource principal receives, the resource rights impar
by those tickets cannot exceed the overall rights given
the currency itself. This upper limit is essential to pr
viding isolation. Without it, the resource rights of princ
pals funded by other currencies could be reduced.

Despite the need for the upper limits imposed 
currencies, these limits may often be unnecessa
restrictive. This is especially true on central serve
because the large number of resource principals tha
server must accommodate makes it difficult for a sing
allocation policy to adequately address their differe
and dynamically changing resource needs. Inste
some simple policy for ensuring fairness is likely to b
used, such as giving users equal resource rights to div
among their applications, or allocating resource sha
based on how much a user has paid.

3.2 Solution: Ticket Exchanges
Because certain resources may be more important t
others to the performance of an application, applicatio
may benefit from giving up a fraction of their resourc
rights for one resource in order to receive a larger sh
of another resource. We have therefore developed
mechanism called ticket exchanges that allows applica-
tions to take advantage of their differing resource nee
by bartering with each other over resource-specific tic
ets. For example, a CPU-intensive application cou
exchange some of its disk tickets for some of the CP
tickets of an I/O-intensive application.

While ticket exchanges allow principals to obtai
additional resource rights, they do so without compr
mising the isolation properties of the lottery-schedulin
framework. As the scenario depicted in Figure 3 illu
trates, only the resource rights of principals participati
in an exchange are affected by it; the resource rights
non-participants remain the same.

1. Note that even the base currency’s soft tickets have a base value that
can change over time as the number of its hard tickets changes.

Figure 2: Offering Hard Shares of a Currency’s Resource
Rights.  The bob currency issues a hard ticket to task D repre-
senting a fixed 20% (200/1000) of bob’s resource rights. As a
result, a special currency (soft_tix) is created and used to fund
bob’s soft tickets, isolating the hard tickets from changes in the
number of soft tickets. The funding given to the soft_tix currency
is adjusted as needed to ensure that the total number of hard
tickets issued by bob remains fixed at 1000.

bob

200 300

A C

100

B

bob

800

soft tix 

200

D

200 300

A C

100

B

2. This is not always the case. If a resource principal is the sole rec
ent of a currency’s tickets, giving it more tickets from the curren
does not affect its resource rights.
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Ticket exchanges are not, however, guaranteed to
preserve the actual resource shares that non-participants
received before the exchange. Because the principals
involved in an exchange typically make greater use of
the resource for which they obtain extra tickets than the
principal who traded the tickets away, resource conten-
tion will likely increase. As a result, non-participants
who previously received larger resource shares than
their tickets guaranteed may see those shares reduced.
For example, if a CPU-intensive process trades some of
its disk tickets to a process that regularly accesses the
disk, those previously inactive disk tickets will suddenly
become active, and the disk tickets of other processes

accessing the disk may decline in value.3 However, prin-
cipals should always receive at least the minimal shares
to which their tickets entitle them.

Ticket exchanges and currencies complement each
other. Exchanges allow for greater flexibility in the face
of the upper limits imposed by currencies, while curren-
cies insulate processes from the malicious use of
exchanges. For example, a process could fork off chil-
dren that use exchanges to give the parent process all of
their tickets. With currencies, however, this tactic would
only affect the resource rights of tasks funded by the
same currency as the malicious process. 

3.2.1 Determining and Coordinating Exchanges.
Ticket exchanges enable applications to coordinate with
each other in ways that are mutually beneficial and that
may increase the overall efficiency of the system. Vari-
ous levels of sophistication could be employed by appli-
cations to determine what types of exchanges they are
willing to make and at what rates of exchange. 

Certain types of resource principals may primarily
need extra tickets for one particular resource. For exam-

ple, consider two Web sites that are virtually hosted 
the same server. Site A has a small number of frequen
accessed files that it could keep in memory if it ha
additional memory tickets for its currency. Site B has
uniformly accessed working set that is too large to fit 
memory; it would benefit from giving up some of it
currency’s memory tickets for some of A’s disk tickets.

Applications could also apply economic and dec
sion-theoretic models to determine, based on inform
tion about their performance (such as how often they 
scheduled and how many page faults they incur) and 
current state of the system, when to initiate an exchan
and at what rate. This determination could be made
the application process itself, or by a separate resource
negotiator process that monitors the relevant variabl
and initiates exchanges on the application’s beha
Resource negotiators are similar to the application man-
agers proposed by Waldspurger [Wal95].

Applications are free to cancel exchanges in whi
they are involved. This allows them to take 
trial-and-error approach, experimenting with exchan
rates until they achieve an acceptable level of perf
mance and adapting their resource usage over time. 

