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Abstract 

 
As Java becomes a viable platform for server applications, performance becomes a greater concern. An important 
aspect of Java Virtual Machine performance is its dynamic memory management system (garbage collection or 
GC). Traditional GC benchmarking often focuses on a set of fixed applications. As a result, when an actual appli-
cation’s memory behavior differs from that of the standard benchmarks, the benchmark results do not help the 
user judge which GC implementation suits her application the best. In this paper, we present HBench:JGC, an 
application-specific benchmarking suite, based on the idea that a system’s performance be measured in the context 
of a specific application. HBench:JGC employs a methodology that characterizes the application memory usage 
and the GC implementation independently and carefully combines both characterizations to form a single metric 
that reflects a particular application’s performance in the presence of a particular GC implementation. We evalu-
ate our approach on Sun Microsystems’s JDK1.2.2 classic JVM with a sequential mark-sweep GC. Our results 
demonstrate HBench:JGC’s unique predictive power and its ability to provide meaningful metrics that lead to a 
better understanding of GC performance. 

 
1. Introduction 

In recent years, there has been a rapid increase in the 
adoption of Java technology in a variety of environ-
ments, ranging from JVMs embedded in web-browsers 
to high-performance server products. As Java becomes 
a viable platform for server applications, performance 
becomes a greater concern. An important piece of Java 
Virtual Machine performance is its dynamic memory 
management system (garbage collection or GC). His-
toric data show that it is quite common for garbage 
collection to account for 20% or more of an applica-
tion’s total running time [9]. Sometimes garbage col-
lection is the performance bottleneck. Understanding 
GC performance and selecting the right GC implemen-
tation, therefore, can lead to significant savings in the 
total running time of the application. 

The traditional GC benchmarking approach is to pick a 
set of programs, run them with different GC algo-
rithms, and compare the total elapsed times. This ap-
proach has been used by Smith and Dorisett, as well as 
by Zorn [12][15]. This approach is inadequate, since 
the optimal GC algorithm varies with the application 
[15], and the set of benchmark programs may not rep-
resent the actual memory behavior of the application 
of interest. 

Another approach to benchmarking and selecting GC 
algorithms for a given application is to manually con-
struct a small program that models the memory behav-
ior of the application in question and when run, pro-
duces the same memory footprint. This approach re-
quires a high level of skill and is error-prone, 
especially when the application’s memory behavior is 
complicated. 

HBench:JGC is a benchmark suite that allows one to 
measure GC performance in the context of the applica-
tions in which users are interested without having to 
model the applications manually. The underlying prin-
ciple is to separate the characterization of application 
memory usage from that of the GC implementation. 
HBench:JGC includes a GC-independent profiler that 
traces an application’s memory behavior. It uses a set 
of microbenchmarks to measure the performance of a 
GC implementation in an application-independent 
way. The two characterizations are then fed to an ana-
lyzer, which calculates the predicted GC time. Fig-
ure 1 depicts the schema of HBench:JGC. 
HBench:JGC has the added advantage that one can use 
it to predict an application’s garbage collector per-
formance on a target GC implementation without ac-
tually running the application with the particular col-
lector, as long as its performance characteristics are 
available. The GC-independence of the application 
characterization facilitates this unique flexibility. We 



can predict the application’s performance on different 
GC implementations by feeding performance charac-
teristics of different GC implementations to the ana-
lyzer. 

Section 2 describes the design of HBench:JGC in de-
tail. Section 3 describes its prototype implementation. 
Section 4 presents experimental results on applying 
HBench:JGC to evaluating GC performance. Section 5 
discusses open issues and future work. Section 6 de-
scribes related work and Section 7 concludes. 

2. HBench:JGC Design 

HBench:JGC is part of HBench, an application-
specific benchmarking framework designed to address 
the problem that standard benchmark results do not 
reflect a particular application’s performance on a par-
ticular system [11]. HBench:JGC is based on 
HBench’s vector-based methodology. The principle 
behind the vector-based methodology is that a sys-
tem’s performance is determined by the performance 
of the individual primitive operations that it supports 
and that an application’s performance is determined by 
how much it utilizes the primitive operations of the 
underlying system. The running time of a given appli-
cation can be estimated by carefully combining the 
two characterizations. A simple form of this combina-
tion process would be to add up the costs of all primi-
tive operations executed by the application. By sepa-
rating characterizations of the application from that of 
the underlying system and by incorporating application 
characteristics into the benchmarking process, HBench 
can provide performance metrics that reflect the ex-
pected behavior of a particular application on a par-

ticular platform, as well as allow meaningful compari-
sons between different platforms. 

