
ABSTRACT

On the vast majority of today’s computers, the dominant form of
computation is GUI-based user interaction. In such an
environment, the user’s perception is the final arbiter of
performance. Human-factors research shows that a user’s
perception of performance is affected by unexpectedly long delays.
However, most performance-tuning techniques currently rely on
throughput-sensitive benchmarks. While these techniques improve
the averageperformance of the system, they do little to detect or
eliminate response-time variabilities—in particular, unexpectedly
long delays.

We introduce a measurement infrastructure that allows us to
improve user-perceived performance by helping us to identify and
eliminate the causes of the unexpected long response times that
users find unacceptable. We describe TIPME (The Interactive
Performance Monitoring Environment), a collection of
measurement tools that allowed us to quickly and easily diagnose
interactive performance “bugs” in a mature operating system. We
present two case studies that demonstrate the effectiveness of our
measurement infrastructure. Each of the performance problems we
identify drastically affects variability in response time in a mature
system, demonstrating that current tuning techniques do not
address this class of performance problems.
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1.  INTRODUCTION

In recent years, computer systems have become increasingly
interactive, usually employing Graphical User Interfaces (GUI)
such as Microsoft Windows and the X Window system. In these
systems, users interact with the computer far more frequently than
in traditional batch or command-oriented computer systems, and
they expect the system to respond to each user request
instantaneously. As such, “performance” is determined by the
user’s opinion. This metric,user-perceived performance, differs
radically from conventional performance metrics in two ways.
First, it is largely subjective and is a function of the perceptual and
physical limitations of users. Second, events that affect user-
perceived performance are on a time scale of hundreds or
thousands of milliseconds, not the microsecond scale that is often
the target of detailed performance tuning.

Users’ perceptions of performance are closely related to response
time and the variability of response time, both of which can be
quantified with moderate effort, using some newer tools and
techniques [7][8]. However, to the best of our knowledge, there are
no tools available for interpreting a collection of event latencies
and determining which ones actually irritate users, which is why
we rely on user input for this function. For example, if an event’s
latency is below the threshold of human perception, that latency
contributes nothing to user irritation. Once a latency does cross
over into the realm of perceptibility, there are no guidelines by
which to assess the impact of the delay, but the relationship
between delay and irritation is practically guaranteed to be
nonlinear. Moreover, previous studies have argued that user
expectation is a critical component of user-perceived performance
[6][7]. There is a qualitative difference between a five-second
delay echoing a keystroke and a five-second delay starting up an
application. Unlike latency, expectation is difficult to quantify
because of its psychological aspect and because it is partially a
reflection of the performance characteristics of the system to
which the user has become accustomed. As users become familiar
with a system, they become trained to expect certain delays for
each type of operation. While these delays may not delight users,
users eventually adjust their behavior to long latencies to minimize
errors and frustration [13][16][18]. The greatest contributor to
“bad” user-perceived performance is when an event takes an
unexpectedly long time to complete, without apparent reason [16].
Therefore, the key to improving user-perceived performance is to
identify such situations, understand why they occur and modify
systems to eliminate them.

The Interactive Performance Monitoring Environment (TIPME) is
a measurement system that collects data that enables system
experts to identify the cause of user-perceived performance
problems that have previously been extremely difficult to diagnose.
Unlike conventional performance-improvement techniques, we do
not attempt to quantify system performance. Instead, we take
advantage of user input to determine when performance becomes
unacceptable. TIPME continuously monitors and records data that
summarizes the operating system state. When the user experiences
unacceptable performance, s/he presses a hot-key sequence which
causes all the data currently stored to be saved for postmortem
analysis and provides the user with a dialog box in which to enter a
problem description. By understanding cases in which the user
indicated that the system exhibited bad performance and
eliminating their causes, we improve user-perceived performance.
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The key contributions of this work are a methodology for attacking
interactive performance problems, the design and implementation
of a measurement infrastructure capable of capturing such
problems, two case studies demonstrating the utility of the system,
and a presentation of concrete examples where throughput-based
system design decisions are detrimental to user-perceived
performance. We also use our methodology to show that platforms
other than our target platform demonstrate problems in similar
areas.

Once we deployed TIPME, users immediately identified latencies
that were annoying, and we were able to identify the problem and
deploy simple kernel workarounds within a day or two. This rapid
turn around was essential, because we found that users were likely
to report the same problems if they were not resolved. The fact that
we were able to do this rapidly in a mature operating system
supports our hypothesis that the latency aspect of operating system
performance has long been neglected. During operating system
development, performance “bugs” are frequently introduced into
the system. Prior to release of a new operating system, systematic
testing and tuning usually enable the detection and elimination of
such problems. However, the benchmarks that have been used are
more sensitive to system throughput than they are to latency or
latency variability. Therefore, these benchmarks help developers
remove performance bugs that affect system throughput but do
little to enable the diagnosis and removal of latency-related
performance problems. Our measurement technique introduces a
systematic way to identify and eliminate performance problems
that affect latency. We suggest using our techniques during the beta
phase of deployment to remove serious interactive performance
problems.

In the next section, we discuss related work in performance and
measurement methodology and human-computer interaction. We
describe our measurement methodology in Section 3. Section 4
presents two case studies, describing how we were able to identify
and correct interactive performance problems in the BSD/OS
operating system. In Section 5, we demonstrate that some of the
problems we identified in BSD/OS also exist in a radically
different system (Win32), indicating that these techniques are
applicable across different systems. We conclude in Section 6.

2.  RELATED WORK

There have been efforts to use response time as the basis for
system performance tuning. Application Response Measurement
(ARM) measures response time directly by providing API
functions that client programs call before and after an operation
[8]. In earlier work, we inferred response times from CPU activity
and message exchanges between MS-Windows clients and the
server [7]. Both of these approaches assist in capturing event
latencies, but they do not provide any indication of the cause of
long latencies. This is the significant difference between such
systems and the one we present here.