Applications or their negotiators initiate exchange
by sending the appropriate information to a centr
dealer. The dealer maintains queues of outstandi
exchange proposals, attempts to match up complem
tary requests, and carries out the resulting exchanges.
an exchange request cannot be immediately satisf
the dealer returns a message that includes any propo
with conflicting exchange rates (e.g., process A reque
20 CPU tickets for 10 memory tickets, while process
requests 10 memory tickets for 10 CPU tickets). In th
way, an application can decide whether to modify i
proposed exchange rate and try again for a comprom
deal. In environments where isolation is less importa
the dealer could be modified to carry out exchanges t
processes propose on the processes themselves (e.
take away 20 CPU tickets from a process and give it 
memory tickets in return), giving an approach equivale
to the one suggested by Waldspurger (see Section 2.2

Future research is needed to develop negotiat
suitable for a wide variety of applications and enviro
ments. Among the questions that still need to 
addressed are: How can a negotiator determine w
exchanges are beneficial to its associated proce
When should a negotiator accept a trade less desira
than the one it proposed? Will a system involvin
dynamic ticket exchanges be stable (i.e., how can os
latory behavior be avoided)? Can general-purpose ne
tiators be written that avoid the need to craft one f
each application? In addition, the central dealer must
designed to deal fairly with requests that have comp
mentary but differing exchange rates.

3. When a resource principal temporarily leaves the competition for a
resource (e.g., when a thread is not performing I/O), its tickets are
deactivated. As a result, the resource rights of other principals funded
by the same currency or currencies are temporarily increased until the
principal reenters the competition and its tickets are reactivated.

200
200

200
200

200
200

150
250

250
150

200
200

Task A Task B Task C

Figure 3: Ticket Exchanges Insulate Non-Participants.  Tasks
A and B exchange tickets. Task C is unaffected, because it still
has one-third of the total of each ticket type.

Before Exchange:

After Exchange:
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3.2.2 Carrying Out an Exchange. Once a complemen-
tary set of exchange requests is found, the funding of the
resource principals involved must be modified to reflect
the exchange. In a non-hierarchical system with only a
base currency, this could be accomplished by directly
modifying the number of tickets that the principals hold
for the resources involved. However, the presence of
non-base currencies complicates matters, because the
base value of their tickets can change over time, whereas
tickets used in exchanges should have a constant value.

To address this problem, we issue four tickets
directly from the base currency: two for the amounts
being exchanged, and two negatively valued tickets for
the opposite amounts. For example, if task A trades disk
tickets with a base value of 50 for some of task B’s
memory tickets with a base value of 20, then A is given
20 base-currency memory tickets and −50 base-currency
disk tickets, and B is given 50 base-currency disk tickets
and −20 base-currency memory tickets. Because sched-
uling and allocation decisions are based on the total base
value of a principal’s backing tickets, the negative tick-
ets reduce the principals’ resource rights by the amount
they have traded away. And because principals cannot
manipulate their own backing tickets, exchanged tickets
cannot be misused (e.g., to reduce another currency’s
allocations). If a principal’s tickets for a resource are
temporarily deactivated (see footnote 3), the funding it
has obtained through exchanges for that resource is tem-
porarily transferred to the principal’s other funders to
preserve isolation.

An exchange is undone if one of the exchanging
principals exits, cancels the exchange, or loses the
resource rights that it traded away. This last scenario can
occur if the tickets funding the principal decrease in
value to the point that their base value is less than the
value of the tickets that the principal gave away. In such
cases, the principal’s total base value for that resource
becomes negative, and the exchange must be revoked.

3.3 Problem: Currencies Impose Lower Limits
Currencies can also impose lower limits on resource
rights. These limits materialize when only one of the
resource principals funded by a currency is actively
competing for a resource. In such circumstances, that
principal receives all of the currency’s resource rights,
no matter how few tickets have been used to fund it.

As a result, currencies make it difficult for lottery
scheduling to support the semantics of the nice  utility
found on conventional UNIX systems. For example, a
user running a CPU-intensive job may reduce its CPU
funding as a favor to other users. But if the other tasks
funded by the same currency are all idle, the CPU-inten-
sive job will still get the currency’s full CPU share (Fig.

4, top). The user would presumably be allowed t
decrease the number of tickets backing the user curre
itself, but then other jobs funded by that currency wou
be adversely affected when they became runnable.