Although originally designed as part of the 
HBench:Java benchmark suite [14], the methodology 
of HBench:JGC described in this paper is applicable to 
GC implementations for other languages such as Lisp, 
Scheme, Smalltalk, and C++. 

2.1. GC Characterization 

2.1.1. Basic GC Concepts  

Like all memory management systems, a garbage col-
lector implementation supports two primitive opera-
tions, namely, object allocation and reclamation. 

The garbage collector manages the collection of free 
space from which new objects are allocated. The free 
space can be represented as a list of free blocks, a sin-
gle chunk of contiguous space, or a combination of the 
two.  

When the allocator fails to satisfy an allocation re-
quest, it initiates a garbage collection run. A garbage 
collection run typically starts with a marking phase, 
when live objects are identified and marked. This 
phase may be followed by one or more phases (typi-
cally called the sweep phases) that free the space oc-
cupied by the dead objects, making it available for 
allocation. A non-copying collector does not move the 
live objects, whereas a copying collector typically 
compacts the live objects to one end of the heap in 
order to create a large contiguous free space at the 
other end of the heap. Examples of non-copying col-
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Figure 1. Schematic View of HBench:JGC Process 



lectors include the most widely adopted mark-sweep 
garbage collector [1] and its variants. Examples of 
copying collectors include the Lisp 2 collector [8], 
which is a mark-compact collector, and Cheney’s two-
space copying collector [3]. For a complete treatment 
of this topic, readers are encouraged to refer to the 
book by Jones et al. [7]. 

2.1.2. A GC Implementation Taxonomy 

Independent of the GC algorithms (e.g., copying vs. 
non-copying), we can classify GC implementations 
according to the four attributes described in Table 1. 
The first attribute represents the axis between stopping 
all execution for garbage collection and running the 
collector completely in parallel with program execu-
tion [2]. The second attribute describes the internal 
architecture of the collector itself, whether it is se-
quential (single-threaded) or parallel (multi-threaded). 
The third attribute describes the granularity of collec-
tion, whether collection occurs in a single, complete 
pass (batch-oriented) or whether just some of the 
available memory is reclaimed during each iteration 
(incremental). The fourth and last attribute distin-
guishes generational garbage collectors [10] from non-
generational collectors. Generational collectors im-
plement a set of heaps that are cleaned with varying 
frequency depending on the age of the objects stored 
in the heap. Each heap corresponds to a different age 
group. 

The four attributes in the taxonomy are largely or-
thogonal, with a few exceptions. For example, a GC 
algorithm can be both stop-the-world and parallel, but 
it cannot be both concurrent and batch mode.  

In this paper we consider only sequential, stop-the-
world, batch-mode and non-generational garbage col-
lectors. We chose to start with this type of collector 
because it involves the fewest variables and thus al-
lows faster prototyping of the analytical models and 
more controllable experimentation. Furthermore, this 

type of collector is still in wide use. For example, 
Sun’s standard JDK1.1 and JDK1.2 Java Virtual Ma-
chines use this type of collector. Section 5 discusses 
how we envision enhancing our approach to cope with 
concurrent, parallel, incremental and generational gar-
bage collectors. 

2.1.3. Object Allocation 

For a given memory management algorithm, the cost 
of object allocation is typically determined by the fol-
lowing two factors: 

1. the size of the allocation, 

2. the state of the heap, such as the number of 
free blocks and their sizes. 

We can represent this cost with a function 
Calloc(heap_state, allocation_size). Depending on the 
memory management algorithm, Calloc carries different 
forms. In the case of copying garbage collectors, the 
free space is a contiguous area, and allocation can be 
implemented by a simple pointer advancement. 
Therefore, in the case of a copying collector, Calloc is a 
constant function. In the case of non-copying 
collectors, such as a non-copying mark and sweep 
collector, the allocation time depends on the state of 
the free-block lists maintained by the collector. If we 
characterize the heap state with simple statistical 
measures, such as a normal distribution with a given 
mean and standard deviation, or a uniform distribution 
with a given range, we can represent Calloc in a concise 
way. Furthermore, we can measure Calloc using 
microbenchmarks that initialize the heap according to 
the statistical measures. 