Cota-Robles and Held also use an infrastructure somewhat similar
to ours to characterize the Windows NT and Windows 98 operating
systems’ ability to handle real-time workloads. They measure how
quickly and reliably the systems deliver hardware interrupts to
their corresponding handlers in a loaded system [3]. They find that

the difference in real-time performance is not adequately
represented by throughput benchmark results. Although Windows
NT provided at least an order of magnitude better real-time
response than Windows 98, throughput-based benchmark scores
obtained by the Winstone benchmark [21] showed that both
systems had throughput scores within 20 percent of each other.

DCPI is a continuous monitoring technique that attempts to
measure the performance of hardware executing under normal
conditions by continuously profiling a variety of hardware
statistics [1]. TIPME also uses continuous monitoring, but the two
systems are worlds apart in the abstractions with which they
concern themselves. DCPI captures information about hardware
resource usage, while TIPME captures information about high-
level GUI events and transitions in operating system state. The
difference in abstractions results from the difference in focus of the
two systems: the main focus of TIPME is to identify and remedy
operating system impediments to user-perceived performance,
while DCPI’s focus is to understand hardware behavior.

Although there has been much research in the HCI community
evaluating the impact of latency on user performance, the context
has been limited. Most of the research addresses typing
performance and data-entry scenarios, concentrating on
quantifying the relationship between latency and productivity
issues, such as the error rate and the amount of work completed,
rather than on the connection between latency and user
satisfaction. Moreover, most of these studies have been conducted
on non-GUI platforms, leaving user sensitivities to operations
unique to GUIs, such as using a mouse to select a menu,
unresearched [5][13][18].

3.  METHODOLOGY

The TIPME system is a measurement infrastructure that relies on
the interaction of three different agents. First there is the user, upon
whom we rely to notify the system of a performance problem and
describe that problem in sufficient detail that the poorly behaved
application can be identified. Second, there is a collection of log
processing scripts that we use to extract and process relevant
information from logs. Third, there is a human system expert who
interprets the extracted information and makes the ultimate
diagnosis and suggested correction.

The main contributions of the system are the identification of the
necessary information to log, a system for collecting them in an
unobtrusive and low-overhead way, and an effective partitioning of
the problem between human expertise and computer automation.
In an ideal system, we would automate all processing and
diagnosis, but there is much research to be done before such
processing can be automated. First, there is no agreement as to the
magnitude of latencies that begin to irritate users and we know that
such thresholds are a function of the user’s experience. Second,
there are few techniques for making systems self-tuning, although
we see this as a fruitful and active research area [15].

3.1 Identifying the Source of the Problem
The goal of our measurement methodology is to determine why
systems sometimes spend an unexpectedly long time processing a
transaction that ordinarily completes with acceptable latency.



TIPME is a measurement infrastructure that enables us to collect
information to determine the cause(s) of unexpected latency. Since
the long latency events we are interested in occur unexpectedly, we
use continuous monitoring to gather data about the system state,
saving the data to disk only when the user indicates that a problem
has occurred, and we then perform postmortem analysis to
diagnose the problem.

The task of improving user-perceived performance is inherently
iterative. Severe performance problems tend to mask smaller ones.
As a result, users tend to report major problems repeatedly before
reporting smaller ones, and different users tend to report the same
problems. Therefore, we need to dispatch fixes as soon as users
detect performance problems, so that they will uncover new
problems As a result, the fixes we describe in our case studies are
quick workarounds that let us deploy solutions rapidly. All three of
the problems we identify in our case studies are research problems
in their own right and warrant individual attention.

3.2 Data Collection
TIPME records process state (whether the process is running,
runnable, or blocked, and if blocked, the event upon which it is
blocked), context switch information, how and when events pass
through the X Window server, and the owners of highly contested
kernel resources. This information is stored in a collection of in-
memory, non-paged ring buffers. These ring buffers are sized to
hold 30 to 40 seconds worth of data to give the user enough time to
indicate that there was a performance problem (on our system, that
requires approximately 32MB of additional memory; on a faster
machine, more memory will probably be needed). The user
notifies TIPME of a problem by typing the hot-key combination,
Ctrl-Alt-Minus, at which point, TIPME writes the statistics
held in the ring buffers to disk. The overall structure of TIPME and
how it writes data to disk in response to the hot-key combination
are shown in Figure 1.

We implemented TIPME on BSD/OS 3.0 and X Free86 R6.3
running on Intel Pentium- or Pentium Pro-based personal
computers. We chose the hardware platform for its popularity and
the software platform for its popularity in our environment and the
availability of the source code. The CPU cycle counter, available in
both Pentium and Pentium Pro processors, provides cycle-accurate
timestamps on all of the records that TIPME generates [9]. These

timestamps are used to merge and order the records generated by
the system.

TIPME collects data for two major purposes. The first is to identify
the time interval during which the user encountered a perceived
performance problem, and the second is to determine exactly what
was happening in the system during that problem interval. The
next two sections describe how the data we collect accomplishes
both purposes.

3.3 Determining the Problem Interval
Our first challenge is to identify the start and end times of the
system’s handling of the problematic user request. At first blush, it
seems that the obvious solution is to have the X client generate a
record before and after processing a request initiated by the user.
While X client assistance is desirable, it is neither necessary nor
sufficient to identify the problem interval. The latency the user
experiences includes not only the time the client spends processing
the request, but also the time the kernel spends delivering user-
generated events—such as keystrokes and mouse movements—to
the X Server, and the time the X Server spends processing and
passing the events to the corresponding client. The measurements
taken by a client do not capture the entire processing path.
Additionally, client-side measurements do not capture all of the
time that the X Server spends processing requests generated by the
client in response to the input event. Figure 2 illustrates a typical
interaction that occurs as a result of a user input, such as typing a
character in a word processing program.