3.4 Solution: Limited Permission to Issue 
Base-Currency Tickets
While upper limits are necessary for providing isolatio
lower limits are an undesirable side-effect of isolatio
These limits could be overcome by funding CPU-inte
sive applications directly from the base currency (Fig.
bottom). However, for reasons of security, currenc
access controls (Section 2.3) would ordinarily preve
unprivileged users from issuing base-currency tickets

To circumvent this restriction, our framework
allows a user to issue base-currency tickets as long
the total value of currencies owned by that user ne
exceeds some upper bound. In this way, users can g
up a small amount of their currencies’ funding and th
issue that same amount from the base currency to f
resource-intensive jobs. This approach leaves the us
total resource rights unchanged (preserving the isolat
of other users), and it allows jobs to run at a reduced p
ority without crippling the rest of the user’s application
Section 4.6 describes how we implement this policy.

Figure 4: Currencies Impose Lower Limits.  The user bob
tries to lower the priority of hog, a CPU-intensive process, by
giving it only 10 tickets (top). However, if task2 becomes idle,
hog will still receive all of bob’s resource rights. One solution is
to fund hog directly from the base currency (bottom).

300
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4 Prototype Implementation
We have implemented the extended framework in
VINO-0.50 (www.eecs.harvard.edu/~vino/vino ),
and we use it to manage CPU time, memory, and disk
bandwidth. In the following sections, we describe the
key details of our implementation, including the sched-
uling and allocation mechanisms that we employ.

4.1 Threads and Currencies
A thread can be thought of as a special type of currency.
Like all currencies, threads hold backing tickets, and
they also issue temporary transfer tickets to threads on
which they are waiting (see Section 4.3). By having
VINO’s thread class inherit from its currency class4,
threads can issue and receive tickets using the same
methods as non-thread currencies, and other methods
(e.g., the one that recursively computes a ticket’s base
value) can also treat threads and currencies interchange-
ably. Threads also reuse currency data members to keep
track of the tickets that they hold and have issued.

Currencies that are also threads are identified by the
process id of the thread. All other currencies are identi-
fied by a unique currency identifier (cid). 

4.2 Currency Configuration and Permissions
By default, the system creates one currency for each
active user of the system, and it funds these user curren-
cies equally from the base currency. Each user’s cur-
rency in turn funds the tasks of that user. The user
currencies are created by means of a function,
cid_for_client() , that is invoked when a process
changes its real user id (uid); this function uses a uid to
cid mapping to determine which currency should be
used to fund the process. If no mapping exists for a
given user, a new currency is created and funded. In
either case, the process’ existing funding is revoked and
replaced with funding from the appropriate user cur-
rency. Once a user’s login shell is correctly funded, pro-
cesses forked by that shell are funded by the same
currency. More generally, child processes are funded by
the issuer of the first ticket in the parent’s list of backing
tickets for that resource.5 

Each user currency is owned by the corresponding
user and has a currency mode (see Section 2.3) that
allows the user to manipulate it using a set of system
calls added for this purpose. A user’s tasks receive equal
ticket allocations by default; the user can modify these
allocations and thereby alter the relative resource rights

of the tasks. Users can also create currencies and f
them with tickets from their user currency. Howeve
they cannot increase the funding of their user curren
itself, because they do not have permission to issue ot
currencies’ tickets. Thus, each user’s tasks are secu
isolated from the tasks of other users, and each user
the same total resource rights.

Other currency-configuration policies could also b
specified. On extensible operating systems like VIN
[Sma98], superusers could safely download specializ
versions of the cid_for_client  function (which is
also called when a process’ real group id (gid) chang
to specify arbitrary configuration schemes based on u
and gid, as well as alternative access-control policies 
currencies. Approaches that do not involve extensibil
could also be employed to accommodate a more limi
range of possible configurations and access controls.

4.3 Managing CPU Time
Our prototype uses the original lottery-scheduling alg
rithm [Wal94] to schedule the CPU, randomly choosin
an active ticket and traversing the runnable queue to f
the thread that holds the ticket. In searching for the w
ning thread, the system computes the base value of e
thread’s CPU backing tickets. We cache these base 
ues to avoid unnecessary computation, although 
cached values must be invalidated whenever a cha
occurs in a currency’s count of active tickets (e.g., wh
a thread starts up, blocks, or exits).

Our prototype also uses two other features of t
original lottery-scheduling framework, compensation
tickets and ticket transfers. Compensation tickets are
issued to threads who do not use their full quantu
temporarily inflating their resource rights to give them
higher probability of being chosen when they ne
become runnable. Ticket transfers occur when a thre
blocks attempting to acquire a kernel mutex or to all
cate memory. Because the thread is itself a currency (
Section 4.1), it issues a ticket and uses it to fund t
thread on which it is waiting (the holder of the mutex o
the pageout daemon), transferring its resource rights
that thread. This can reduce the time that the waiti
thread spends blocked, and it prevents priority inversi
from occurring. When the thread is made runnab
again, its transfer tickets are revoked.