2.1.4 Object Reclamation 

An interesting aspect of garbage collection perform-
ance is that the cost of dead object reclamation de-
pends on the amount of live data on the heap, since the 
way a garbage collector identifies live objects is to 
traverse the connected object graph from a set of root 
objects. 

We divide the cost of object reclamation into three 
parts: the fixed cost (Cfixed), the per-live-object cost 
(Clive), and the per-dead-object cost (Cdead). Cfixed corre-
sponds to the fixed cost associated with a garbage col-
lection run, such as the initialization of data structures. 
Cfixed normally depends only on the heap size. Clive is the 
overhead measured per live object (objects that survive 

Attributes of GC Implementations 

Stop-the-world ↔ Concurrent 

Sequential ↔ Parallel 

Batch ↔ Incremental 

Non-generational ↔ Generational 

Table 1. GC Implementation Techniques 



the collection). For non-copying collectors, Clive is 
typically constant. For copying collectors, Clive is a 
function of the size of live objects, as live objects are 
compacted (copied) at the end of a collection run. Cdead 
corresponds to the per-object cost of releasing the 
space of a dead object. In most cases, this involves 
updating bookkeeping information for the freed object, 
and thus Cdead is usually constant for a given collector 
algorithm. In summary, the cost of object reclamation 
can be represented by three functions, Cfixed(heap_size), 
Clive(object_size), and Cdead. Let Nl be the distribution 
function of the sizes of live objects, i.e. Nl(s) is the 
number of surviving objects with size s. Let Nd be the 
distribution function of dead object sizes. The total 
cost of garbage collecting a heap of size h can then be 
calculated using the following formula (1): 
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The above reasoning makes the simplifying assump-
tion that every live object is traversed exactly once 
during marking. For cases where an object is refer-
enced by several live objects, the object will be visited 
multiple times by the collector. We characterize this 
additional cost by adding a second variable, di, the fan-
in degree of an object, in the per-live-object overhead 
function Clive. The middle term of the formula thus be-
comes: 
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The situation is further complicated by the fact that 
certain copying collectors need to update an object’s 
references, if the objects it points to are copied to a 
different place. We characterize this additional cost by 
adding yet another variable, do, the fan-out degree of 
an object, in the per-live-object overhead function Clive. 
The middle term now becomes: 
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The difficulty of characterizing object reclamation 
costs lies in deriving the three cost functions Cfixed, Clive, 
and Cdead using results from microbenchmarks. Our 
experience indicates that the simplified formula (1) for 
estimating GC time works well in practice for a mark-
sweep GC algorithm. In the future, we will include the 
refinements discussed above if necessary. 

2.2. Application Characterization 

The following metrics describe an application’s mem-
ory usage behavior: 

1. Object allocation rate (both in terms of the num-
ber of objects and the number of bytes); 

2. Object death rate (both in terms of the number of 
objects and the number of bytes); 

3. Object age (the time an object remains alive); 

4. Connectivity of the live object graph, i.e., the 
number of references to an object (fan-in degree) 
and the number of references it contains (fan-out 
degree). 

Some of the metrics, such as object allocation rate, can 
be obtained quite easily. Some other metrics, such as 
object age, are difficult to measure and can only be 
estimated using profiling tools. 

One significant challenge in characterizing an applica-
tion’s memory behavior is that of GC (and JVM) inde-
pendence. For example, if we use the number of ob-
jects per second as the unit for object allocation speed, 
it is not portable to other JVM or GC implementations, 
as this unit is system dependent. To solve this prob-
lem, we use objects per bytecode as our basic unit for 
both object allocation rate and object death rate. 

2.3. Predicting GC Time 

Object allocation cost is an important part of the per-
formance metric of GC systems. It is, however, not 
directly measurable for a given application. As a first 
step, this paper focuses on predicting the time the ap-
plication spends on garbage collection, or the time 
between the start and finish of a garbage collection 
run. Unless otherwise specified, GC time refers to the 
cost of object reclamation, and does not include allo-
cation costs.  

The total GC time of an application can be determined 
by two factors: the number of GC runs and the time for 
each GC run. 

