Appeared inthe ACM Java Grande 2000 Conference, San Francisco, California, June 3-5, 2000

HBench:Java: An Application-Specific Benchmarking
Framework for Java Virtual Machines

Xiaolan Zhang

Margo Seltzer

Division of Engineering and Applied Sciences
Harvard University
33 Oxford Street
Cambridge, MA 02138, USA
617-495-3311, 617-496-5663

{cxzhang, margo}@eecs.harvard.edu

ABSTRACT

Java applications represent a broad class of programs, ranging
from programs running on embedded products to high-
performance server applications. Standard Java benchmarks
ignore this fact and assume a fixed workload. When an actual
application’s behavior differs from that ircluded ina standard
berchmark, the bechmark results a uselessif not misleadin.
In this paper,we presentHBerch:Jasa, an apptation-specific
berchmarking framework, base on the concept that a gstem's
performarnce must be measured in theontext of the applation
of interest. HBerch:Java employs a methodology that uses
vectors to charaterize the appleation and the undejihg VM
and cardully combines the wo vectors to form a simgle metric
that rdlects a speific applcation’ s performarce on a particular
JVM such that the pdormarce of multiple JMs can be
realistcally compared Our peformarce results deonstrate
HBerch:Jara’s superority over traditonal bechmarking
appioaches in prediing real appkation performarce ard its
ability to pinpoint performance problems.

Keywords

Java peformarce, berchmarking.

1. INTRODUCTION

In recent years, the Jaa programming language has enpyed
increasimy popularity ard there has been a pliferaton of Java
Virtual Mechine (¥ M) implementatons. This pses a questdn
for end userswhich WM should they choose to run their
applications? There have been many atteampts to evaluate
different ¥M implementatons. Unfortunatey, these
appioaches shae acomnon dravback: they assune afixed setof
workloads and gnore the apptation’s performarce concerns.
Java appleations represent a w#rse setof programs, rarging
from those runnig on embedded prducts swch as PDAs, to
applets runnigin browser erironments,to scientific computing

applications, ad recently to sewer applications, which have
traditionally been the stinghold of system larguages such asC
and G+. Often the atual applcation undertestdiffers erough
from ary standard beshmark that theresuls from traditional
berchmarks are useless andongtimes even misleadig.

Moreover, sirte theworkloads ardfixed, traditonal bechmarks
ercourage vendrs to over-optimize ther VM implementatons
to achieve good results on the benchmarks. This may potentially
hurt the peformarce of real appkiations. Sgh incidents hae
alreag been reprted in the areaf OS berhmarking, where
graphts card vendors employ a hak, which can severely hamper
the peformarce of other deices, b improve ther resuls in
standard besimmarks|[8].

We beliere that thegoals of berchmarking in general sbuld be
thredold:

1. To compare the performarce of systams and ¢ reasn alput
why applications run fasteron one gsteam thanon arother.
Not only should bermhmarks poduce meanimgful results,
they should al® provide a reasnable explanain for the
performarce difererces.

2. To guide performarce optimizations. Bewhmarks slould
reveal peformarce Iottlenecks or limitations of the
underiing systam in thecontext of a partcular appltation,
and thus helpystem implementers iinprove thesystanin a
way that will benefit the goplication of interest.

3. To predict an applation’s performarce on non-existent
plaforms. Berchmarks slould help anser “what §”
questons and povide userswith a reasnableestimate of
the applcation’ s performarnce when me componentsof the
underling system charge, or when tle behaior of the
application changes.

In this paperwe presentHBerch:Jasa, part of a more general
application-speific berchmarking framework called HBerch
desgned b realze the abve goals.

The restof the paperis organized asfollows. Section 2 gives an
overnview of some of the most popularstandardlava berchmarks.
Section 3 degribes the degh of HBerch:.Java, and Setion 4
degribes our prototype implementaton of HBerch:Java in detail.
Setion 5 presents expemental results. Section 6 desribes
some relatedworks. Setion 7 discusses some unre®lved issues
and Setion 8 concludes.

2. JAVA BENCHMARKS

Traditional Java benchmarks can be classified into the following
three categories:

1. Microbenchmarks. CaffeineMark [3] is a typical example,
in which a set of VM primitive operations such as method
invocation, arithmetic and graphics operations, and short
sequences of code (kernels) that solve small and well-
defined problems, are measured, and the mean (typically
geometric mean) of the individual times (or scores as a
function of the time) is reported. Microbenchmarks are
useful in comparing the low-level operations of VMs, but it
is difficult to relate them to actual application performance
in a quantitative way.

