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Abstract

This paper presents the design, implementation, and
performance of the Harvard Array of Clustered
Computers (HACC), a cluster-based design for
scalable, cost-effective web servers. HACC is designed
for locality enhancement. Requests that arrive at the
cluster are distributed among the nodes so as to enhance
the locality of reference that occurs on individual nodes
in the cluster. By improving locality on individual
cluster nodes, we can reduce their working set sizes and
achieve superior performance for less cost than
conventional approaches. We implemented HACC on
Windows NT 4.0 and evaluated its performance for
both static documents and workloads of dynamically
generated documents adapted from logs of commercial
web servers. Our performance results show that
HACC’s locality enhancement can improve
performance by up to 121% for our stochastically
generated static file case, by up to 40% for our trace-
based static file case, and by up to 52% for our trace-
based dynamic document case, compared to an IP-
Sprayer approach to building cluster-based web servers.

1. Introduction

To handle the ever-increasing population of World
Wide Web users, busy Web sites are frequently hosted
on a cluster of computers. The load on these servers is
further exacerbated by the trend towards Web
Application Servers (WAS), which generate documents
on the fly, requiring a great deal of compute power on
the servers. Clustered web servers are a natural solution
to scaling the server for arbitrarily heavy loads.
Researchers have studied clustered web server
architectures extensively [DKM96, FGC97, KMR95,
PAB98]. However, much of their research effort has
been directed at support for static files. Anecdotal
evidence suggests that the performance issues for WAS
are more complex and intrinsically different from those
of static file servers [CDW97]. WAS typically consist
of a collection of distributed backend servers remotely
connected to a web front-end. The performance of a
WAS is usually limited either by the network delay
between the front-end and the backend server, or by
backend computing power [Ten99]. We call this
“backend limited” as opposed to the conventional static
file case where the server is usually “memory bound”

or “disk bound”, limited by the number of open sockets
it can support. In this paper we present the Harvard
Array of Clustered Computers (HACC), a cluster-based
design to enhance performance for both static file
service and WAS, with WAS as our target domain.

The conventional cluster-server approach puts a router
or “IP-Sprayer” between the Internet and a cluster of
web servers. The job of the router is to spread the load
evenly over the nodes in the cluster. A number of
commercial products [Cis96, Che97] employ this
approach to distribute web site requests to a collection
of machines, typically in a round-robin fashion while
attempting to preserve affinity between users and server
nodes. The purpose of the affinity is to give better
behavior for web servers that maintain state about
connected users. Increasing the aggregate performance
of the cluster is simply a matter of adding more nodes,
with scalability limited only by the capacity of the
router.

This simple approach to clustering does a good job of
addressing the scalability problem, but it is not a
panacea. For example, a server node for a large or
complicated web site might require a large amount of
physical memory in order to handle requests efficiently.
Each node added to the system will be responsible for
the same document store, and so will require the same
large physical memory. The result is that either the
server nodes are expensive (they need a lot of memory),
or they are slow (so you need many of them) or both.
Overall this leads to an inefficient use of resources.
Figure 1(a) shows a schematic representation of this
situation. Notice that each node in the cluster is
responsible for the same working set, namely the active
elements of the entire document store.

HACC eliminates the inefficiencies in this system by
two means: locality enhancement and dynamic load
balancing. Rather than distributing requests in a round-
robin fashion, HACC distributes requests so as to
enhance the inherent locality of the request streams in
the server cluster. We refer to this modified sprayer as a
Smart Router, illustrated in Figure 1(b). Instead of
being responsible for the entire working set, each node
in the cluster is responsible for only a fraction of the
document store. The size of each node’s working set
decreases each time a node is added to the cluster,
resulting in more efficient use of resources at each
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node. The Smart Router also uses an adaptive scheme
to tune the load presented to each node in the cluster
based on that node's capacity, so that each node is
assigned a fair share of the load. For popular pages, say
Hot Site of the Day, the Smart Router could direct
requests for that page to multiple cluster nodes1,
preventing it from overloading any single node.