With the knowledge of object allocation rate and ob-
ject death rate, one can estimate the amount of live 
data at a given execution point, from which one can 
then calculate the number of GCs deterministically, 
assuming a heap that is fixed-size or one whose growth 
policy is known a priori. 



The time for each GC run can be estimated using for-
mula (1) described in section 2.1.3. The total GC time 
is the sum of times of all individual GC runs. 

3. HBench:JGC Implementation 

As depicted in Figure 1, the major components of 
HBench:JGC are: the profiler that traces an applica-
tion’s memory behavior, the set of microbenchmarks 
whose measurement results form the characterization 
of the given garbage collection implementation, and 
finally, the analyzer that estimates the GC time given 
both application and GC characterizations. The follow-
ing three subsections describe each component in more 
detail. 

3.1 Profiler 

Sun Microsystems’s JDK 1.2.2 provides an interface 
called the Java Virtual Machine Profiling Interface 
(JVMPI) [6] that allows one to attach a profiling agent 
to the JVM at startup time. The agent can register for 
events in which it is interested through callback func-
tions and intercept the events as they occur. 

We are interested in the following events: GC start and 
finish, object allocation, free and move, heap dump 
and object dump. Object allocation and free events can 
be used to estimate object lifetimes and the number of 
free/live objects at a given execution point. Heap 
dumps help determine the object connectivity such as 
fan-in and fan-out degrees. Our current implementa-
tion includes all the events except heap and object 
dump. 

3.2. Microbenchmarks 

The goal of microbenchmarking is to measure the 
fixed and per-object costs of memory reclamation. Our 
first microbenchmark deals with singular linked list 
data structures. We are in the process of creating mi-
crobenchmarks that model more complicated object 
types with different fan-in and fan-out degrees. 

The microbenchmark first populates the heap with an 
array of linked lists of objects. The size of array, the 

length of the list, and the object size can all be dy-
namically configured with command-line options. The 
microbenchmark then explicitly invokes garbage col-
lection at three different times: 

1. When all objects on the heap are alive; 

2. When all objects on the heap are reclaimable, i.e., 
after the microbenchmark sets the pointers to the 
heads of the linked lists to null; 

3. When the heap is entirely empty, i.e., after the GC 
following step 2. 

To measure Cfixed, we run the microbenchmark with 
different heap sizes, fixing the other two parameters. 
We then plot the GC times measured in step 3 above 
against the heap sizes. The resulting regression for-
mula is the approximate function for Cfixed. 

Similarly, to measure Clive, we run the microbenchmark 
with a varying numbers of objects, fixing the other two 
parameters. The GC times measured in step 1 above 
are then plotted against the number of objects for a 
given object size s and the resulting regression func-
tion defines Clive(s). Since Clive might also depend on 
object sizes, we again repeat the microbenchmark for 
different object sizes. 

The same process is performed to measure Cdead, except 
that in this case the GC times of step 2 are used. 

3.3. Analyzer 

Given both the application and GC characterizations, 
the analyzer tries to estimate the time the application 
spends on garbage collection. The analyzer also needs 
certain configuration information, such as the heap 
size, in order to determine the total GC time. Note that 
heap sizes may change dynamically. For example, if 
the memory system cannot satisfy the allocation re-
quest even after a GC, or if the percentage of free 
space is below a certain threshold, the heap is ex-
panded. The policies as to when and how much to ex-
pand the heap should be specified to the analyzer. 



4. Experimental Results 

4.1. Experimental Setup 

We ran our experiments on Sun Microsystems’s 
JDK1.2.2 classic version on three different machine 
configurations. Table 2 shows the hardware properties. 

Sun Microsystems’ JDK1.2.2 classic JVM uses a 
mark-sweep (with compaction) collector. Mark-sweep 
collection is one of the classical garbage collection 
algorithms that remains in wide usage today. Due to its 
conservative nature, it is popular for type-unsafe lan-
guages such as C/C++. The collector of the JDK1.2.2 
classic JVM is a variation of the classical mark-sweep 
collector — it occasionally moves live objects around 
the heap. Although compaction does not occur often 
for the applications we tested, it does generate some 
uncertainties that make it harder to predict the GC 
time. 