2. Macrobenchmarks that contain one or more medium-scale to
large-scale Java applications. Examples include the
SPECJIVM98 suite [15], which includes a set of programs
similar to those found in the SPECCPU suite, and
VolanoMark from Volano LLC, which is based on the
company's VolanoChat™ server. VolanoMark focuses on a
JVM’s ability to handle “long-lasting network connections
and threads” [16].

3. Combinations of the above.

The JavaGrande benchmarksingle primitive.

use a vectorVg = (vy,V,,..,V,) , to represent the performance

characteristics of a JVM, with each entryrepresenting the
performance of a primitive operation of the JVM. We call this
vector Vs a system vector, and it is obtained by running a set of
microbenchmarks.

A key feature of HBench:Java is that it incorporates
characteristics of the application into the benchmarking process.
This is achieved using an application vector,
Va =(Ug,Us,..,U,), With each elementu; representing the

number of times that the correspondirly primitive operation
was performed. Intuitively, the application vector indicates how
much demand the application places on the underlying JVM and
is obtained through profiling. The dot product of the two vectors
produces the predicted running time of the application on a given
JVM.

The basic strategy behind HBench has been to use the simplest
model possible without sacrificing accuracy. To that end, we use
a simple linear model, until we find that it is no longer able to
provide the predictive and explanatory power we seek. In some
cases, rather than going to a more complex model, we retain the
simplicity of a linear model by adding multiple data points for a
For example, on some systems, TCP connect

[2][10] is an example of this type. Designed to compare the times grow non-linearly with the number of connections. Rather
ability of different Java Virtual Machines to run large-scale than modeling the non-linearity explicitly, we provide three or
scientific applications, the JavaGrande benchmark suite four points in the system vector that correspond to differing
contains three sections. The first section consists of orders of magnitude for the number of connections.

microbenchmarks ~ such as arithmetic operations, pjgench.java addresses the benchmarking goals outlined in

mathematical functions, and exception handling.
second section consists of kernels, each of which contains a
type of computation likely to appear in large scientific
programs. The final section includes realistic applications,
such as a financial simulation based on Monte Carlo
techniques. This hybrid approach of
microbenchmarking and macrobenchmarking provides the
ability to reason about performance disparities between Java
Virtual Machines and is particularly useful in pinpointing
performance anomalies in immature Java Virtual Machine
implementations.

The common drawback with the above approaches is that Java
applications are so diverse that it is difficult, if not impossible, to

find a set of workloads that are representative of the applications3,

in which end users are interested, even within a sub-field. If the
behavior of the benchmark’s workloads does not match that of
the intended application, then the benchmark might give
misleading information regarding which JVM is the best for the

application of interest. In comparison, HBench:Java is a general
benchmarking framework that can be applied to any specific
workload.

3. HBENCH:JAVA DESIGN

combining 2.

The section 1 in the following ways:

The system vector and the application vector provide an
effective way to study and explain performance differences
between different JVMs.

The application vector indicates which primitive operations
are important, and the system vector reveals which primitive
operations are performance bottlenecks. System
implementers can use this information to improve primitive

operations that are significant for the application. At the
same time, application programmers can use this
information to optimize the application by reducing the

number of calls to expensive primitive operations.

One can predict the performance of the application on a
given JVM without actually running the application on it, as
long as the system vector is availa%bIeOne might also
answer “what if’ questions such as “What if this primitive
takes twice as long?” by modifying the appropriate system
and application vector entries.

3.2 ldentifying Primitive Operations
A JVM is a complicated piece of software.
schematic view of a JVM implementation.

Figure 1 shows a
Much of a JVM'’s

3.1 Overview

functionality is sipported via the system classes (also called

HBench:Java is based on the vector-based methodology of théuilt-in classes or bootstrap classes). A JVM includes a memory
HBench framework [14]. The principle behind the vector-based management system that automatically manages the heap for the
methodology is the observation that a system’s performance isapplication. The execution engine is responsible for bytecode
determined by the performance of the individual primitive interpretation, class loading, exception handling, thread
operations that it supports, and that an application’s performance
is determined by how much it utilizes the primitive operations of
the underlying system. As the name “vector-based” indicates, we

! HBench:Java will work best withupport from JVM vendors
who supply the system vectors for their JVM products.

e A)
User App.