The remainder of this paper is organized as follows:
Section 2 discusses related work. Section 3 describes
the implementation of HACC on Windows NT 4.0.
Section 4 presents experimental results. Section 5
discusses future research directions and Section 6
concludes.

2. Related Work

A number of commercial IP-Sprayer products are
currently available. One of the better-known products is
the Cisco LocalDirector [Cis96]. In addition to
performance and scalability, Cisco's product aims to
provide failure recovery by detecting long response
times that might signal an overloaded or malfunctioning
server.

Microsoft’s Windows NT Load Balancing Service
(WLBS) [WLBS] represents a distributed version of the
IP-Sprayer. WLBS functions as a filter between the
NIC driver and the TCP/IP protocol stack. It maps
incoming requests to the cluster node based on the
source IP address and port number and only passes
packets that are destined for the local node to the upper
network layer. The cluster nodes exchange messages
periodically to maintain a coherent view of the mapping
and the cluster status. Since the mapping algorithm is
fully distributed, this approach removes the single point
of failure of the IP-Sprayer. However, as with other IP-

                                                       
1 We assume that the document store is read-only. Mutable
document stores introduce a number of interesting issues.
Although we believe these issues can be handled in our
design, we have focused on the read-only case for this paper.

Sprayer systems, it does not take advantage of content
locality of web requests.

IBM researchers [AS92, DKM96] proposed a variation
of the IP-Sprayer approach, called the TCP router
approach. The TCP router is just like a traditional IP-
Sprayer except that the reply sent back by the cluster
node bypasses the TCP router and goes directly to the
client making the request. This approach requires
modifications to the kernel code of each server node in
the cluster.

Fox et al. [FGC97] provide an interesting overview of
the design space for cluster systems, and describe
TranSend and HotBot, two cluster-based Internet
services implemented at UC Berkeley and Inktomi
Corporation. There are a number of important
differences between HACC and the Berkeley/Inktomi
services. First, HACC is designed to operate with off-
the-shelf web server software. TranSend and HotBot
are substantially or completely custom web-server
software. Second, load balancing in TranSend and
HotBot appears to be statically configured, in contrast
to the dynamic load balancing in HACC.

The LARD system, developed jointly by Rice and IBM
[PAB98], incorporates similar ideas to HACC. In a
LARD configuration, the front-end directs incoming
requests to back-end cluster nodes based on the content
of the requests, and it assumes the role of load
balancing. Simulation results and measurements on a
prototype implementation show substantial
performance enhancement over conventional cluster
approaches. However, their work appears to focus
entirely on the static file case.

The basic idea of HACC also bears some resemblance
to that of affinity-based scheduling schemes for shared-
memory multiprocessor systems [TG89, VZ91, SL93],
which try to schedule a task on a processor where
relevant data already resides.



3. Implementation

The main challenge in realizing the potential of the
HACC design is building the Smart Router, and within
the Smart Router, designing the adaptive algorithms
that direct request streams at the cluster nodes based on
the locality properties and capacity of the node.
Additionally, the Smart Router must be robust and
efficient enough to handle a large number of cluster
nodes without becoming the bottleneck in the system.
Another challenge is creating a suitable request stream
for evaluating HACC performance; therefore, after
describing the Smart Router, we also include a brief
discussion of DBench, the benchmark used to evaluate
our system.

3.1. Smart Router Implementation

The Smart Router implementation is partitioned into
two layers, the High Smart Router (HSR) and the Low
Smart Router (LSR). As the names suggest, the LSR
corresponds to the low-level, nuts-and-bolts kernel-
resident part of the system2, whereas the HSR
implements the high-level, user-mode “brains” of the
system. This partitioning encourages a separation of
mechanism and policy, with mechanism implemented
in the LSR and policy in the HSR.