We use Java applications included in the SPECJVM98 
benchmark suite [13] to evaluate the predictive power 
of our approach. Most SPECJVM98 applications in-
duce extensive GC activities, except _222_mpegaudio, 
which is excluded from our set of test applications. 
Table 3 shows the number of bytes allocated by each 
test application quoted from the benchmark’s docu-
mentation. The actual numbers appear to differ but the 
magnitude is the same. 

SPEC Application Allocation (MB) 

_201_compress 334 

_202_jess 748 

_209_db 224 

_213_javac 518 

_227_mtrt 355 

_228_jack 481 

Table 3. GC Activity of Test Applications 

4.2. Microbenchmark Results 

We report the GC times of the three steps described in 
Section 3.2. Unless otherwise specified, all data points 
reported in this section are means of 10 runs of the 
microbenchmark. In most cases, the standard deviation 
is within 1%. 

4.2.1. GC on Empty Heap 

Figure 2 shows the garbage collection times of an 
empty heap (see step 3 in section 3.2) on the Sun 
SPARC workstation. The regression formula indicates 
that GC times of empty heaps are linearly dependent 
on the size of the heap and that the per-megabyte cost 
of an empty heap GC for this particular GC implemen-
tation is 3.75ms. The y-intercept (0.02) is negligible. 
We therefore derive the following formula for Cfixed(h) 
(described in Section 2.2) for this GC algorithm: 

hhC fixed ⋅= 75.3)( , 

where h is the size of the heap in megabytes. The 
value of the slope (3.75) remains the same (variations 

CPU Memory (MB) Operating System JVM Version GC Algorithm 

Pentium Pro 200MHz 128 Windows NT 4.0 

Pentium III 550 MHz 256 Windows 2000 

UltraSPARC IIi 333 MHz 128 Solaris 7 

1.2.2 Classic Mostly mark-sweep 

Table 2. Test Configurations 
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Figure 2. GC Time of Empty Heap on Sun 
SPARC. We use an object size of 28 bytes, 
and 512 lists each with 512 objects. The 
number of objects and the size of objects re-
main fixed as the total heap size varies. 



within 5%) for different object sizes and numbers of 
objects. 

Similar results were obtained for the other machine 
configurations, albeit with a different slope value.  

4.2.2. GC on Fully Reclaimable Heap 

Figure 3 shows the garbage collection times of a fully 
reclaimable heap (see step 2 in section 3.2). The GC 
time again shows a linear dependence on the size of 
the heap, and the slope value (3.73) is close to the 
slope value of Cfixed (3.75). If we remove the fixed cost 
Cfixed (empty heap), the remaining time is essentially 
independent of heap size. Since all objects on the heap 
are free and are reclaimed by the collector, this re-
maining time, when divided by the number of dead 
objects, represents the per-dead-object cost Cdead. In 
this particular case, Cdead takes on a value of 
108.6/(512*512), or 0.4 ns/object. Again, similar re-
sults are observed from runs on the other machine con-
figurations. 

Theoretically, Cdead is independent of object size, since 
dead objects are neither scanned nor copied. However, 
to our surprise, our measurements suggest that Cdead is 
indeed dependent on object size. Figure 4(a) shows the 
results on the Sun SPARC workstation. The GC time 
seems to grow as the object size increases, until the 
object size hits 60 bytes, and stays at around 180ms 
thereafter. We do not have a conclusive explanation 
for this behavior but we hypothesize that the depend-
ence on the object size is due to memory cache effects. 

Our experiments on the other two machine configura-
tions seem to confirm our hypothesis. Figures 4(b) and 
4(c) show the results on the Pentium Pro and Pentium 
III machines respectively. In both cases, Cdead shows 
similar dependence patterns. Cdead is independent of 
object size, except when the object size is less than 28 
bytes. The memory effects seem to be smaller for 
these two configurations than for the Sun SPARC 
workstation. 
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Figure 3. GC Time of Fully Reclaimable 
Heap With Respect to Heap Size on Sun 
SPARC. We use an object size of 28 bytes, 
and 512 lists each with 512 objects. The 
number of objects and the size of objects re-
main fixed as the total heap size varies. 
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(a). Results on Sun SPARC 
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(b). Results on Pentium Pro 
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(c). Results on Pentium III 
 

Figure 4. GC Time (Excluding Fixed 
Overhead) of Fully Reclaimable Heap 
with Respect to Object Size. The GC time 
is calculated from the regression formula as 
shown in Figure 3. 