- /1 enpty |oop
/ \"'u,' for (int i =0; i < numterations; i++) {
JVM o JT }
&

/1 1oop containing integer addition

for (int i =0; i < numterations; i++) {

[Memory System] [Executi on Engine] }

sum += i;

Figure 2(a). Java code sequences
Figure 1. Schematic view of a JVM.

/1 empty | oop
scheduling and context switches, the native method interface, loop_start:
and synchronization. The JVM implementation is further inc ecx D0+
Compllcated by the JT (JUSt In TII’TE) Component, WhICh cnp ecx, [es| +O4h] o i <numiterations
compiles Java bytecode on the fly into native machine code. i nge | oop_start

In order to create a system vector for a VM, we need to
decompose this complexity into a set of primitive operations. /1

- X . . . | oop containing integer addition
One set of candidates is the JVM's assembly instructions, i.e.,

bytecodes. This approach, however, proved inadequate primarily | oop_start:))

due to the presence of the JIT. Once bytecodes are compiled intg add edi, ecx ;,osum += i

native machine code, optimizations at the hardware level such as| inc ecx i

out-of-order execution, parallel issue and cache effects can lead cnp ecx, [esi+04h] ;; i<nuniterations
to a running time that is significantly different from the sum of jnge loop_ start

the execution times of the individual instructions executed alone.

For example, Figure 2(a) shows two Java code sequences: a Figure 2(b). Corresponding native code sequences

empty loop and a loop containing an integer addition operation.
The corresponding native code produced by the JIT is shown in
Figure 2(b). On a Pentium lll processor, both loop iterations take - = -
2 cycles to execute, due to parallel instruction issues. This leads S, Where each entry ilN and S represent each method’s

one to conclude that the addition operation is free, which is invocation count and bytecode size, respectively. For
clearly not true. example, if a JVM compiles a method the first time it is

invoked, then

dependant function J to the base application vebtorand

A higher level of abstraction that is immune or less sensitive to

hardware optimization is therefore needed. We identified the J(N,S) = zs ,
following four types of high-level components of a JVM system i
vector:

wheres is theith element ofS. The quality of JITted-code

* system classes, with method invocations to the system is harder to quantify, and is a subject of ongoing research.

classes being primitive operations;
L . The system classes component provides a convenient abstraction

* memory management, where primitive operations could |ayer “and is a good starting point for our prototype

include object allocation, live-object identification, live- jmpjlementation, which currently includes only this component,

object relocation (for copying garbage collectors) and dead- 55 highlighted by the circle in Figure 1. Our experience shows

object reclamation; that applications tend to spend a significant amount of time in
« execution engine, where primitive operations include system classes. Therefore we believe that this simplistic system

bytecode interpretation, exception handling, context vector, albeit crude, can be indicative of application performance.

switching, synchronization operations, etc.; Our results demonstrate that HBench:Java already provides

e JIT, which can be measured by two metrics: overhead andbetter predictive power than existing benchmarks.

quality of code generated. JIT overhead can be 4, HBENCH:JAVA IMPLEMENTATION

approximated as a function of bytecode size, in which case s jmplementation of HBench:Java consists of two independent
the primitive operation is the time it takes to JIT oneé ,qq. 5 profiler that traces an application’s interactions with the
bytecode instruction. The product of this per-bytecode JVM to produce an application vector and a set of

overhead and the number of JITted bytecodes yields the niorghenchmarks that measures the performance of the JVM to
overall overhead. Note that the number of JITted byteCOdeSproduce a system vector. The following two sub-sections
cannot be directly obtained from the application, as it is describe these parts in more detail.