A number of deterministic algorithms, including
stride scheduling [Wal95] and EEVDF [Sto96], can als
be used within the lottery-scheduling framework to pr
vide increased accuracy and lower response-time v
ability for interactive processes. Because our wo
primarily addresses ways of overcoming the limits th
proportional-share frameworks impose on flexib
resource allocation, the algorithms used are not crucia

4. VINO is written in C++.
5. Actually, if a process holds tickets from more than one currency, its
children should be funded by all of these currencies. We plan to extend
our implementation to deal with this case.
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4.4 Managing Memory
Effective proportional-share memory management is
complicated by the difficulty of determining which pro-
cesses are actively competing for memory and by the
undesirability of a strict partitioning of memory among
processes. When scheduling the CPU, threads that are
blocked are simply ignored and the values of their tick-
ets are not counted. Our data [Sul99b] indicates that a
similar approach to memory management is not effec-
tive. When the system experiences heavy memory pres-
sure, any process that blocks, even momentarily, can
lose a large number of pages to the activity of the page-
out daemon, resulting in erratic paging behavior and
poor throughput. The obvious alternative, namely leav-
ing the memory tickets of all processes active at all
times, is also not viable, because pages belonging to idle
processes tend to remain in memory indefinitely, reduc-
ing the number of pages available to active processes
and effectively partitioning the total memory of the sys-
tem. We have therefore chosen to give memory guaran-
tees only to privileged processes that explicitly request
them. Other processes compete for the unreserved por-
tion of memory, which we ensure comprises at least five
percent of the memory not wired by the kernel. While
this approach is limited (e.g., it can easily lead to thrash-
ing), it allows us to experiment with the resource
trade-offs that applications can make.

Processes running as root can obtain hard memory
shares from the base currency. Once a currency is
funded with memory tickets, resource principals with
appropriate permissions can obtain soft or hard sub-
shares of its allocation. As with any resource, hard
shares are obtained using the reserve()  system call
and soft shares using the fund()  system call. In the
common case of obtaining a hard share from the base
currency, users simply specify the size in kilobytes of
the memory share they are requesting. In other cases,
users either specify a number of memory tickets (for soft
shares) or a percentage of the issuing currency’s share
(for hard shares).

To maintain guaranteed shares, we altered the
behavior of VINO’s pageout daemon so that pages
owned by processes that have not exceeded their mem-
ory guarantee are not reclaimed. This approach does not
limit processes to their memory shares, but merely
ensures that they can receive at least that amount. In the
absence of memory pressure, processes receive as much
memory as they need. If a process holds soft memory
tickets, the number of pages to which it is entitled can
change dynamically as the value of its tickets changes.
The pageout daemon thus needs to compute the current
base value of the processes’ memory tickets; cached val-
ues are used whenever possible. 

4.5 Managing Disk Bandwidth
Our prototype supports proportional sharing of dis
bandwidth using the hierarchical YFQ algorithm
[Bru99b]. YFQ approximates ideal proportional sharin
by maintaining a virtual time function and per-dis
queues of outstanding disk requests for each resou
principal. Each of the queues has an associated finish
tag that reflects the principal’s past disk activity, its cu
rent share of the disk, and the length of the request at
head of the queue. Requests from queues with the sm
est finish tags are forwarded to the device driver in sm
batches that can be reordered by the driver or device
achieve better aggregate throughput. 

A principal’s disk tickets are active whenever it ha
an outstanding request. To adjust to dynamic change
the number of active tickets, the base value of a prin
pal’s disk tickets is recomputed (using cached values
possible) whenever a request reaches the head o
queue, and this value is used to compute the queu
new finish tag.

4.6 Emulating Nice
To support the semantics of nice , we created a utility
that runs with root privileges and executes program
with funding from the base currency. This utility reduce
the funding of the caller’s user currency by the amou
requested for the new job, thus preserving isolation. T
utility actually creates a new currency for the task, fun
that currency with the requested number of tickets, a
uses the new currency’s tickets to fund the task (see F
4, bottom). This level of indirection is needed in case th
task spawns any children; if so, they will share the fun
ing of the new currency. While this utility would typi-
cally be used to give a small percentage of the CPU
long-running, CPU-intensive jobs, it can be used wi
other resources as well. It successfully overcomes 
lower limits imposed by currencies without employin
VINO’s extensibility mechanism, as we had originall
planned [Sul99a]. The other broker methods could a
be overridden using similar setuid-root utilities.

4.7 Carrying Out Exchanges
As discussed in Section 3.2.1, a number of challeng
questions must be answered before a system that f
supports dynamic ticket exchanges can be built. At t
point, we have implemented a framework that allows 
to easily test the effects of ticket exchanges and ther
gain insight into the issues involved.