The LSR

The LSR encapsulates the networking functionality
required by our design. It is responsible for TCP/IP
connection setup and termination, for forwarding
requests to cluster nodes, and for forwarding result
documents back to clients. Apart from these functional
requirements, the main requirement of the LSR is
performance —  it is on the critical path of every request
handled by the HACC cluster and will generally
determine the degree of scalability within the cluster.

Our in-kernel LSR is implemented as a Windows NT
4.0 device driver that attaches to the top of the TCP
transport driver. The upper edges of all NT transport
drivers have an abstract interface known as the
Transport Driver Interface (TDI). This layer of
abstraction allows us to implement the LSR on top of
the TCP/IP transport layer without any modification to
the Windows NT networking subsystem. Installing the
LSR is just like installing an ordinary device driver.
This simplifies the design of the LSR since it does not

                                                       
2 An earlier version of our system used a user-level LSR,
similar to proxy server implementations. However, the
overhead of repeated crossings of the kernel/user boundary
became a significant bottleneck.

need to handle any protocol-related issues. Note that
this new layered driver is needed only on the Smart
Router. Server nodes in the cluster run entirely off-the-
shelf software and do not need any new or modified
network drivers.

The LSR listens on the well-known web server port for
a connection request. When a connection request is
received, TCP passes a buffer to the LSR containing the
HTTP request. The URL from the request is extracted
and copied to the HSR3. The LSR enqueues all data
from this incoming request and waits for the HSR to
indicate which cluster node should handle the request.
When the HSR identifies the node, the LSR establishes
a connection with it and forwards the queued data
(including the URL) over this connection. The LSR
continues to ferry data between the client and the
cluster node serving the request until either side closes
the connection.

This design has some important consequences. As we
are maintaining all open TCP connections in the Smart
Router, a criticism is that the router immediately
becomes the bottleneck, requiring as much networking
resources as all the cluster nodes combined. However,
we find that in our target WAS domain, managing
network state is not the system bottleneck. Each
dynamic request requires a significant amount of
computation on the server, such that the networking
system is not stressed handling incoming packets (cf.
sections 4.4 and 4.5).

The HSR

The job of the HSR is to monitor the state of the
document store, the nodes in the cluster, and properties
of the documents passing through the LSR. It then must
use this information to make decisions about how to
distribute requests over HACC cluster nodes. To date
we have implemented two decision distribution
algorithms, one modeling a tree-based name space such
as would be appropriate for static file service and one
for the document store used by Lotus Domino.

To support the tree-based namespace, the HSR
maintains a tree that models the structure of the
document store. Leaves in the tree represent documents
and nodes represent directories. As the HSR processes
requests, it annotates the tree with information about
the document store to be applied in load balancing. This

                                                       
3 The Windows NT 4.0 version of the TCP/IP TDI layer does
not support zero copy when data is passed up from the TDI
layer to the LSR. We expect this feature to be supported in the
future versions of NT, which should produce a significant
improvement in LSR performance.



information could include node assignment, document
sizes, request latency for a given document, and, in
general, sufficient information to make an intelligent
decision about which node in the cluster should handle
the next document request. In our prototype
implementation, load balancing is performed on a per
cluster node base. Therefore, only node assignment
information is recorded.

When a request for a particular file is received for the
first time, the HSR adds nodes representing the file and
any newly reached directories to its model of the
document store, initializing the file's node with its
server assignment. In our current HACC prototype,
incoming new documents are assigned to the least
loaded server node. After the first request for a
document, subsequent requests will go to the same
server, improving locality of reference.

However, the tree-structured name space only works for
the case when the structure of the document store is
hierarchical. Some WAS platforms, such as Lotus
Domino, a web-server product from IBM Lotus, embed
keys or request parameters into URLs, requiring further
semantic analysis of the URL in order to model the
structure of the document store. A Domino URL, for
example, is composed of three fields: host name, Notes
object, and action: http://host_name/Notes_-
object?action. The host name is the name of the web
site. The Notes object field identifies a Notes object
within a database, typically a database view followed
by a document that belongs to the view. The action
field denotes the Lotus command to be activated on the
Notes object. Typical actions are “OpenDocument”,
“OpenNavigator” and “OpenView”. Actions can have
parameters separated by the “&” character. The HSR
extension for Domino incorporates the same tree-
structured name space model for Notes objects and
enhances it with the “action” information. The model
only tracks down the hierarchy to the database view
level (as opposed to individual document level). The
HSR decides where to forward the request within the
cluster based on the Notes object and the requested
action.