In order to identify the time interval during which the user was
waiting for the system to respond, we must determine when the
user initiated the problematic transaction by generating a keyboard
or mouse interrupt and when the X Server provided the visual
feedback that signals the end of the transaction. To do so, we
monitor when user input enters the system and how this input is
transformed into one or more X events, what request(s) the client
generates in response, and when the X Server finishes handling the
resulting request(s). From the event log, we automatically extract
the keyboard and mouse events and then manually match the
appropriate request to the description supplied by the user. In our
experience, this manual matching has been nearly instantaneous; it
takes only a few seconds’ glance at the log to find the triggering
event. We also extract messages that reflect the updating of the
graphic display so we can identify the end of the user event(i.e.,

Figure 1. Structure of TIPME. Both the kernel and X Server contain non-paged ring buffer(s). Upon experiencing a problem, the user
presses a hot-key combination, which is intercepted by the X Server (1). The X Server writes out the contents of its ring buffer to a file (2)
and informs the kernel that the system is experiencing a problem by making asysctl call (3). The kernel sends outSIGUSR1 to its helper
process(es) (4). In response, the user-level helpers read the contents of the in-kernel ring buffers and store the information to files (5, 6).
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the message that updates the screen telling the user that the action
has completed). Once again, we found that identifying the correct
event is trivial. With this information in hand, we know the interval
during which the delayed event took place. We have also identified
the process responsible for this event. Our next task is to determine
the cause of the unusually long delay.

3.4 Determining the Source of the Problem
In order to identify the cause of a specific delay, we need to
understand the possible causes for all delays. If we consider the
simple process scheduling model shown in Figure 3, then we can
characterize the causes of unexpectedly long delays to be one or a
combination of:

1. A change in the amount of CPU time required to
complete the transaction (spending more time in the
running state).

2. A change in the amount of time that the program spends
waiting for I/O operations and/or the availability of
resources (spending more time in the blocked state).

3. A change in process scheduling decisions (spending
more time in the ready state).

The first source of variability in response time is the change in the
amount of the CPU time that the application and operating system
require to complete a transaction. Note that we are more interested
in the change, not the absolute amount of CPU time that the
operation requires. Users learn to expect average response times.

Our techniques are designed to capture unexpected delays in which
the response time deviates significantly from the norm.

Changes in the amount of CPU time that a transaction requires can
occur for some operations, because the amount of computation
required is variable and depends on the tasks previously
performed. For example, the cost to search for an item on a linked
list is highly dependent on where the target item is located on the
list, which depends on the order of past insert operations. Both the
application and the operating system perform operations with such
variability and therefore, can change the amount of computation
that they require to complete a transaction. The change in the
amount of CPU time that the operation requires is easily detectable
using profiling information.

Other than the changes in the amount of CPU work required to
complete a transaction, the only remaining software causes for
perceptible response time variability are 1) the program not being
runnable while it is waiting for the completion of I/O or for the
availability of a resource or 2) the operating system deciding to
execute other programs. These correspond exactly to the
scheduling states that any active, non-running process can have in
the operating system. Therefore, to assist in diagnosing the causes
of unexpected latency, we record context switches and changes in
process scheduling state. Table 1 describes the information we
collect and the following paragraphs elaborate on the collection
process.

At every other timer interrupt (every 20 ms under BSD/OS), we
collect the status of all the processes in the system. We record

Figure 2. X message exchange.When the user types a key or engages the mouse, the hardware generates an interrupt handled by the
kernel (1). The kernel sends a message to the X Server (2) which dispatches the event to the proper client, via the kernel (3, 4). The client
then processes the request and sends a message back to the X Server (5, 6), and the X Server updates the display (7).
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Figure 3. Process Scheduling Model.This simple state diagram depicts the model most frequently used in operating system scheduling.
The process currently executing is in the Running state. When the scheduler decides to stop running this process, it traverses the state
change depicted by A and enters the Runnable state which represents processes that are ready to run, but not currently scheduled. When
those processes are rescheduled, they traverse edge B to re-enter the Running state. When a process cannot make forward progress due to
I/O or a request for an unavailable resource, it traverses edge C and enters the Blocked state. Each process in this state is associated with a
wait channel that corresponds to the event on which the process is waiting. Transition D represents the resource being made available,
allowing the process to become runnable. At such a time, the scheduler may choose to immediately let it run, in which case it traverses
edges D and B.



which processes are running, which are runnable, and which are
blocked and for what reason. This information provides an
overview of the system. We also record every context switch,
sleep, and wake-up. This completely captures the system’s
scheduling decisions. Using this information, we can determine
not only which process was running at what time, but also how
long it took the system to schedule a critical process once it
became runnable due to an external event, such as a keystroke.

The kernel records resource ownership by process ID (PID), so we
need data that will enable us to construct the proper association
between user commands and the PIDs in the system. In order to
provide this data, we record the output ofps(1) when monitoring is
initiated. Henceforth, we record the command line and the
environment variables of eachexec. Unlike the other information
collected by TIPME, we cannot discardexec records in a simple
FIFO manner, because process lifetimes can far exceed the 30–40
seconds of buffer space we maintain. Instead, we retain exec
information for 10 minutes past the process lifetime (i.e., 10
minutes after the process has exited), so that we can diagnose
problems in processes that have terminated before the user is able
to report the problem.

When we receive TIPME output from a problem event, we identify
the problem interval as described in Section 3.3. In the process of
determining the interval, we also identify the process that was
delayed. We then automatically extract the information that shows
the amount of time the particular process spent in each scheduling
state. Using this information, we manually determine the exact
cause of the unexpected delay. If the source of the variability is a
change in the amount of work that the transaction performs, we use
profiling information to determine where the extra time is being
spent and make algorithmic changes. If the problem is a
scheduling decision, we examine the set of scheduling decisions
and determine what prevented the process from being scheduled in
a timely fashion. Finally, if the source is a resource wait, we study
how this highly-contested resource is being used. In all the cases
we uncovered to date, it took us only a few (5–10) minutes of
manual processing to either identify the problem or decide what
additional data were needed.