JVM dependent. Rather, it is obtained by applying a JVM

4.1 Profiler allow for accurate measurement), and less thartirBes the

The profiler is based on JDK’s Java Virtual Machine Profiling timer resolution (so that the benchmark doesn’t run for an
Interface (JVMPI) [7]. Once attached to the JVM, a profiler can unnecessarily long time). For the experiments reported in this
intercept events in the JVM such as method invocation andPaper, we used a value of 10 for

object creation. The Java SDK1.2.2 kit from Sun comes with a For methods whose running time also depends on parameters,
default profiling agent callechprof that provides extensive such as the BufferedReader.read() method that reads an array of
profiling functionality [9]. We use this default profiler to obtain bytes from an input stream, we measure the per-byte reading cost
statistics of method invocations from which we derive an and the corresponding entry in the application vector includes the
application vector. As a first step, our application vector (and total number of bytes instead of the number of times the read()
accordingly our system vector) only contains method invocations method is called. Our current prototype implementation supports
to JVM system classes. A more complete custom profiler thatthis simple case of linear dependency on a single argument, and
incorporates the garbage collector (GC) and the JVM executionwe found it sufficient for the sample applications we tested. For
engine and that is able to directly produce an application vectormore complicated argument types, the system vector entry would
is currently under development. consist of a list of (n+1)-tuples, (t,&,..., &), where ais the

A drawback of JVMPI is that it does not provide callbacks to value of the ith argument, and t is the time it takes to invoke the
retrieve arguments of method calls. To remedy this problem, weMethod with the given arguments. We then measure several data
implemented a second profiler that is able to record methodP0iNts in this n-dimension space, and extrapolate the running
arguments; it is based on JDK’s Java Virtual Machine Debuggertimé based on the actual parameters included in the
Interface (JVMDI) [6]. Since JVMDI can only be enabled with COrresponding application vector entry.

JIT turned off (for the classic version of JDK), we keep both Figure 3 shows some sample microbenchmark results for
profilers for obvious performance reasons, with the first profiler JDK1.2.2 (Windows NT). The time for the read() method of
responsible for extensive profiing and the second profiler BufferedReader is the per-byte read cost, and the
responsible for the much simpler task of call tracing. Class.forName() method loads an empty class.

4.2 Microbenchmarks 4.3 JVM Support for Profiling and
The current set of microbenchmarks consists of approximately M icrobenchmarking

thirty methods including frequently invoked methods and For s
methods that take a relatively long time to complete, based on
traces from sample applications. Even though these method
represent only a tiny portion of the entire Java core API, we
found them quite effective in predicting application performance
as shown later in Section 5.

ome primitive operations such as class loading, the first-
time invocation cost is the true cost and subsequent invocations
ﬁust return a cached value. As a result we cannot simply measure
the cost by repeatedly calling the method with the same
' arguments in a loop and dividing the total time by the number of
iterations. In the case of class loading, it means we need to load
The microbenchmark suite is implemented using an abstracta different class every iteration. With the timer resolution of
Benchmark class. To add a microbenchmark to the suite, onecurrent JVM implementations, to achieve reasonable accuracy,
implements a class that extends the Benchmark class.the number of iterations required is on the order of hundreds and
Specifically, this means implementing the runTrial() abstract increases as processor speed increases. We could automatically
method. A utility program facilitates this process by create these dummy classes before starting the loop. However,
automatically generating the corresponding source Java programmot only does this approach not scale well, creating a large
from a template file and a file that specifies key information number of class files also perturbs the results since the number
about the particular microbenchmark. of classes within a directory is usually not that large. A better
Typically, the runTrial() method invokes the method to be sol_ution is to have the JVM provide a high-resolution timer API.
measured in a loop for some number of iterations. A nice feature! 'S @pproach has the added advantage of reduced benchmark
of our microbenchmarks is that the number of iterations is not 'Unning time (recall that the number of loop iterations is
fixed, but rather dynamically determined based on the timer INVersely proportional to the timer resolution). Most modern
resolution of the System.currentTimeMillis() function of the CPUS provide cycle counters that are accessible in user mode,

specific JVM. A microbenchmark is run long enough that the an_d many pcipular Ope_ratinhg hsysterlns_ suf:h aiPISolaris and
total running time is at least times the timer resolution (to Windows NT already provide high-resolution timer APIs.

Met hod Nane Met hod Si gnature Ti me(us)
java.l ang. Character.toString ()Ljaval/lang/String; 2.498
java.l ang. String. char At (ryc 0. 092
java.i o. Buf f eredReader. read ([ar)l 6. 897
java.l ang. d ass. f or Nane (Ljaval/lang/ String;)Ljaval/l ang/ Cl ass 5309. 944
j ava. net. Socket . <init> (Lj aval/ net/ I net Address; 1)V 2171.552

Figure 3. Sample microbenchmark results.