3.2. Dynamic Load Balancing

Dynamic load balancing is implemented using
Windows NT’s Performance Data Helper (PDH)
interface [PDH98]. The PDH interface allows one to
collect a machine’s performance statistics remotely,
thus relieving us from the burden of implementing a
monitoring agent on each cluster node. The only
monitoring agent needed is the one on the Smart
Router. Another advantage of PDH is that it allows web
application developers to add application-specific

performance objects and counters that can be retrieved
the same way as system performance counters using a
set of well-defined APIs.

When the Smart Router starts, it spawns a performance-
monitoring thread that collects performance data from
each cluster node at a fixed interval. The performance
data is used for load balancing in two ways by the HSR.
First, a least loaded node is identified and new (unseen)
requests are assigned to the least loaded node. Second,
when a node becomes overloaded (i.e., its load exceeds
that of the least loaded node by a certain amount), the
HSR tries to offload a portion of the documents for
which the overloaded node is responsible to the least
loaded node.

The monitoring thread collects each node’s load
statistics, such as CPU utilization, disk activity, paging
activity, number of outstanding web requests in the
queue, etc., and combines these performance metrics
into a single load indicator using a weighted average. In
our prototype implementation, we use two performance
metrics: CPU utilization and bytes transferred to/from
disk per second. The load is calculated using the
following formula:

.    diskdiskCPUCPU loadweightloadweightload ×+×=

For the static file workloads, weightCPU is set to zero
and weightdisk to one, since disk activity is the dominant
factor of a server’s load. For the Domino workload,
both weightCPU and weightdisk are set to ½, since a server
node should be balanced between the complexity of the
tasks it handles and the working set size4. In spite of its
simplicity, this formula works well for our test cases.

It is an interesting research question to determine how
to combine a set of performance statistics into a single
metric that reflects the cluster node’s real load in the
context of the particular web application. This is an area
of further research and beyond the scope of this paper.

3.3. DBench

DBench [CDW97] is designed specifically for
evaluating WAS performance. The D in DBench is for
dynamic, emphasizing the key difference between
DBench and existing benchmarks —  its ability to test
WAS performance. DBench is based on a simulator that
models the activity of multiple individual users
accessing a Web site. DBench supports requests for
WAS by replaying the sequence of document requests
generated by an actual user and by dynamically

                                                       
4 Statistics of disk activity are normalized to the same scale as
that of CPU load.



Workload Description Server
software

Web site
size (MB)

Average
file size
(KB)

Number of
files

Static
baseline

Simulated clients request static files. Files and
scripts are stochastically generated.

Microsoft
IIS 4.0 100 280 367

Static FAS Simulated clients request static files. Based on
www.fas.harvard.edu.

Microsoft
IIS 4.0 80 (subset) 14 5715

Domino Simulated clients make requests to Lotus
Domino Server. Based on lotus.domino.com.

Lotus
Domino 4.6

129
(database) N/A N/A

ASP
Simulated clients make ASP as well as static file
requests to the Server. Based on
www.thecrimson.com.

Microsoft
IIS 4.0

54 (static)
7 (database)

12
4495

(including
asp files)

Table 1. Workload Descriptions

controlling the number of simulated web users.
Internally, users are modeled using a collection of user
profiles. For example, the Domino-based DBench test
used about 500 profiles, each of which describes the
pattern of references that occurred for a real Domino
user. The profiles are created by analyzing the access
log for a representative web site and extracting the
sequence of requests made by each individual that
accessed the system. The profiles include the URLs
requested by each user as well as timing information
that specifies the user pause time between each client
request. Each concurrent user in DBench is modeled by
replaying the sequence of requests as recorded in a user
profile.