3.5 Implementation Details
There are three major components in TIPME—the kernel
component, the X Server component, and the user-level helper.
The kernel component collects the operating system statistics
described in Section 3.4; the X Server component records X Server
statistics and the message exchanges between the kernel and the X
Server and between the X Server and X clients (Section 3.3); the
user-level helper ties the other TIPME components together and
provides the interface to control TIPME and extract the
information collected. In order to keep the measurement system
tractable, we do not require any instrumentation of client
programs. The following subsections explain each of these
components in detail.

3.5.1 Kernel Components

The kernel portion of TIPME consumes 24MB of physical
memory. TIPME uses its own memory allocator to manage this
memory. Whenever possible, we perform allocation and
initialization during system start-up, so that we avoid the overhead
of dynamic memory management. The only time we are required
to allocate space dynamically is when recordingexec
information, because the length of the command-line arguments
and the size of the environment is variable.

We modified the console driver to trap the following key
sequences.Ctrl-Alt-Plus causes TIPME to start the
monitoring system.Ctrl-Alt-Minus notifies TIPME that the
user has experienced unacceptable performance. The kernel sends
the user-level helper a SIGUSR1 that instructs it to retrieve and
save the contents of the TIPME buffer.Ctrl-Alt-0 andCtrl-
Alt-1 disable and enable the keyboard logging portion of
TIPME, so that users can prevent TIPME from recording sensitive
keystrokes, such as passwords.

3.5.2 X Server Modifications

The X Server portion of TIPME uses 6MB of nonpageable
(locked) memory for its ring buffer. Events such as the arrival of a
character from the keyboard, an X event structure sent to a client,

Description Use

Process Status For all processes, record the state (run-
ning/runnable/blocked) and priority.

By examining process states over time, we can identify which
state contributed most significantly during a particular interval.

Context Switch
Information

When processes acquire/release the CPU. This allows precise tracking of when processes are running.

Resource Usage How and when highly contested resources
are requested and acquired.

Once we have identified resource contention as the cause of a
delay, this data lets us determine why the contention arose,
e.g., due to repeated requests or an inadvertently long wait.

Exec Information A mapping of program name to PID. We use this to map a user’s problem description to one or more
processes in the system.

Table 1: Information Collected



and an X request structure received from a client are recorded in
this ring buffer.

Ordinarily, the X Server has no information about the process ID
(PID) of the clients with which it is interacting. This is
understandable since the X Windows protocol allows clients
running on one host to connect to an X Server running on another
host. In such an environment, the client’s PID is of little use as an
identifier. However, since most of the clients connected to the X
Server are running locally in our environment, the PID of the client
can often serve as a useful identifier. Knowing the PID of the client
allows us to correlate information collected by the X Server
portion of TIPME with information collected by the kernel portion
of TIPME.

In order to allow the X Server to associate clients with PIDs, we
made a small modification to the X library so that the client passes
its PID in an unused pad field of a connection setup packet. This
modification required that we relink the standard suite of X clients,
includingxterm andtwm, distributed with the XFree86.

When the console is executing the X Server, console input is
passed to the X Server in raw format where each keystroke is
reported, not as a character, but in the form of key-down and key-
up events. During the execution of the X Server, we no longer trap
various hot-key combinations in the kernel. Instead, we modified
the X Server to trap and process the four hot-key combinations
described in the previous section. Upon trapping a hot-key
combination, the X Server portion of TIPME notifies the kernel
portion that the hot-key combination has been pressed by calling
sysctl. The kernel portion responds to thesysctl call as if a
corresponding hot-key combination had been pressed. Unlike the
kernel portion of TIPME, which relies on the user-level helpers to
write the buffer contents to disk, the X Server portion of TIPME
writes its own buffer contents.

3.5.3 The User-Level Helper

The user-level helper is a simple process that spends most of its
lifetime sleeping, waiting for the SIGUSR1 signal that gets sent on
TIPME shutdown. When the user-level helper is awakened, it uses
thekvm(2) interface to copy data from the in-kernel buffer to user
space. The helper then writes this data to disk.

We perform postmortem analysis using several perl scripts linked
with the Berkeley DB package [17]. These scripts process the raw
data, generating human-readable output.

3.6 Overhead of TIPME
As mentioned in Section 3.5, TIPME consumes a large amount of
memory (30MB). The kernel portion of TIPME consumes 24 MB
of physical memory, which is allocated at system bootup. The X
Server portion of TIPME consumes 6 MB of nonpageable memory
acquired via themlock(2) interface. In order to isolate the effects
of consuming such a large amount of memory from the
performance our users observe, we equip our machines with an
extra 32MB of memory before installing TIPME. While such
memory consumption may seem excessive, the incremental cost of
memory is trivial (e.g., approximately $20 for an extra 32 MB).

The kernel and the X Server code expansion are minimal at 9KB
and 22KB, respectively.

The runtime overhead of TIPME is low and reasonably constant.
Table 2 showsthe typical cost of generating each type of TIPME
record. A more important and useful overhead statistic is how
much of the latency that the user experiences is due to the TIPME
overhead. To determine this, we label each TIPME record with the
time it took to create the record. During the postmortem analysis,
we add up the cost of generating all the records between the
beginning and the end of the latency that the user experienced.
Table 2 shows some typical latencies and TIPME overhead for
common events measured using a 100 MHz Pentium PC with 64
MB of memory. As can be seen from Table 2, the TIPME run-time
overhead can be a significant percentage of an event’s latency
when the event is sufficiently short. However the overhead is
negligible when compared to the limits of human perception,
which are on the order of tens of milliseconds [16].

3.7 Limitations
TIPME was designed to be used in an environment where all users
have their own machines and perform most of their daily
computation on those machines. Therefore, TIPME measures
latency experienced by the console user. While it is possible to use
TIPME output to determine the source of problems experienced by
remote users, TIPME cannot account for the communication delay
between the measured machine and the console at which the
remote user is located.