Table 1. Java Virtual Machines tested.

JVM CPU Memory (MB) | Operating System JVM Version Vendor
JDK1.2.2 NT_PRO Pentium Pro 1.2.2 Classic Sun Microsystems
200MHz 128
DK3.2 NT_PR 5.00.3167 Microsoft
SDK3.2 NT_PRO Windows NT 4.0
JDK1.2.2 NT_lI Pentium 11 64 1.2.2 Classic Sun Microsystems
SDK3.2_NT_II 266MHz 5.00.3167 Microsoft
JDK1.2.2_SunOS Classic i 1.2.2 Classic Sun Microsystems
- | UltraSparc Ili 128 Solaris 7 oSy
JDK1.2.1 SunOS Prod | 333MHz 1.2.1_03 Production | Sun Microsystems

One of the difficulties of microbenchmarking is that sometimes a
good JIT will recognize the microbenchmark code as dead code
and optimize it out. We have to insert code to fool the JIT into
believing that the variables used in the microbenchmark loop are
still live after the loop, and subsequently not optimized out of the
loop. However, there is a limit as to how much this workaround
can do. A better solution would be for the JIT to include
command-line options that allow users to specify optimization
levels, similar to those present in C/C++ compilers.

Advanced JIT techniques such as the adaptive compilation used
in HotSpot [5] pose some difficulties measuring JIT overhead,
which cannot be overcome without help from JVM
implementers. An adaptive compiler compiles methods based on
their usage. Methods might be interpreted initially. As time
progresses, some are compiled into native code with a
lightweight compiler (with little optimization). Frequently
executed methods might be re-compiled with a more powerful
backend compiler that performs extensive optimization. The
problem lies in how to model the JVM dependent function J
which, given the number of method invocations and method
bytecode sizes, vyieds the number of bytecodes
compiled/optimized. We think the following enhancement to
JVM would be useful:

* A JVMPI event should be generated at the beginning and
end of the compilation of a method, so that we can model
and evaluate J.

« To measure the per-bytecode compiler/optimize overhead,

the javalang.Compiler class should be augmented with
APIs for compiling and optimizing methods.

5. EXPERIMENTAL RESULTS
5.1 Experimental Setup

We ran our experiments on a variety of Java Virtua Machines.
Table 1 shows the list of JVMs tested and their configurations.

Three non-trivial Java applications (Table 2) were used to
evaluate HBench:Java. First, we ran the applications with
profiling turned on and derived application vectors from the
collected profiles. For Mercator, which is a web crawling
application, we ran the proxy server and the web crawler on two
different machines connected with a 100Mb Ethernet switch,
isolated from the outside network. The machine that hosted the
proxy server was at least as fast as the machine that hosted the
client, to insure that the proxy server was not the bottleneck.
Next we ran the HBench:Java microbenchmarks on the JVMs
listed in Table 1 and obtained their system vectors. The dot
products of the system and application vectors gave the estimated
running time for each application on each VM, which was then
compared with the actual running time to evaluate the
effectiveness of HBench:Java. Since our initiad goa is to
correctly predict the ratios of execution times of the applications
on different JVM platforms, we use normalized speed in
reporting experimental results. This also allows us to compare
HBench:Java with conventional benchmarking approaches such
as SPECIVM98 that report results in the form of ratios.

Table 2. Java applications used in the experiments.

Application Description Input Data
WebL A scripting language designed specifically for A WebL script that counts the number of images
processing documents retrieved from the web [17]. contained in a sample html file.
A Java- and SQL-based ORDBMS (object-relational | The JBBM STours sample application included in the
Cloudscape database management system). The embedded Cloudscape distribution kit. Only the BuildATour
SCap version is used, i.e, the database is running in the program, which simulates the task of booking flights and
same VM as the user program [4]. hotels, is used.
A multi-threaded web crawler [11]. The synthetic proxy provided by the Mercator kit that
Mercator generates web documents on the fly instead of retrieving
them from the Internet.