We provide two mechanisms for experimentin
with exchanges. First, users with appropriate perm
sions can employ our reserve() , fund() , and
unfund()  system calls to implement static exchanges,
preset modifications to the default ticket allocation
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Second, we have implemented a simple central dealer in
the kernel, and we allow applications to propose
exchanges dynamically using a system call
(exch_offer ) added for this purpose. When an
exchange is carried out, the four tickets involved (see
Section 3.2.2) are linked to each other in a circular
queue so that the exchange can be invalidated when one
of the principals exits, loses too much funding, or
retracts the exchange. If one of the tickets is deleted, all
four of them are, thereby cancelling the exchange.

5 Experiments
We conducted a number of experiments to test the effec-
tiveness of our extended framework and to assess its
ability to provide increased flexibility in resource allo-
cation while preserving secure isolation. In the follow-
ing sections, we first discuss tests of the
proportional-share mechanisms that we implemented
and demonstrate that they provide accurate propor-
tional-share guarantees and effective isolation. We then
present experiments that test the impact of ticket
exchanges on two sets of applications.

5.1 Experimental Setup
All of these experiments were conducted using our mod-
ified kernel. We ran it on a 200-MHz Pentium Pro pro-
cessor with 128 MB of RAM and a 256-KB L2 cache.
The machine had an Adaptec AHA-2940 SCSI control-
ler with a single 2.14-GB Conner CFP2105S hard disk.

5.2 Providing Shares of CPU Time
To test our implementation of the basic lottery-schedul-
ing framework, we replicated an experiment from the
original lottery-scheduling paper (Wal94, Section 5.5).
We ran five concurrent instances of a CPU-intensive
program (the dhrystone benchmark [Wei84]) for 200

seconds using the CPU funding shown in Figure 5. Pr
cipal B3 sleeps for the first half of the test, during whic
time its tickets are not active. 

Figure 6 shows the number of iterations accom
plished as a function of time for the jobs funded by ea
currency. In all cases, the relative levels of progress
the processes match their relative funding levels. Wh
B3 awakes, its tickets are reactivated; as a result, 
other tasks funded by currency B receive reduced C
shares, while the tasks funded by currency A are un
fected because of the isolation that currencies provide

5.3 Providing Memory Shares
The next experiment tests our prototype’s ability 
guarantee fixed shares of physical memory. To cre
enough memory pressure to force frequent page rec
mation, we limited the accessible memory to 8 MB
After subtracting out the pages wired by the kernel 
well as the desired number of free pages in the syst
there were approximately 4.2 MB of memory that prin
cipals could reserve. We ran four concurrent instances
a memory-intensive benchmark; each instance repe
edly reads random 4-KB portions of the same 16-M
file into random locations in a 4-MB buffer. This load

Figure 5.  The CPU funding used for the experiment described
in Section 5.2. Currencies A and B receive equal funding from
the base currency, which they divide among the tasks they fund.
A2 receives twice the funding of A1, B2 receives twice the fund-
ing of B1, and B3 has three times the funding of B1.
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Figure 6: Hierarchical Proportional Sharing of CPU Time.
Five CPU-intensive tasks, with funding shown in Figure 5, com-
pete for the CPU. Shown above are the number of iterations
completed by each task as a function of time. Task B3 sleeps
for the first half of the test.
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keeps the pageout daemon running more or less continu-
ously. We gave one of the processes a 2-MB memory
guarantee (500 pages) and another a 1.4-MB guarantee
(350 pages); the other two processes ran without mem-
ory reservations. Figure 7 shows the actual memory
shares of the tasks as a function of time. The tasks with
hard shares lose pages only when they own more than
their guaranteed shares. The tasks without memory tick-
ets end up owning much less memory than the ones with
guaranteed shares.

5.4 Providing Shares of Disk Bandwidth
We tested our implementation of the YFQ algorithm for
proportional-share disk scheduling by running five con-
current instances of an I/O-intensive benchmark (iohog)
that maps a 16-MB file into its address space and
touches the first byte of each page, causing all of the
pages to be brought in from disk. Each copy of the
benchmark used a different file. Throughout the test,
each process almost always has one outstanding disk
request. We limited YFQ’s batch size to 2 for this and all
of our tests to approximate strict proportional sharing.
We gave one process a 50% hard share of the disk (i.e.,
one-half of the base currency’s hard disk tickets), while
the other four tasks received the default number of disk
tickets from their user’s currency. Figure 8 shows the
number of iterations that each process accomplishes
over the first 100 seconds of the test. Because one task
has reserved half of the disk, the other four tasks divide
up the remaining bandwidth and effectively get a
one-eighth share each. Thus, the process with the hard
share makes four times as much progress as the others;
when it has finished touching all 4096 of its file’s pages,
the other four have touched approximately 1000 pages
(a 4.1:1 ratio).