4.2.3. GC on Fully Live Heap 

Figure 5 shows the garbage collection times of a fully 
live heap (see step 1 in section 3.2). In this case, all 
objects on the heap are live and survive the garbage 
collection. Similar to the case of a fully reclaimable 
heap, the GC time shows a linear dependence on the 
size of the heap. If we exclude the fixed cost Cfixed, the 
remaining time is independent of heap size. The GC 
time, when divided by the number of total objects on 
the heap, yields the per-live-object cost Clive. In this 
particular case, Clive takes on a value of 
229.1/(512×512), or about 0.9ns/object. Again similar 
results are observed from runs on other machine con-
figurations. 

Figures 6 (a), (b) and (c) show Clive as a function of 
object size on the Sun SPARC workstation, the Penti-
um Pro machine, and the Pentium III machine, respec-
tively. We observe patterns similar to those of the fully 
reclaimable heap case, albeit with different threshold 
values. For the Sun SPARC workstation case, the 
value of Clive seems to grow as the object size in-
creases, until the object size hits 60 bytes and stays at 
approximately 380ms thereafter. For the Pentium Pro 
machine case, the value of Clive seems to oscillate be-
tween 600ms and 700ms after the object size hits 28 
bytes. Similarly, for the Pentium III machine case, the 
value of Clive oscillates between 220ms and 250ms after 
the object size hits 28 bytes. Since no objects are cop-
ied, Clive should be independent of object size. We 
therefore attribute this observed dependence on object 
size to memory cache effects. This effect is also de-

tected with two anomalous data points for the Pentium 
Pro configuration: at object sizes of 60 bytes and 124 
bytes. There is also a similar anomalous data point for 
the Pentium III at object size of 124 bytes. We are still 
investigating what exact memory effect causes the 
anomalies. 
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(a). Results on Sun SPARC 
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(b). Results on Pentium Pro 
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(c). Results on Pentium III 

 
Figure 6. GC Time (Excluding Fixed 
Overhead) of Fully Reclaimable Heap 
with Respect to Object Size. The GC time 
is calculated from the regression formula 
as shown in Figure 5. 
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Figure 5. GC Time of Fully Live Heap 
with Respect to Heap Size on Sun 
SPARC. We use an object size of 28 bytes, 
and 512 lists each with 512 objects. The 
number of objects and the size of objects 
remain fixed as the total heap size varies. 



4.3. Predicting GC Time 

In this section we demonstrate how the microbench-
mark results can be used to predict garbage collection 
time for a given Java application. 

First, we calculate the values of the three functions 
that characterize a GC algorithm, namely, Cfixed, Clive, 
and Cdead. Table 4 shows the coefficient values of the 
three functions for the JVM on the Sun SPARC 
workstation. For objects with size larger than 132 
bytes, the values for 132 bytes are used. 

Next we obtain characterizations of the applications’ 
memory behavior. Our current profiler implementation 
generates information such as the number of live ob-
jects, the number of dead objects, and the object size 
distribution. Assuming that live and dead objects have 
the same size distribution, we can approximate the GC 
time function TGC (section 2.1.4) with the following 
formula 

 

where n(s) is the normalized object size distribution 
function, i.e. n(12) is the percentage of objects with 
size equal to 12 bytes, L is the number of live objects 
and D is the number of dead objects. Figure 7 shows 
the accumulative object size distribution function for 
the test applications. Applications such as db and 
mtrt are dominated by one object size, whereas other 
applications use multiple object sizes. In general, the 

majority (more than 90%) of objects are small, i.e., 
less than 100 bytes, except for compress. 