3.50

< 3.00 O SpecJVM98
(]
8_ 250 1 . ACtual
2 O hBench Predicted
- 2.00
N
3 1.50
£ 100
(o]
< 050
0.00
JDK JDK Sbk JDK JDK SDk.
1'2'2~NT§Pro 1'2'2~NTJI 3'2‘NT~PFO 1'2'2~S””OS~CIasls.,'2(;lssunosspros.zsNT‘”
JVM
Figure 4. Normalized running speeds for WebL .
3.00
5 250 [0 SpecJVMO8
3 B Actual
@ 2.00 @ hBench Predicted
]
ﬁ 1.50
g 1.00
S
Z 0.50 —
0.00
JD JDK) JDK SD
K]"Z'Z\NTJ:»r0 1'2'2\NTJ/ K3'2~NT\PrO 1'2'1~SUHOS Prog K3.2\NTJI
JVM
Figure 5. Normalized running speeds for Cloudscape.
2.50
[0 SpecJVMO8
T 2.00 T W Actual
a @ Hbench Predicted
Y 150
]
(0]
N
< 1.00
£
(o]
Z 0.50
0.00
JDK1.2.2_NT_Pro SDK3.2_NT_Pro JDK1.2.2_SunOS_Classic JDK1.2.1_SunOS_Prod
JWM

Figure 6. Normalized running speeds for Mer cator.

Table 3. Important primitive operationsfor WebL.

VM Time (Us)
Class.forName() ClassLoader.loadClass() BufferedReader.read()
JDK1.2.2 NT_PRO 5309.944 4564.824 6.897
SDK3.2_NT_PRO 3011.411 2710.269 0.317
JDK1.2.2 NT_II 4155.065 3961.282 5.108
SDK3.2_NT_lI 2281.390 2053.251 0.244
JDK1.2.2_SunOS Classic | 2264.093 2037.331 0.195
JDK1.2.1_SunOS_Prod 2487.306 2145.458 0.139
Table 4. Important primitive operations for Mercator.
VM Time (Us)
Socket.<init>() SockethputStream.read()
JDK1.2.2 NT_PRO 2171.552 0.210
SDK3.2_NT_PRO 2575.459 0.214
JDK1.2.2_SunOS Classic 826.780 0.262
JDK1.2.1_SunOS_Prod 660.711 0.254
5.2 Results Figure 6 shows the results for_ Mercator, the web crawler. We
Figure 4 shows the results for the scripting language WebL. In o_nl.y collected r(.esults for a |Im|tefﬂ nurT]ber of JVMs due 2to the
this experiment, three primitive operations account for the difficulty of setting up the machines in an isolated network
majority of the running time, shown in Table 3. Also shown in The results, however, are quite encouraging. Even though

Table 3 are the their measured performance on the five Java HBench:Java predicted the order for JDK1.2.2_NT_Pro and
Virtual Machine tested. The corresponding application vector is SDK3.2_NT_Pro incorrectly, the predicted ratio still matches the
(80, 121, 32768). It's interesting to note that the SPECJVM98 actual ratio quite closely. As a matter of fact, the actual ratio is
score of JDK1.2.2 on the PentiumPro NT machine is higher thansO close to one, it is difficult to tell which one is faster.
that on the SparcStation. However, WebL runs close to threeSPECJVM98 again predicted the wrong order for Sun JDK1.2.2.
times as fast on the SparcStation. HBench:Java’'s system vectoln this case, two primitive operations, the constructor of
reveals the problem. Class loading is twice as fast for thejava.net.Socket and java.net.SocketinputStream.read(), account
SparcStation JDK, and the BufferedReader.read() methodfor the majority of the running time. Table 4 lists the cost of
executes almost 35 times faster. It turns out that for somethese two primitives for the four Java Virtual Machines tested.
reason, the NT JDK1.2.2’s JIT didn't compile the method The per-byte socket read time is quite similar for the four JVMs.
sun.io.ByteToCharSingleByte.convert(), an expensive method The socket initialization time, which includes the cost of creating
called many times by java.io.BufferedReader.read(). The @ TCP connection, varies a lot among the four JVMs. The
differences result in superior performance on the SparcStation.corresponding application vector entry is (19525, 147550208).