5.5 Ticket Exchanges: CPU and Disk Tickets
To study the impact of ticket exchanges, we first co
ducted experiments involving the CPU-intensive dhry
tone benchmark [Wei84] and the I/O-intensive ioho
benchmark (see Section 5.4). In the first set of runs, 
gave the benchmarks allocations of 1000 CPU and 10
disk tickets from the base currency. We then expe
mented with a series of one-for-one exchanges in wh
dhrystone gives iohog n disk tickets in exchange for n
CPU tickets, where n = 100, 200, …, 800. To create
added competition for the resources—as would typica
be the case on a central server—we ran additional ta
(one dhrystone and four iohogs) in the background d
ing each experiment. Each of the extra tasks received
standard funding of 1000 CPU and 1000 disk tickets.

Figure 9 shows the performance improvements 
the exchanging applications under each exchange,
comparison to their performance under the origina
equal allocations. Dhrystone benefits from all of th
exchanges, and the degree of its improvement increa
as it receives additional CPU tickets. Iohog also bene
from all of the exchanges, but the degree of its improv
ment decreases for exchanges involving more than 5
tickets. While dhrystone does almost no I/O and c
thus afford to give up a large number of disk ticket
iohog needs to be scheduled in order to make progre
and thus the benefit of extra disk tickets is gradually o
set by the loss of CPU tickets. However, both applic
tions can clearly benefit from this type of exchang
which takes advantage of their differing resource need

We also examined the effect of the ticket exchang
on the non-exchanging tasks. As discussed in Sect
3.2, the resource rights of these tasks should be pre
served, but their actual resource shares may be affected.

Figure 7: Providing Hard Memory Shares.  Four mem-
ory-intensive tasks run concurrently on a system with approxi-
mately 4.2 MB of available memory. Two have guaranteed
memory shares; two do not. Shown are the number of 4-KB
pages owned by each process as a function of time.
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Figure 8: Providing Proportional Shares of Disk Bandwidth.
Five I/O-intensive tasks compete for the disk. One of them
receives a 50% hard share, while the others receive equal fund-
ing from their user’s currency and thus divide up the other 50%
of the bandwidth. Each iteration corresponds to paging in one
4-KB page of a memory-mapped file.
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Such an effect is especially likely in these experiments,
because the two benchmarks rely so heavily on different
resources. For example, dhrystone uses almost no disk
bandwidth. As a result, the iohogs obtain more band-
width than they would if the dhrystones were competing
for the disk. However, when the exchanging iohog
receives some of the exchanging dhrystone’s disk tick-
ets, it obtains rights to a portion of this “extra” band-
width, and the other iohogs thus end up with smaller
bandwidth shares. Exchanges affect the CPU share of
the non-exchanging dhrystone in the same way. 

However, the non-exchanging processes should still
obtain at least the resource shares that they would
receive if all of the tasks were continuously competing
for both resources. To verify this, we used
getrusage (2) to determine each task’s CPU and
disk usage during the first 100 seconds of each run. The
results (Fig. 10) show that the minimal resource rights
of the non-exchanging processes are preserved by all of
the exchanges. The top graph shows the CPU shares of
both the exchanging and non-exchanging dhrystones,
and the bottom graph shows the disk-bandwidth shares

of the exchanging and non-exchanging iohogs.6

Because there are seven tasks running during each test,
the non-exchanging tasks are each guaranteed a
one-seventh share (approximately 14.3%). The
non-exchanging iohogs are affected less than the
non-exchanging dhrystone because each of them loses
only a portion of the bandwidth gained by the exchang-
ing iohog. In general, as the number of tasks competing
for a resource increases, the effect of exchanges on
non-exchanging tasks should decrease.

5.6 Ticket Exchanges Between Database 
Applications: Memory and Disk Tickets
We further experimented with ticket exchanges usi
two simple database applications that we develop
using the Berkeley DB package [Ols99]. Both applic
tions emulate a phone-number lookup server that take
query and returns a number; when run in automa
mode, they repeatedly generate random queries and 
vice them. One of the applications (small) has a 4-MB
database with 70,000 entries, while the other (big) has a
much larger, 64-MB database with 220 entries. Both
applications use a memory-mapped file as a cache.

We ran these applications concurrently for a ser
of 300-second runs. We disabled the update thread 
the sake of consistency, because its periodic flushing
dirty blocks from the applications’ cache files can cau
large performance variations. To emulate the enviro
ment on a busy server, we created added memory p
sure—limiting the available memory to 16 MB—and w
ran four iohogs in the background. After subtracting o
the pages wired by the kernel and the system’s free-p6. The four non-exchanging iohogs have approximately equal shares.