Our methodology concentrates on diagnosing the sources of user-
perceivable delays, which are typically at least several tens of
milliseconds and often as long as several seconds. The data we
collect have sufficient detail to diagnose events with these
latencies, but they are sometimes too coarse to diagnose sub-
millisecond delays. Fortunately, sub-millisecond delays do not
impact user-perceived performance.

There is also a limit to how much understanding we can gain about
the source of the delay. We treat some sources of delay as black
boxes—some to make the problem simpler and others because it is
necessary. We assume that application programs do not schedule
their own threads. We also treat network-related delays as a black
box. Consider a client-server architecture with our measurement

Event

Event
Latency

(incl.
overhead)

TIPME
overhead

%-age
TIPME

overhead

Moving a mouse pointer 0.3ms 80us 27%

Typing a character in a
Xterm Window

2.0ms 340us 17%

Displaying the file menu
in Netscape 3.0

470.0ms 5100us 1.1%

Table 2: Latency and TIPME overheads.These latencies
were measured using the Pentium cycle counter, which
introduces little measurement overhead.



infrastructure deployed on the client machine. Typically, the client
program will perform a network I/O waiting for a response from
the server. The measurement infrastructure will recognize this
delay only as network I/O delay although such latency is a
combination of network transfer latency and the latency with
which the server provides response, which can be further broken
down into CPU time and wait time, in the same way we have
broken down the response time of the client machine. Since such a
diagnosis requires us to deploy our infrastructure on both client
and server machines and coordinate their activity, we have left it
for future work.

We are also unable to determine the cause of device (e.g., disk)
misbehavior. Intelligent disk drives can sometimes exhibit
unexpected behavior, such as taking several seconds to complete
an I/O request for no apparent reason. Our infrastructure will
identify when such a device is the cause of long latency, but it
cannot determine why the device behaved in such a manner.

Finally, our methodology sometimes requires us to re-instrument
the system and re-measure the problem. The basic set of data we
collect is sufficient to diagnose all detectable performance
problems except for resource contention problems. The data allows
us to determine on which resource the latency-critical process is
blocked, but in order to correct a resource contention problem, we
not only need to understand which resource is contested but also
how the resource is being consumed. This requires that we collect
additional information about how the resource is allocated and
freed. Currently, we have adopted a delayed-instrumentation
strategy of adding instrumentation points as new contested
resources are identified. In a commercial system, we envision
including full resource accounting that can be enabled optionally
on a per-resource basis. Thus, once resource contention is
identified, it would be a simple matter to enable collection of the
necessary resource information.

4.  CASE STUDIES

In this section, we demonstrate TIPME’s utility in identifying
system problems that lead to poor user-perceived performance. We
deployed TIPME on two workstations, one with a 133-MHz
Pentium PC processor and a second with a 200-MHz Pentium Pro
processor. We asked the users to signal unacceptable performance
using TIPME’s hot-key combination and then waited to receive
data. The typical tasks performed on these machines are editing,
compiling, and web browsing. We used a third machine (the 100-
MHz Pentium PC mentioned earlier) as a microbenchmarking and
test machine. In the remainder of this section, we demonstrate how
TIPME helped us to identify problems with the scheduling
algorithm and to determine highly contested resources and their
use.

4.1 Multi-second Console Pause
The first problem that a user reported was that the console became
completely unresponsive for several seconds. This problem was
observed when heavy jobs with frequent disk I/O, such as a kernel
build, were running in addition to the interactive foreground
process. A quick manual inspection of the TIPME logs
immediately revealed that the X Server process was blocked

during the problematic interval waiting on theswpgiobuf wait
channel. This made the console unresponsive to user input.

We searched the system sources for theswpgiobuf wait channel
and learned that when the VM system initiates a page- in or page-
out request, it acquires abuf structure, which is used to describe
the specifics of the I/O. BSD/OS’ VM system maintains a pool that
contains a fixed number of these structures1. When there is a
shortage ofbuf structures, processes go to sleep on the wait
channelswpgiobuf waiting for a buffer to become available.
During the problem interval, the TIPME output reported that the X
Server was blocked on this wait channel as follows:

62007.6920 sec cost 141.9 us
pid: 207 is blocked on f0119610(swpgiobuf)

The first line shows the time at which the record was collected and
the time required to generate the record. The second line shows
that process 207 (the X Server) is blocked on the wait channel at
address 0xf0119610 and that the name of the wait channel is
swpgiobuf.

In order to understand how such contention arose, we modified
TIPME to record the usage of these structures. We redeployed
TIPME and waited for the problem to reappear. Another quick
inspection of the TIPME output indicated that during the
problematic interval, the page-out daemon was monopolizing all of
the availablebuf structures to initiate page-out requests. Since no
buf structures were available to initiate the page-in request on
behalf of the X Server, it was blocked, rendering the entire console
unresponsive to user input.

4.1.1 Reproducing the problem using
microbenchmarks

While these problems occur infrequently during actual use, once
we understand their cause we can create a microbenchmark that
reproduces the exact behavior. We constructed a microbenchmark
that created enough memory pressure to cause the page-out
daemon to monopolize all the VMbuf structures, and we verified
that the same problems arose by examining TIPME output during
the microbenchmark. The benchmark consists of a timing process
and a number of child processes. The timing process sleeps for 100
ms, reads a word from a 4MB buffer, and records a timestamp by
reading the CPU’s cycle counter [9]. The buffer is referenced
cyclically with a 4KB stride, which is equal to the page size used
by the Pentium and Pentium Pro processors. The child processes
generate memory pressure by continuously writing a single word
to their own 12MB buffer, also using a 4KB stride.