So far our formula has not taken into consideration the 
cost of the occasional copying performed by the col-
lector. For our test cases, copying only occurred in two 
applications in four GC invocations (out of a total of 
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Figure 7. Cumulative Object Size Distribution in Number of Objects 
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Object Size 
Cfixed 

Per MB 
Clive 

Per Object 
Cdead 

Per Object 

12 3.75 7.04E-04 3.02E-04 

20 3.75 7.51E-04 3.49E-04 

28 3.75 8.67E-04 4.03E-04 

36 3.75 9.55E-04 4.71E-04 

44 3.75 1.07E-03 5.49E-04 

52 3.75 1.24E-03 6.15E-04 

60 3.75 1.30E-03 6.83E-04 

68 3.75 1.38E-03 6.85E-04 

76 3.75 1.44E-03 6.83E-04 

84 3.75 1.41E-03 6.85E-04 

92 3.75 1.59E-03 6.85E-04 

100 3.75 1.40E-03 6.82E-04 

108 3.75 1.33E-03 6.87E-04 

116 3.75 1.40E-03 6.91E-04 

124 3.75 1.33E-03 6.92E-04 

132 3.75 1.46E-03 7.17E-04 

Table 4. GC Characteristics on 333MHz 
UltraSPARC IIi 



thirty-five GC invocations). Three of those four GC 
invocations were explicit garbage collections made by 
the application, which trigger unnecessary copying. 
Currently we approximate this copying overhead by 

dividing the number of bytes copied over the memory 
bandwidth, and we use the actual number of bytes cop-
ied. In the future, we will enhance our analyzer to es-
timate this information from the application memory 
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Figure 8. Predicted versus Actual GC Times. All tests were run on the Sun SPARC worksta-
tion using a heap size of 32MB, except for javac and mtrt, which were run on a heap size of 
64MB to eliminate the variation on the number of GCs from different runs. 



characterization, assuming that the algorithm that de-
cides when to perform a copy is known. We will also 
explore techniques to design microbenchmarks that 
would trigger a copy and measure the cost directly. 

Figure 8 shows the predicted versus actual GC running 
times for the six SPEC applications on the Sun SPARC 
workstation. A summary of the percentage time differ-
ence between the predicted and the actual GC times is 
presented in Table 5.  

For compress (Figure 8(a)), there are five garbage 
collections during the execution of the compress appli-
cation. The predicted GC times match the actual times 
quite closely (with 0.2% error rate), showing that our 
prediction model works well in this case. In the fourth 
GC run, the collector copied certain live objects to the 
beginning of the heap, which accounts for the boost in 
the GC time. The result shows that our approximation 
on the copying time works well in this case also. 

Figures 8(b), 8(c), 8(e) and 8(f) show the results for 
jess, db, mtrt and jack, respectively. The pre-
dicted times track the actual times quite closely. No 
copying occurred in these cases.  

Figure 8(d) shows the results for javac. The pre-
dicted times track the actual times nicely except for the 
3rd, 5th, and 7th GC runs. It turns out that these three 
GCs were invoked explicitly by the application at times 
when the heap space had not been exhausted and most 
objects on the heap were live objects. The explicit GCs 
also trigger unnecessary copying of live objects. In this 
case, our approximation on the copying cost does not 
work well. This might be due to the fact that the ap-
proximation does not include the overhead for initiat-
ing a copy, therefore it underestimates the cost in cases 
when many small objects are copied. 

In summary, HBench:JGC is able to predict the actual 
GC times within 10% for five out of the six applica-
tions (Table 5). In the case of javac, the error rate is 
–6.4% if we disregard the three explicit GCs. The re-
sults demonstrate that the vector-based methodology 
used by Hbench:JGC is a promising technique for pre-
dicting application performance. In addition, we be-
lieve that when equipped with a better profiler and 
analyzer, the prediction accuracy of HBench:JGC can 
be improved further. 

5. Discussion and Future Work 

In this section we discuss issues that might arise when 
using HBench:JGC on more sophisticated GC imple-
mentations such as those presented in Section 2.1.2, 
and how we plan to address these issues.  

Concurrent garbage collection presents some technical 
challenges. With concurrent garbage collection, the 
application can continue to allocate new objects and 
access objects on the heap while a garbage collection 
is in process. Measuring the GC time is difficult be-
cause the GC time is dispersed in application execu-
tion time. We plan to approach this problem in the 
following way. We run a standard Java application 
without garbage collection, and then we run the same 
application with an additional thread that continuously 
allocates objects and invokes garbage collection. The 
performance degradation observed when the applica-
tion is run with the additional GC intensive thread 
should be a good approximation of the GC time. 

Many concurrent collectors are also incremental. 
Therefore, we will need to estimate the percentage of 
the heap that is scanned by the collector. In most 
cases, an incremental collector sets an upper bound on 
the number of root objects to be processed, from which 
one can estimate the number of objects on the heap to 
be scanned. 