DBench reports its results using two primary metrics:
Concurrent Users, which is to help site managers make
capacity planning decisions and Aggregate Throughput.
DBench also reports statistics such as Average Request
Latency and Number of Requests Completed for each
sub-epoch (10 seconds). We use a subset of these
statistics to compare performance of HACC with other
approaches. DBench measures server performance by
gradually increasing the number of concurrent
simulated users until one of three conditions occurs:

• the server begins to generate request failures,
• the average time to establish a connection with

the server exceeds 3 seconds (1 second for the
static file case), or

• the maximum time to establish a connection
with the server exceeds 5 seconds (2 seconds
for the static file case).

DBench terminates when the number of concurrent
simulated users is stable for 100 seconds.

4. Experimental Results

4.1. Methodology

In this section we present experimental results to
compare the performance of a HACC cluster to that of a

cluster implemented with an IP-Sprayer. For the HACC
cluster, the Smart Router distributes requests using the
scheme described in Section 3. For the IP-Sprayer, we
replace the HSR portion of the Smart Router with a
simple round robin request distribution scheme.
Readers might notice that this is not a true
implementation of an IP-Sprayer, since IP-Sprayers
distribute packets at the IP layer. Consequently our IP-
Sprayer implementation will have inferior performance
compared to commercial implementations. However, as
we will describe in section 4.2, for our target domain of
WAS, the overheads incurred by the Smart Router
module are minimal compared to the request latency
and do not affect the significance of the improvements
obtained with the Smart Router.

We used four DBench workloads for this evaluation, a
stochastically generated static file test, a static file test
based on Harvard’s FAS (Faculty of Arts and Sciences)
web site, a WAS test based on Lotus Domino, and
another WAS test based on Microsoft ASP [Wei99].
Details are given in Table 1. For the static-FAS
workload, due to the excessive number of user profiles,
we randomly select a subset of user profiles and use
them to drive DBench. Our cluster consists of four
Hewlett Packard Netserver E40 uniprocessors, each
with a 200MHz PentiumPro processor with a 256KB
2nd level cache. Three of them are used as cluster
nodes and one is used as the Smart Router. To test the
capability of HACC to work with uneven cluster node
capacities, we intentionally configured the cluster nodes
with different memory sizes. Two of the cluster nodes
and the Smart Router have 64MB of main memory, and
the third cluster node has 32MB. All systems run
Windows NT 4.0 updated with Service Pack 4. For the
cluster interconnect, we use 100Mb/s switched
Ethernet, with a Hewlett Packard AdvanceStack Switch
800T. Unless otherwise specified, all results reported in
this paper are the average of three runs preceded by a
warm-up run.



We are aware that Domino is not the most popular web
server product on the Windows NT platform and our
workloads are relatively small. Obtaining large WAS
workloads is extremely difficult, since performance
evaluation for WAS requires the original contents of the
web site (as opposed to the static file case where the
document store can usually be regenerated from the
web log), and the large web sites in which we are
interested are unwilling to give us the contents due to
privacy issues. However, as the workload does not fit in
the capacity of a single cluster node, we believe that the
techniques demonstrated in this paper are readily
applicable to larger workloads.

Section 4.2 presents measured overhead of the Smart
Router and analyzes the potential overhead of an IP-
Sprayer implementation. Section 4.3, 4.4 and 4.5
compare the performance of HACC and an IP-Sprayer
using the two static files workloads, the Domino
workload and the ASP workload, respectively.

4.2. Overhead of the Smart Router

To quantify the overhead of the Smart Router, we
measured the latency of static documents for documents
ranging from 512 bytes to 2MB in size under two
situations: (1) send the request directly to the web
server (Direct); (2) send the request via the Smart
Router (Via Smart Router). To isolate the cost of the
decision process in the Smart Router from the cost of
the extra network hop, we also measured the latency of
using a Windows-NT based IP router, omitting the
decision that must be made by the Smart Router. Figure
2 depicts the three different scenarios5.