Besides explaining performance differences, the predicted ratiosto understand why SPEC performs poorly, we examined the
of execution speeds are within a small margin of the real time breakdown for user versus system classes. Tables 5 and 6
execution speed ratios. show the percentage of time spent in system classes for SPEC
Figure 5 shows the results for Cloudscape, a databasePrograms and the three sample applications we tested,
management system. We did not report the result for the Sunfespectively. These numbers were obtained using the sampling
JDK1.2.2 classic version on the SparcStation becausefacility of the hprof agent included in Sun’s JDK1.2.2. As the
Cloudscape wasn't able to run on it. Similarly to what we data show, the SPEC programs spend most of the time in user
observed for the WebL results, not only does HBench:Javaclasses. Therefore, they are poor predictors for applications that
correctly predict the order of the running speed on the different Spend a lot of time in system classes. Notice that even though a
JVM platforms, the predicted ratios of the execution speedslarger percentage of time goes to user classes for the Cloudscape
closely match the actual ratios. On the other hand, SPECJVM98

does not predict the order correctly, and its predicted speed ratios
are off by a large margin in most cases. Also similar to the case? We have an agreement with Compagq that requires experiments
of WebL, Cloudscape spends large amount of time in class concerning Mercator to be run in an isolated (disconnected)
loading. network environment.

Table 5. Time breakdown for SPECIVM programs. is the key reason we did not use bytecodes as primitive

operations.

Program System Time (%) | User Time (%) Brown and Seltzer [1] used the vector-based approach of HBench

201_compress 2.6 97.4 to evaluate operating systems. They demonstrated that it
- effectively predicts the performance of the Apache web server on
_202_jess 4.5 95.5 different platforms. The primitive operations in this case are
209 _db 33.1 66.9 system calls, and the application vector is essentially the system
213 javac 6.1 93.9 call trace.
_222_mpegaudio 1.4 98.6 7. DISCUSSION AND FUTURE WORK

297 mitrt 14 98.6 HBeTnch:_]ava is still in the ea_rly stages of its d_evelopment. Here
=" = we identify a few unresolved issues and describe how we plan to
_228_jack 15.1 84.9 address them.

Average 9.2 90.8 The first issue is the large number of APl method calls. We plan

to attack this problem by identifying a set of core methods,
including methods executed frequently by most applications

Table 6. Time breakdown for sample applications. (such as those in the String class), and methods upon which

Proaram stem Time (% User Time (% many other methods are built (such as those in_ the
%9 > (%) (%) FilelnputStream class). We then plan to analyze method inter-
WebL 54.0 46.0 dependencies and derive running time estimates of non-core
Cloudscape 33.9 66.1 _methods from the running tim(_as of the core method_s. For
instance, a length() method typically takes the same time as a

Mercator 92.9 71 size() method. We believe that it is acceptable if the estimates of

non-core classes are not 100% accurate, since we expect these
case, HBench:Java was still able to predict the ratios quite methods to be infrequently invoked. Our goal is to keep the
accurately. We suspect that this is because performance of user number of microbenchmarks for the system class method calls
classes is largely determined by JT quality. System classes are under 200.
aso compiled by the same JIT, thus performance of a collection
of system classes in some way reflects the JT quality, which
applies to user classes as well.

Another issue is that JIT compilers could alter an application
enough that no single application vector could be used across all
JVM platforms. Our experience so far indicates that this is not
In theory we can use HBench:Java to predict the running time of yet a problem. However, we will closely follow this issue as JIT
SPEC programs. However, since SPEC programs spend little technologies become more advanced.

time in system classes, the few system classes serve as poor
sample data for measuring JT quality, resulting in large error
rate. Therefore, for SPEC-like applications, more sophisticated
techniques to measure JIT quality are needed.

Our short-term goal is to implement a complete set of system
class microbenchmarks for HBench:Java and to test it on more
JVM varieties and commercial applications. In the long run, we
will implement other parts of the system vector, including
In summary, the three examples presented demonstrate components representing the memory system and the execution
HBench:Java’s ability to predict real applications’ performance. engine.

The results are especially encouraging since the system vector

contains only a small set of system class methods. We expect th8. CONCLUSION

accuracy of HBench:Java to improve as the system vector isHBench:Java is a vector-based, application-specific

completed. benchmarking framework for JVMs. Our performance results

demonstrate HBench:Java's superiority over traditional
6. RELATED WORK benchmarking methods in predicting the performance of real
The HBench:Java approach is similar to #ixstract machine applications and in pinpointing performance problems. By

modd [12], where the underlying system is viewed as an abstracttaking the nature of target applications into account and offering
Fortran machine, and each program is decomposed into &ine-grained performance characterizations HBench:Java can
collection of Fortran abstract operations call&iOps. The provide meaningful metrics to both consumers and developers of
machine characterizer obtains a machine performance vector, JVMs and Java applications.

whereas therogram analyzer produces an application vector.