In each case, the graphed value is the smallest share of the four.
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Figure 9: Performance Improvements from Ticket
Exchanges. A CPU-intensive task (dhrystone) exchanges disk
tickets for some of the CPU tickets of an I/O-intensive task
(iohog). The improvements are with respect to runs in which
both tasks receive the default ticket allocations. All results are
averages of five runs.
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Figure 10: Resource Shares under Exchanges.  Shown are
the CPU shares of the exchanging and non-exchanging dhrys-
tones (top) and the disk-bandwidth shares of the exchanging
and non-exchanging iohogs (bottom). The dark portion of each
bar represents the share guaranteed by the task’s tickets, while
the full bar indicates its actual share. In each pair, the left bar is
the exchanging copy, and the right bar is the non-exchanging
copy. All results are averages of five runs.
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target, there was approximately 11.1 MB of memory
that principals could reserve. When small runs alone, it
uses up to 8 MB as a result of double buffering between
the filesystem’s buffer cache and its own 4-MB cache.
With only 70,000 entries, it makes a large number of
repeated queries, and it should thus benefit from addi-
tional memory tickets that allow it to cache more of its
database. On the other hand, big uses a smaller, 500-KB
cache because it seldom repeats a query; it should bene-
fit from more disk tickets.

We started by giving the applications equal alloca-

tions: 1000 CPU tickets, 1375 hard memory tickets7,
and 1000 disk tickets, all from the base currency. We
then experimented with exchanges in which small gives
up some of its disk tickets for some of big’s memory
tickets, trying all possible pairs of values from the fol-

lowing set of exchange amounts: {100, 200, …, 800}8.
The iohogs had 1000 CPU and 1000 disk tickets each.

While the exchanges in Section 5.5 were preset, the
exchanges in these experiments were proposed and car-
ried out dynamically using the exch_offer()  system
call (see Section 4.7). Big proposes the exchange as
soon as it starts running, but small waits until it has
made 10,000 queries (approximately one-third of the
way through the run), at which point the exchange is
carried out. By waiting, small is able to use its original
disk-ticket allocation to bring a portion of its database
into memory quickly, at which point it can afford to
exchange some disk tickets for memory tickets.

Small benefits from most of the exchanges, includ-
ing any in which it obtains 400 or more memory tickets.
It fails to benefit when it gains only 100 memory tickets
(not shown), or when it gives away a large number of
disk tickets for 300 or fewer memory tickets (Fig. 11,
top). Because small can only fit about three-quarters of
its database in memory with this allocation, it cannot
afford to give away a large number of disk tickets. When
small obtains 700 or 800 memory tickets, it can hold all
of its database in memory, and it thus sees performance
gains of over 1000 percent (Fig. 11, bottom). Big like-
wise benefits from most of the exchanges, including any
in which it obtains disk tickets worth 600 or more.

It is interesting to note that these applications can-
not simply specify an exchange ratio, such as two disk
tickets for every one memory ticket, because what con-
stitutes an acceptable ratio depends on the number of
tickets being exchanged. For example, small should not
accept a ratio of 2 disk for 1 memory if only 100 or 200 memory tickets are offered, but it should a

exchanges with this ratio to obtain 300 or more memo
tickets. More generally, what constitutes an accepta
exchange depends heavily on the environment in wh
the tasks are running. For example, because tasks n
to wait until a synchronous I/O completes befor

7. Each hard memory ticket from the base currency represents one
page of physical memory, so 1375 tickets confer a 5.5-MB reservation.
8. Because these exchanges were carried out by the kernel, the values
given represent the base value of the tickets exchanged, whereas the
values given in Section 5.5 are the number of soft tickets exchanged.
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Figure 11.  Results of exchanges in which an application with a
large working set (big) exchanges memory tickets for some of
the disk tickets of a similar application with a small working set
(small). The graphed changes compare the number of requests
serviced in a 100-s interval after the exchange has occurred
with the requests serviced during the same interval with no
exchange. Results are averages of at least five runs. There is a
different vertical scale for each graph, and the values for big in
the third graph are scaled by 10 to make them more visible.
See related work [Sul99b] for graphs of the other exchanges.
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enqueueing a new one, they receive at most 50% of the
bandwidth in the absence of prefetching. Therefore,
without extra tasks competing for the disk, big cannot
benefit from extra disk tickets, because it already
obtains 50% of the disk by default. Applications like big
will need to use negotiators that can assess the current
system conditions before proposing an exchange.

6 Related Work
In addition to lottery scheduling, other frameworks can
be used to provide proportional-share management of
multiple resources. In particular, Rialto’s activities
[Jon97], Eclipse’s reservation domains [Bru98,
Bru99a], Verghese et al.’s Software Performance Units
(SPUs) [Ver98], and Banga et al.’s resource containers
[Ban99] function similarly to currencies in their ability
to isolate resource principals from each other.