Figure 2. Overhead Measurement under Three
Different Situations

                                                       
5 To isolate monitoring overhead from that of the request-
handling overhead of the Smart Router, overhead was
measured with load monitoring disabled. Since load
monitoring occurs at infrequent intervals (once per 200 ms),
we do not believe that it would affect our results.

The overhead is defined to be the difference between
the “Direct” case latency and the latencies of the other
two cases. Figure 3 shows the results. The difference of
latencies between the “Smart Router” case and the “IP
Router” case is the actual cost incurred by the
additional TCP connection handling and the decision
process in the Smart Router.

To better understand the sources of latency, we split the
request latency into two types: fixed overhead and per-
byte overhead. Per-byte (or per-packet) overhead
includes the cost of going up/down the IP stack. For the
Smart Router, there is also an additional per-byte
overhead for copying the data between the two TCP/IP
connections. This component will be smaller in a zero-
copy implementation of the Smart Router. The fixed
overhead includes the overhead of the decision process
of where to route the packets, plus, for the Smart
Router, the time for TCP connection setup and tear-
down. We can express the overhead using the following
equation:

fixed

byteper
overhead

bytesnumber of overheadoverhead
                        

       
+

×= −

or simply y=ax+b. Figure 3 shows the measured
request handling overhead for our test cases. It also
displays the linear equation fit of the data points that
gives the fixed and per-byte overhead. The fixed delay
induced by the Smart Router is about 1.4 milliseconds.
We consider this overhead tolerable in our WAS target
domain. More than half of the per-byte overhead of the
Smart Router is due to the IP stack. The per-kilobyte
overhead of the IP Router is 0.0132 ms/KB, or about
55% of the per-kilobyte overhead of the Smart Router
(0.0242 ms/KB).

In summary, for small files, the fixed overhead of the
Smart Router dominates. For large files, the Smart
Router is about 10-15% slower than an IP Router. It can
be argued that a commercial IP Router, such as Cisco’s,
would probably perform much better than the NT
router, however a similar argument can be made about a
commercial implementation of the Smart Router. There
are many Smart Router optimizations that currently
remain unexplored, due to time constraints.

Notice that this test demonstrates the worst case
overhead because the time required to service a static
file request at the server is minimal (assuming the file is
in cache). For CPU-intensive workloads, such as those
supported by Domino, serving the request takes more
time at the server. At the same time, the result data sent
back to the client is relatively small. Thus the overhead
for the additional copying is not significant. These two
facts together dramatically reduce the actual overhead
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as a percentage of the total request service time. For
example, in our test benchmark, the average file size for
Domino is less than 8KB and the average service time
is about 200ms. This results in an overhead of less than
1.6/200=0.8% for the Smart Router. In a real Internet
WAN environment, web request latencies are typically
dominated by network latencies. This would further
reduce the percentage overhead of the Smart Router.
Therefore, we conclude that the overhead of the Smart
Router is insignificant for CPU intensive workloads or
network-latency dominated workloads.

4.3. Static File Results

We use two static file workloads for our HACC
evaluation (see Table 1). The first serves as a proof of
the basic concept that if the working set of a document
store doesn’t fit in a single machine’s main memory,
and the requests can be distributed to preserve locality,
then HACC should provide performances superior to
that of a conventional IP-Sprayer. For this baseline test
case, we use a stochastically generated workload with
uniform request distribution to drive DBench. The
distribution of the file sizes follows the long tail
distribution, i.e., about 40% of the files have sizes
between 5KB and 8KB and the rest of the files are
scattered between 8KB and 1.4MB. A second static file
workload, derived from real logs of the Harvard’s FAS
web server, is to evaluate how well HACC performs in
practice. Figures 4 and 5 give the results for these two

test cases.