This benchmark measures how promptly the system processes an
event that involves a potentially faulting memory reference while
the system is experiencing heavy memory pressure. Ideally, the
time stamps generated by the timing thread will be approximately
100 ms apart. Any delay in handling them will lengthen the

1. The number of preallocatedbuf structures is determined
by the amount of physical memory in the system. Our two
machines pre-allocated 64 and 50 such buffers, respectively.



interval between two timestamps. (The 100-ms delay was selected
to model the inter-arrival time of fairly rapid keyboard input.) We
ran these benchmarks with the test machine running in single-user
mode and disconnected from the network. We believe this artificial
environment is justified, since we are trying to reproduce a specific
problem that we observed under normal use, and eliminating
unexpected external interference allows us to isolate the problem.

We varied the number of child processes from one to eight. When
the number of children reached four, the system began to exhibit
the problem we were trying to reproduce. The intervals between
two time stamps recorded by the benchmark program often grew
longer than one second. In some cases, the interval was nearly
eight seconds. We used TIPME to examine the state of the system
during such problems and confirmed that the cause of the delay
was the timing thread blocked on theswpgiobuf.

4.1.2 Finding a Remedy

Diagnosis of the problem motivates and enables the creation of
better performing algorithms, which can be evaluated using the
microbenchmark we created. Although devising a complete
solution to this problem is not the goal of this work, it was
necessary to devise a simple workaround so that we could uncover
other (unrelated) problems. If we did not remove this performance
problem, users would have kept reporting the same problem.

We made ten of thebuf structures unavailable to the page-out
daemon. This is sufficient to allow the measurement thread and all
the load-generating child processes to make forward progress,
even under heavy page-out traffic. We reran the microbenchmark,
but were disappointed that we did not observe any significant
improvement in the system’s behavior.

We turned to TIPME to help us identify the new problem.
Inspection of the TIPME logs revealed that our change did prevent
the page-out daemon from monopolizingbuf structures, but
fixing that problem revealed a second problem. The measurement
thread was now waiting for paging I/O to complete on the
swpgio wait channel. By examining the use of theswpgio wait
channel, we observed that the page-out daemon had initiated 30–

40 page-out requests and that they were being queued ahead of the
I/O request that was issued in response to the timing thread’s page
fault. BSD/OS uses the CSCAN [12] algorithm for disk
scheduling. CSCAN is designed to improve disk throughput by
ordering disk requests to minimize seeks, but does so at the
expense of individual request latency. The system stalled for
several seconds handling a page fault, because it was queued
behind the paging requests.

To temporarily work around this problem, we changed the disk
request ordering algorithm intoFIFO with skip ahead. Under this
simple algorithm, all requests except page-faults are queued in a
FIFO manner. The page-fault requests are placed ahead of other
requests in the disk queue (i.e., “skipped ahead”) as long as the
following conditions are met: (1) page-fault requests do not skip
ahead of other page-fault requests, and (2) when skipping over
page-out requests, there must be at least three page-out requests
ahead in the queue. The goal of this algorithm is to handle page-
faults quickly and, at the same time, allow the page-out daemon to
maintain a large enough pool of free physical pages in the system.
We determined the value of three experimentally by examining the
TIPME output, making sure that threads were not blocked on the
thrd_s wait channel, which indicates a shortage of free pages.

Figure 4 shows the results of the microbenchmark before and after
our modifications. The microbenchmark collects 10000 time
stamps from a single trial. The data shown are in histogram format
using 10-ms buckets. The results show that our changes greatly
reduce the severity of the problem. The maximum response time
drops from eight seconds to approximately 0.4 second.

We expected the disk queueing algorithm to reduce system
throughput, but the time to build the BSD/OS kernel actually
improved from 861.2 seconds to 839.3 seconds2. This result was
unexpected, but we hypothesize that because kernel builds are
single-threaded, faster page-fault handling is more important than
potentially lower disk throughput. Though we have not been able
to demonstrate the negative impact of our changes to system
throughput, we expect that these changes will worsen system

2. These figures are the mean of five runs. The standard
deviation was less than 0.2% of the mean.

Figure 4. Latency Distributions Before and After System Modification.The left graph shows the latency distribution we observed on the
unmodified system using our microbenchmark. The maximum observed latency was over 8 seconds and we had two data points in excess of
a second. The right graph shows the latency distribution after changing the buffer allocation and disk scheduling strategies. After the
changes, the maximum observed latency is approximately 0.37 seconds.
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throughput in some cases. However, we have shown that the
throughput-centric disk scheduling algorithm actually does cause a
very real and user-perceptible performance problem, and that a
different and “worse” (with respect to throughput) disk scheduling
algorithm improves user-perceived performance. Although it is
beyond the scope of this paper, we believe we can design a better
scheduling algorithm that will provide a compromise between
throughput and latency, or perhaps, a correct solution may be to
employ a different disk scheduling algorithm depending on the
specific needs of the system (e.g., using different scheduling
algorithms for workstations and servers).

Another point worth noting is that our use of microbenchmarking
allowed us to discover and fix both first and second order problems
at once. Without our microbenchmarking effort, we would have
declared victory once we fixed the buffer allocation problem and
would have needed another user’s dissatisfaction to alert us to the
disk scheduling problem.

4.2 Sluggish mouse pointer movement
The second performance problem we captured was described by
the user as, “Sluggish mouse pointer movement when there was a
compile job running in the system.” During the problem interval,
the system spent up to a second updating the mouse pointer in
response to the user’s movement. Operations such as mouse
pointer movement are designed to provide an illusion of physical
connection between the input device and what appears on the
screen. These continuous operations are more latency critical than
discrete operations such as the echoing of keystrokes. MacKenzie
and Ware showed that the speed and accuracy of mouse pointer
movement does not change in a significant manner when the
latency of mouse pointer update changes from 8.3 ms to 25 ms but

that both speed and accuracy worsen in a measurable way when
latency is increased to 75 ms [11]. This result suggests that the
threshold for acceptable mouse pointer update latency is
somewhere between 25 and 75 ms.