Predicting the performance of parallel garbage collec-
tors can be potentially difficult because the speed-up 
of a parallel GC run over its sequential counterpart 
depends not only on the degree of parallelism, but also 
on how balanced each thread’s load is and the interac-
tions between the threads such as lock contention. 
Analyzing performance of multi-threaded applications 
in general is still an active area of research.  

SPEC 
Application 

Stdev 
(%) 

Time Difference 
(%) 

_201_compress 0.5 0.2 

_202_jess 0.4 -2.2 

_209_db 0.8 8.3 

_213_javac 0.5 -15.8(-6.4*) 

_227_mtrt 9.5 3.1 

_228_jack  0.5 -0.2 

* Results if we discard 3 explicit GCs. 

Table 5. Summary of Predicted vs. Ac-
tual GC Times 

 



To apply HBench:JGC to generational garbage collec-
tors, we model the collector performance for each gen-
eration, and then combine them together to form the 
total GC time. To achieve that, our profiler needs to be 
enhanced with the capability to estimate the object life 
expectancy. Furthermore, our analyzer should be able 
to predict when objects are promoted to older genera-
tions, i.e., it needs to know the age threshold for 
promotion. Some GC implementations make this 
knowledge public. For implementations that do not, 
we need to design our microbenchmark suite such that 
it can deduce the age threshold by creating and delet-
ing objects at different rates. 

Currently, the memory cache effect is included in our 
cost functions as a function of object size. Our results 
indicate that in some cases, this simple model might 
be insufficient. We are investigating ways to model 
the memory cache hierarchy explicitly. 

Our short-term goal is to experiment on more garbage 
collector implementations and include more applica-
tions in our experiments. In the long run, we expect to 
refine our model to cope with more sophisticated GC 
implementations and incorporate HBench:JGC into the 
HBench:Java suite, in order to more accurately predict 
a Java application’s total running time. 

6. Related Work 

Many researchers have studied the performance of 
dynamic memory management [5][15]. This literature 
provides a good foundation for understanding the in-
herent cost of dynamic storage allocation. Our ap-
proach differs in the goals we try to achieve. We em-
phasize predictability — the ability to predict applica-
tion performance on different GC implementations 
without running the application on target implementa-
tions. In contrast, past research has focused on com-
paring the cost of memory management by running a 
set of popular applications on target memory manage-
ment implementations. 

Knuth [8] presents a comprehensive analysis and com-
parison of the time complexity of several dynamic 
storage management algorithms. This systematic ap-
proach to benchmarking memory management algo-
rithms offers insight into the efficiency of these algo-
rithms and helps explain the performance differences. 
However, the analysis assumes certain statistical prop-
erties for both memory allocation and liberation pat-
terns and only applies when the system reaches equi-
librium. 

In [4], Cohen et al. compare performance of four com-
pacting algorithms using analytical models. The ana-
lytical models are parameterized by the amount of 
work to be done, such as the number of cells (objects), 
number of pointers (links) and related information, and 
the time to perform the basic operations common to all 
compactors, such as the time to test a conditional ex-
pression. Their goal is similar to ours in that they also 
try to estimate GC execution times “without resorting 
to empirical tests”. The main difference lies in the 
level of abstraction used for the primitive (elementary) 
operations. Their primitive operations are low-level 
machine instructions, whereas we conglomerate all 
machine instructions performed on an object into a 
single per-object operation (e.g., per-live-object over-
head). Because their primitives are at such a low-level, 
their models are more elaborate and require intimate 
knowledge of the algorithms (i.e., the complete source 
code). Furthermore, as computer architectures become 
more advanced, machine-level optimizations and the 
memory cache hierarchy could introduce significant 
side effects such that the analytical model will no 
longer be applicable. In our case, the cost of primitives 
is measured explicitly by the microbenchmark and 
therefore includes these side effects. 

7. Conclusion 

HBench:JGC is a vector-based, application-specific 
benchmarking framework for evaluating garbage col-
lector performance. Our results demonstrate 
HBench:JGC’s unique predictive power. By taking the 
nature of target applications into account and offering 
fine-grained performance characterizations of garbage 
collectors, HBench:JGC can provide meaningful met-
rics that help better understand and compare GC per-
formance. 
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