Figures 4 (a) and (b) show the throughput and the
number of concurrent users of the IP-Sprayer and the
HACC Cluster for our baseline test. Figure 4 (c) shows
the average request latency. The HACC cluster gives
consistently better performance than the IP-Sprayer
cluster. Each node in the HACC cluster is only
responsible for a portion of the file set, as opposed to
the entire file set for the IP-Sprayer organization. This
leads to a 121% improvement in throughput for HACC.
The number of concurrent users also increases by
113%, indicating that the HACC cluster is able to
support about 113% more users than the IP-Sprayer
architecture. Request latencies also decrease
dramatically because of the better locality achieved in
the HACC cluster. In the case of HACC, CPU
utilization for the Smart Router is about 80%,
indicating that the Smart Router is close to saturation as
the throughput approaches network limit.

As shown in Figure 5, similar improvements, though
smaller in magnitude, are attained for the FAS test case.
HACC achieves 40% higher throughput and supports
36% more users. It reduces request latency by 37%. In
this case the CPU utilization at the Smart Router is only
about 20%. The reason for the less significant
improvement compared to the baseline case is that the
request distribution for the FAS document store is
skewed (as opposed to the uniform distribution in the

Figure 3. Overhead of the Smart Router for the Static File Case.
As the X-axis is indexed in kilobytes, a represents per-kilobyte cost.
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baseline case). As a result frequently requested files
stay in the cache most of the time, even in the IP-
Sprayer case, limiting the performance gains attainable
by the Smart Router.

Our static file test cases demonstrate that the HACC
design can provide substantially improved performance
over an IP-Sprayer-based cluster for static file servers.

4.4. Domino Results

The Domino workload is based on the web log and
actual document store from domino.lotus.com, a
corporate web site for Lotus Notes. While the
underlying database is only about 130MB, there is
sufficient activity in the web log to keep the server
busy. The average request size is about 6KB. Although
the log doesn’t contain request latency information, our
local experiments show that a typical OpenDocument
request takes about 200ms and an OpenView request
takes between 0.5 to 2.0 seconds when the system is not
loaded. The average time gap between subsequent
requests is 29.8 seconds, of which a substantial fraction
is user “think” time and WAN network latency. For this
experiment, the IP-Sprayer is enhanced with a load
balancing scheme that always forwards a request to the
least loaded node.

Figure 6 shows the performance for the Domino

workload. In Figure 6(a) we used Peak
Requests/Minute, the number of requests completed per
minute during the peak period when the number of
concurrent users is stable, instead of the Throughput
metric, since we believe that for the dynamic case, the
number of requests a server can handle is a more
relevant measure of performance. The HACC cluster
delivers over 52% more requests per minute than the
IP-Sprayer and supports 46% more concurrent users for
this test. Additionally, the average request latency is
much smaller for HACC. These results demonstrate that
locality enhancement in HACC, even for a mainly
CPU-intensive workload, improves performance
substantially when the total working set size doesn’t fit
in a single node’s main memory. During all the
experiments, the CPU utilization on the Smart Router is
only about 1%. Memory usage is also minimal. The
cluster nodes show a CPU utilization of 20% - 50% and
disk transfers of 400KB - 900KB during the peak
period. These data show that for our Domino workload,
backend servers are the bottleneck, not the front-end
network.

Readers are advised against comparing the absolute
numbers of the Domino results with those of the static
file cases directly, as these workloads have drastically
different characteristics. For example, in the baseline
static file case, the scripts used to drive DBench are
stochastically generated, and requests from the same

Figure 6. HACC vs. IP-Sprayer Performance for the Domino Test.
The cluster nodes show a CPU utilization of 20% - 50% and disk transfers of 400KB - 900KB during the peak
period for both cases.
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simulated user are 2 seconds apart. In the Domino case,
the scripts model actual user behavior and incorporate
user “think” time and network latency. The gap
between successive requests from the same simulated
user is thus significantly larger for the Domino case,
resulting in a larger number of concurrent users, even
though it takes a much longer time to process a Domino
request than a static file request.