The data we collected using TIPME showed that during the
problematic interval, the process scheduler favored compilation
jobs over the X Server, which handles the task of mouse pointer
update. As a result, it took 850 ms for the system to process mouse
input. This finding is surprising because BSD/OS UNIX uses a
priority-based scheduler that favors interactive processes over
CPU-intensive processes such as compilation. This scheme does so
by monitoring each process’ CPU usage and lowering the priority
of processes that frequently consume their full scheduling
quantum. In this particular instance, the scheduling algorithm was
not working as designed.

Figure 5(a) shows the change in the processes’ priorities during the
problem interval. Under BSD/OS UNIX, a numerically smaller
priority indicates a higher priority. Each process executing user-
code is given a priority level (numerically) larger than or equal to
50. The system divides all the processes into one of 32 priority
classes by putting processes with similar priority levels into one
priority class. Processes in a lower priority class are executed only
when there are no runnable processes in any of the higher priority
classes. Processes within the same priority class are executed in a
round-robin fashion.

Figure 5(b) shows how processes consumed CPU time during the
problem interval. The solid horizontal lines indicate that the
corresponding process on the Y-axis was executing during the
depicted time interval. The graph also shows the process state
changes that affect scheduling decisions such as birth(fork),
death(exit), sleep, and wakeup. From this graph, we can observe

Figure 5. Process priority and CPU usage:These graphs show the priority level (a) of the relevant processes and how they consumed
CPU (b) during the problematic time interval. These graphs were derived from the TIPME output which showed that the system spent
most of its time executing compiler processes instead of the X Server because the compiler processes were able to attain higher priorities
than the X Server.
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when the X Server is awakened in response to mouse input and
when it went back to sleep after handling the mouse input. The
graph shows that during the problem interval, the system spent
most of its time executing compile jobs, CPP (C preprocessor) and
CC1 (C compiler), instead of the X Server.

Although the X Server is an interactive process, the priority of the
X Server (58) is lower than expected. Most of the other interactive
processes such as command-line shells usually show the highest
possible user priority of 50. The X Server’s lower priority reflects
the fact that the X Server has been performing computation
including previous mouse pointer updates and updates of an
xterm window in which the compile job is executing. Although
the latter task was performed on behalf of an X client, the X Server
is charged for the computation, and as a result, its priority is
lowered.

In comparison, each compile job is initially given a higher priority
level than that of the X Server. Although newly created processes
initially inherit their priority from the parent, the scheduler soon
recalculates their priorities based on their past CPU usage history.
The initial rise of CC1’s priority observed around time index 0.34
is due to this recalculation. As CC1 has little or no past CPU usage
history, the scheduler assigns high priority to the compute-bound
CC1 process. The lack of CPU usage information causes the
scheduler to assign a high priority to newly created processes
regardless of the processes’ true CPU usage characteristics.

As a result of this oversight, a newly spawned compile job initially
attains a high priority despite being compute-bound. It takes
several hundred milliseconds for the scheduler to build up enough
CPU usage history to adjust the compile job’s priority to be lower
than that of the X Server. In some cases, such processes terminate
before the scheduler accumulates enough information to make
effective scheduling decisions. This several hundred millisecond
delay in adjustment is sufficient to starve the X Server, resulting in
perceivable, sluggish mouse pointer movement. The symptom is
especially bad in situations in which many compute-bound child
processes are created repeatedly, such as during a build. Each child
can hinder the progress of a latency-critical process for several
hundred milliseconds.

4.2.1 Reproducing the problem using
microbenchmarks

The cause of the problem is the scheduler granting newly-created
processes high priority regardless of the processes’ true CPU usage
characteristics. Newly-created, compute-bound processes are
allowed to use up more than their appropriate share of the
processor until the scheduler collects enough data to adjust the
priorities accordingly. This problem is magnified when a stream of
new processes is introduced into the system. By continuously
introducing compute-bound jobs with high initial priority into the
system, a parent process tricks the scheduler into allocating more
CPU time to its compute-bound children, starving other processes,
including latency-critical ones.

The microbenchmark we constructed consists of a measurement
thread and one or more load generating threads. The measurement
thread executes a loop that performs a computation that takes

approximately 10 ms of CPU time followed by 50 ms of sleep
time. We selected the duration of the computation and sleep
intervals such that the priority of the measurement process would
stay around 58 to approximate the priority level of the X Server
when the system experienced the performance problem. At the end
of the each loop iteration, this thread records a timestamp. In our
benchmark run, we set the number of loop iterations to generate
10000 intervals between timestamps.

If the measurement process is the only process in the system, the
timestamps that the process generates should be spaced at about 50
+ 10 = 60 ms. A small deviation in this value is expected when
other processes are present in the system. However, an excessive
(several hundred milliseconds or more) deviation is an indication
that the CPU scheduler made a bad decision.

To ensure that the source of the problem is the creation of
compute-bound processes and not simply their existence, we run
the test under two different load conditions. The first load
condition involves one CPU-bound process that executes an
infinite loop. The second load condition involves a thread that
forks a compute-bound child once every two seconds. The parent
thread sleeps between fork operations. The child executes an
infinite loop, but the parent always terminates the child process
before forking a new one so that there is at most one child present
in the system at any time. The time interval is selected to model a
job such as a build that repeatedly spawns compute-bound
processes.

We ran this benchmark on our test machine. With a single, long-
running compute-bound process, all the timestamps reported the
expected 60 ms latency. However, with a series of short-lived
compute-bound processes, the results were scattered; the recorded
intervals ranged between 60 and 600 milliseconds with a
significant number of them (nearly 10%) over 150 milliseconds
and seven iterations requiring 561 milliseconds to complete. Using
TIPME during the benchmark run, we verified that we had
recreated the exact problem our users saw in practice.

These benchmarks demonstrate that the source of the performance
problem is not the existence of compute-bound processes in the
system but the frequent creation of compute-bound processes. The
scheduling algorithm treats a newly created process as if it is I/O
bound until the process accumulates sufficient CPU usage
information. This allows these young processes to delay the
execution of other processes in the system.