The linear combination of the two vectors gives the predicted 9. ACKNOWLEDGMENTS

running time. This approach requires extensive compiler supportWe wish to thank Allan Heydon and Marc Najork at Compaqg
for obtaining the accurate number ABOps and is limited to Systems Research Center for providing us with the Mercator Kit,
programming languages with extremely regular syntax. It is alsoand Suiling Ku for her assistance with the Cloudscape software.
highly sensitive to compiler optimization and hardware We also thank the creators of the WebL scripting language.
architecture [13]. As hardware becomes more sophisticated, theSpecial thanks go to Lance Berc from Compaq Systems Research

accuracy achievable with this technique tends to decrease. Thi&enter for his suggestions of Java applications for measurement.
We are grateful to the anonymous reviewers for their insightful

comments and suggestions on improving this paper, and to David
Sullivan, Keith Smith and Kostas Magoutis for proofreading the
draft. David Sullivan implemented the first version of the
HBench:Java microbenchmarks.

10. REFERENCES

[1] Brown, A. B. A Decompositional Approach to Computer
System Performance Evaluation. Technical Report TR-03-
97, Center for Research in Computing Technology, Harvard
University, 1997.

[2] Bull, J. M., Smith, L. A., Westhead, M. D., Henty, D. S,,
and Davey, R. A. A Methodology for Benchmarking Java
Grande Applications. In Proceedings of the ACM 1999
Conference on Java Grande, pages 81-88, Palo Alto, CA,
June 12-14, 1999.

[3] CaffeineMark.
http://www.webfayre.com/pendragon/cm3/runtest.html.

[4] Cloudscape. http://www.cloudscape.com.
[5] HotSpot. http://java.sun.com/products/hotspot/.

[6] JVMDI, Java Virtua Machine Debugger Interface.
http://java.sun.com/products/jdk/1.2/docs/guide/jvmdi/index
.html.

[71 IVMPI, Java Virtua Machine Profiling Interface.
http://java.sun.com/products/jdk/1.2/docs/guide/jvmpi/index
.html.

(HotOS VII), pages 96-102, Rio Rico, AZ, March 29-30,
1999.

[9] Liang, S., and Viswanathan, D. Comprehensive Profiling
Support in the Java Virtual Machine. Bth USENIX
Conference on Object-Oriented Technologies and Systems
(COOTS '99) pages 229-240, San Diego, CA, May 3-7,
1999.

[10] Mathew, J. A., Coddington, P. D., and Hawick, K. A.
Analysis and Development of Java Grande Benchmarks. In
Proceedings of the ACM 1999 Conference on Java Grande
pages 72-80, Palo Alto, CA, June 12-14, 1999.

[11] Mercator. http://www.research.digital.com/SRC/mercator/.

[12] Seavedra-Barrera, R. H., Smith, A. J., and Miya, E.
Machine Characterization Based on an Abstract High-Level
Language Machine. IEEE Transactions on Computer,
38(12), December 1989, 1659-1679.

[13] Seavedra-Barrera, R. H., Smith, A. J, Anaysis of
Benchmark Characteristics and Benchmark Performance
Prediction. ACM Transactions on Computer Systems, 14(4),
November 1996, 344-384.

[14] Seltzer, M., Krinsky, D., Smith, K., and Zhang X. The Case
for Application-Specific Benchmarking. In Proceedings of
the 1999 Workshop on Hot Topics in Operating Systems
(HotOS VII) pages 102-107, Rio Rico, AZ, March 29-30,
1999.

(8] Jones, M., and Regehr, J. The Problems You're Having May [15] SPECIVM98. http://www.spec.org/osy/jvmos/.

Not Be the Problems You Think You're Having: Results

from a Latency Study of Windows NT. Rroceedings of the
1999 Workshop on Hot Topics in Operating Systems

[16] VolanoMark. http://www.vol ano.com/benchmarks.html.
[17] WebL. http://www.research.digital.com/SRC/WebL/.