Reservation domains and resource containers also
share lottery scheduling’s ability to support hierarchical
resource management. However, the hierarchies sup-
ported by reservation domains are limited to a
tree-shaped structure in which the resource shares of
non-leaf domains are divided among their children. As
discussed in Section 2.1, lottery scheduling allows
resource principals to be funded by more than one cur-
rency and to thus share the resource rights of multiple
currencies. Resource containers similarly allow threads
to be multiplexed over several containers and to receive
their combined allocations.

Moreover, most of these alternative frameworks
only support hard shares; resource principals that lack a
reservation either share the remaining CPU capacity
equally (as in Rialto and Eclipse) or are scheduled
according to a traditional time-sharing scheduling disci-
pline. Lottery scheduling, on the other hand, can support
both hard and soft shares. In their prototype implemen-
tation, resource containers were used with both
fixed-share CPU guarantees and time-sharing, but they
could potentially be used to support soft propor-
tional-share guarantees as well.

The alternative approaches do provide advantages
over our lottery-scheduling framework. In particular,
activities and resource containers offer finer-grained
resource management, addressing applications such as
Web servers in which a single thread is associated with
more than one independent activity. In addition,
resource containers account for kernel-mode processing
done on behalf of an activity. We plan to extend our lot-
tery-scheduling framework to support these features.

Regardless of the framework used to provide pro-
portional-share resource management, the need to iso-
late resource principals from each other necessarily
involves imposing limits on allocations of the types

described in Sections 3.1 and 3.3. Principals restricted
a particular activity, reservation domain, SPU, o
resource container cannot obtain more than their grou
overall resource rights. If only one principal in a grou
is actively competing for a reserved resource, it w
receive the entire reservation, even if it would be prefe
able for it to receive less than that amount. Mechanis
like ticket exchanges would be needed to allow the
frameworks to provide more flexible resource allocatio
while preserving secure isolation.

Verghese et al.’s work on SPUs explicitly address
the need to provide both secure isolation and flexib
allocation. However, their system starts by giving abs
lute resource shares to each SPU, and it gains ad
flexibility by dividing unused portions of these share
among SPUs that need additional resources. The or
nal lottery-scheduling framework naturally supports th
type of resource sharing by deactivating the tickets 
idle tasks. Our extended framework provides added fle
ibility through ticket exchanges and a utility that emu
lates the semantics of nice. One advantage of SPUs i
that they were designed for use with shared-memo
multiprocessors. Extending the lottery-schedulin
framework for use with SMPs remains future work.

Other systems have allowed applications to nego
ate their resource usage with the operating syst
[Jon95, Nob97]. Our extended lottery-scheduling fram
work lets applications coordinate their resource usa
with each other, as well as with the system as a whole.

Besides Waldspurger’s own prototypes, others ha
implemented portions of the lottery-scheduling fram
work [Arp97, Nie97]. Petrou et al. [Pet99] retrofitte
lottery scheduling into FreeBSD to schedule the CP
extending the framework to better support interacti
jobs. VINO currently has a small, 10-ms quantum, 
such extensions have not been needed in our prototy
Petrou et al. also suggest an alternative approach
overcoming the lower limits that currencies impose.

As discussed in Section 4.4, our scheme for man
ing memory is a temporary one. The Nemesis operat
system [Han99] provides a more complete solution th
also allows applications to obtain guaranteed memo
shares. Nemesis ensures complete isolation by requir
that applications handle their own page faults.

7 Conclusions
Our extended lottery-scheduling resource managem
framework gives applications increased flexibility in
modifying their resource allocations while preservin
the ability to isolate groups of processes. We believe t
it could be particularly useful on systems in which man
users compete for the resources of a central server, a
thin-client networks or Web servers used for virtu
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hosting. Ticket exchanges allow processes to adjust their
allocations while insulating resource principals that do
not take part in an exchange, and they enable applica-
tions to coordinate their resource usage with each other.
Currency brokers provide secure access controls to cur-
rencies, while setuid utilities can be used to circumvent
the default controls in ways that preserve isolation.

In order for our extended framework to be fully
effective on large central servers, more work needs to be
done to develop negotiators that can intelligently carry
out ticket exchanges on behalf of users and applications.
Developing such negotiators will be a challenging task,
but one with potentially significant rewards.

Availability
Source code and binaries for the version of VINO used
in this paper, as well as source code for the test pro-
grams, can be obtained from ftp://ftp.eecs.har-

vard.edu/pub/vino/vino-usenix2000 .
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