4.2.2 Finding a remedy

There are two underlying factors to the sluggish mouse movement
problem. The first is the way that the scheduler calculates the
priority of newly created processes, and the second is the
fundamental way in which the scheduler performs CPU-usage
calculation. The system charges all the CPU time a process
consumes to the process that performed the computation regardless
of the beneficiary of the computation. In this particular problem,
the X Server was penalized for the computation it performed on
behalf of the X client, which is anxterm program, that was
displaying the output generated by the build process.



Correcting the above problems completely requires an extensive
redesign of the system’s scheduler. We believe ideas such as lottery
scheduling [20] and resource containers [2] can be used effectively
to tackle this problem. Although finding such solutions is not the
target of this study, we still must prevent this problem from
occurring in order to find other problems. As a temporary
workaround, we modified the kernel so that the priority of the X
Server is fixed at 49, one level higher than the highest possible user
priority. This change has kept the problem from reappearing and
made the response of the mouse perceptibly better, even when the
system experiences a high rate of process creation.

5.  GENERALITY OF TIPME

In this section, we discuss the challenges to overcome in order to
use TIPME in other environments and then use the
microbenchmarks devised in the previous section to determine if
other systems experience performance problems under similar load
conditions.

Obtaining the information we needed required instrumenting the
X-Server. Unfortunately, such instrumentation must be part of the
main event loop, so the code is not easily extracted for use with a
different window system. However, the changes are quite
localized, and as such, could be applied to other window systems
without much difficulty. The kernel changes are, for the most part,
more modular. The kernel sampling and ring buffer management
code are fully encapsulated as their own small subsystems.
Unfortunately, there are hooks into these subsystems from memory
management, process handling, and console management.
Additionally, the system is tightly integrated with the memory
management and process structure of BSD/OS. Fortunately, the
total number of lines of code is approximately 2000, which means
that porting the system to an entirely new operating system is not
an unwieldy task.

Even without porting TIPME, we can assess its generality at
finding interactive problems by running the microbenchmarks
developed for BSD/OS on other platforms. We ported the
microbenchmarks to the Win32 programming environment [14]
and ran them on Microsoft Windows 95 and Windows NT 4.0.

The first microbenchmark tested how consistently the system
performed a short task introduced every 100 ms when memory-

intensive tasks were present in the system. Figure 6 shows the
results for Windows 95 and Windows NT 4.0. Although the
longest latency is not as long as those we observed under BSD/OS,
there are still cases in which the system does not handle the task in
a timely manner. In both the Windows 95 and Windows NT
measurements, there are cases in which the system spends nearly a
second completing the task. Such latency is well above the human
perceptual threshold for simple interactive tasks such as echoing
keystrokes.

We also ran the benchmark we used in Section 4.2.1 under
Windows 95 and Windows NT 4.0. The benchmark results show
that neither system experiences the problem, reliably scheduling
the measurement process within 60 ms of the process becoming
runnable. Custer states that the Windows NT scheduler increases a
thread’s priority when the thread is unblocked [4], and according
to King [10], the Windows 95 scheduler uses a similar policy,
boosting the priority of threads when they become runnable. These
policies are designed to provide good response time to interactive
processes that have a tendency to block frequently. This is in stark
contrast to BSD/OS’s scheduling policy, in which the processes
can only receive an increase in priority indirectly by not
consuming the CPU3. We believe this policy difference is the
reason that both Windows NT and Windows 95 performed better
than our target system.

Although only one of the two problems we discussed manifests
itself in the Win32 systems, personal experience indicates that
these systems also suffer from variable and unacceptably long
delays. We believe that the experience we gained in understanding
what and how to instrument BSD/OS is directly applicable to these
other environments, and that an implementation of TIPME on
Windows 95 or NT would help identify and correct problems in
those systems.

3. The BSD/OS process scheduler temporarily raises the
priority of unblocked processes, but its effect is limited to the
time that the thread is executing inside the kernel. The
purpose of this priority manipulation is to allow threads that
can hold critical kernel locks to exit the kernel quickly—not
to improve interactive response time.

Figure 6. Latency Distribution under Windows 95 and Windows NT 4.0.We executed the microbenchmark described in Section 4.1.1
under Windows 95 and Windows NT 4.0. The left graph shows the latency distribution under Windows NT; the right graph shows the
latency distribution under Windows 95. Although the longest latency observed is not as long as those observed under our target platform,
the latencies are well above the limits of human perception.
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6.  CONCLUSIONS

The definition of performance is unique under interactive systems
in that it is based on users’ perceptions, not on easily quantifiable
metrics. User-perceived performance is affected by latency. In
particular, it is greatly affected by unexpected latencies. In this
paper, we have described TIPME and demonstrated how it can be
used to identify and help us remedy such long latencies. The
causes of the performance problems we discussed here were
inappropriate scheduling decisions, resource contention, and a disk
scheduling algorithm that favors throughput over latency.
Although our simple workarounds are not sophisticated enough to
be complete solutions, we have shown that we can reduce both the
frequency and the severity of such problems.

The research and commercial communities have been relying
heavily on throughput-based benchmarks, tuning systems to
improve throughput. These techniques are still useful aids to
improving average-case performance. However, the popularity of
single-user, interactive systems, such as those based on GUIs, has
made user-perceived performance more important than ever. We
must recognize that uncommon cases with little effect on overall
system throughput or average-case performance are important
determinants of user-perceived performance, and we must begin
using infrastructures such as TIPME to eliminate the infrequent
performance problems that irritate users.

There are a number of ways in which we can improve the
sophistication of TIPME. The first is to remove the human user
from the evaluation cycle, permitting a much quicker and more
extensive evaluation. We are in the process of characterizing user
profiles and deriving models of users’ tolerances for latency that
will enable us to automatically detect “unacceptable” performance.
When this work is complete, we can automate much of our system
testing and, ideally, produce many more cases of bad system
performance. We expect that the diagnosis and correction of these
problems will remain a manual process for the foreseeable future,
however, ongoing work in self-tuning systems holds promise as a
means for automating this process as well.
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