4.5. ASP Results

The ASP workload is based on the web log and actual
document store from www.thecrimson.com, the online
version of The Crimson newspaper (see Table 1).
Analysis of the web logs reveals that most requests are
for static files, and only about 5% of requests are ASP
requests. Although only a tiny fraction of the logs are
ASP requests, our measurements show that even this
low volume of ASP traffic overloads the CPU, long
before the network becomes a bottleneck. This confirms
our assertion that it is common for WAS environments
to be “backend limited.”

Since the active working set fits in a cluster node with
64MB of memory, the Smart Router’s locality-based
request distribution scheme will not offer much
advantage over an IP-Sprayer approach. However, we
demonstrate here another way of utilizing the Smart
Router’s content-based routing. For a heavily loaded
web server, a CPU-intensive dynamic web request
(such as an ASP request) will delay many static file
requests, resulting in longer response times for static
files. Thus, if we separate ASP requests from static file
requests and send them to different cluster servers, we
should be able to reduce response time significantly.

We implemented this simple content-based routing
scheme and evaluated its performance against an IP-
Sprayer approach. The Smart Router forwards static file
requests to one of the cluster nodes with 64MB of
memory and ASP requests to the other cluster nodes.
The results are shown in Figure 7. As expected, the

Smart Router approach reduces the average request
time by 45%. The IP-Sprayer is able to support slightly
more concurrent users because of the perfect load
balancing between the three cluster nodes.

This simple experiment demonstrates the flexibility of
the Smart Router’s content-based routing scheme. Even
for a small web site whose working set fits in main
memory, the Smart Router can help improve
performance.

5. Discussion

There are a number of possible directions for extending
and completing the functionality of the system. Mutable
document stores present an interesting challenge for
HACC. One solution is to offload the consistency
responsibilities to backend database servers by using a
“three-tier” architecture, with the web servers as a front
end for a standard relational database. Use of a HACC
cluster as the middle tier of such a three-tier system
makes scalable computing available for content access.

A more fundamental issue is scalability of the Smart
Router. We conducted a simple scalability test which
suggested that our prototype Smart Router can handle
between 400 to 500 requests of size 8KB per second.
Though not an impressive number for static file web
servers, for the Domino Lotus case, this means that it
can support around 100 cluster nodes. Therefore, we
believe that for web sites that contain a non-trivial
portion of dynamically generated documents, the Smart
Router will be able to scale.

Furthermore, there are many ways to improve our un-
optimized prototype Smart Router implementation. One
approach is to implement a TCP connection handoff
protocol [PAB98] such that after the Smart Router
determines to which node to distribute the request, the
TCP connection is handed off to that particular node,
which then sends the reply directly to the client,
bypassing the Smart Router.

Figure 7. HACC vs. IP-Sprayer Performance for the ASP Test.
For the IP-Sprayer, the CPU utilization of the three cluster nodes is around 50-60%. For the Smart Router, the CPU
utilization is about 20% for the node that handles static file requests, and about 40-50% for the other two nodes.
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The “Keep Alive” feature of HTTP poses some
potential problems. If “Keep Alive” is enabled, the
browser is allowed to reuse the TCP connection for
subsequent requests, which are not intercepted by the
Smart Router. This would interfere with the Smart
Router’s load balancing decision. However, major web
server vendors recommend that the use of “Keep Alive”
be limited to prevent a client from hogging the server
resources [Apache]. Therefore we expect that it will not
affect the effectiveness of Smart Router in a significant
way.

6. Summary

In this paper we have presented the HACC architecture
and experiments that explore how locality enhancement
in HACC improves web-server performance.
Experiments with an actual implementation of the
HACC cluster on Windows NT show that HACC is
able to support more than twice the number of
concurrent users in the baseline static file test, 36%
more in the FAS static file test, and 46% more in the
Domino test than alternative schemes for creating
cluster-based web servers. We conclude that the HACC
design can be effective for both the static file case and
the dynamic case, but in practice, expect it to be most
beneficial in the dynamic case where the additional
overhead of the Smart Router is tolerable.
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