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Abstract construct a high performance multi-disk system that trades off per-
formance and space utilization by moving data between RAID and
Benchmarks are important because they provide a means for usermirrored store. A variety of strategies for application assisted
and researchers to characterize how their workloads will perform prefetching and caching [3][9][14] have been explored as mecha-
on different systems and different system architectures. The field nisms to better utilize 1/O systems by taking advantage of applica-
of file system design is no different from other areas of research in tion-specific knowledge of I/O patterns.
this regard, and a variety of file system benchmarks are in use, rep- In order to accurately assess the utility of any of these technol-
resenting a wide range of the different user workloads that may be ogies, researchers need tools that allow them to understand the be-
run on a file system. A realistic benchmark, however, is only one havior of their file systems in realistic conditions. In laboratory
of the tools that is required in order to understand how a file sys- settings, “realistic conditions” are usually simulated by the use of
tem design will perform in the real world. The benchmark must benchmark programs. A variety of benchmarks have been devel-
also be executed on a realistic file system. While the simplest oped that are useful for predicting the performance of certain types
approach may be to measure the performance of an empty file sysof workloads. Some benchmarks, such as TPC-B [21] simulate spe-
tem, this represents a state that is seldom encountered by reacific application workloads. Other benchmarks, such as LADDIS
users. In order to study file systems in more representative condi-[24], measure particular file system characteristics that are of inter-
tions, we present a methodology for aging a test file system by estin a wide range of applications. LADDIS is designed to measure
replaying a workload similar to that experienced by a real file sys- responsiveness and scalability in NFS file system environments.
tem over a period of many months, or even years. Our aging tools The suite of benchmarks from the Transaction Processing Council
allow the same aging workload to be applied to multiple versions (e.g., TPC-A, TPC-B, and TPC-C) was designed to quantify perfor-
of the same file system, allowing scientific evaluation of the rela- mance of on-line transaction and decision support applications.
tive merits of competing file system designs. Webstone [22] is a more recent benchmark designed to measure the
In addition to describing our aging tools, we demonstrate their performance and scalability of Web servers.
use by applying them to evaluate two enhancements to the file lay- A benchmark representative of a realistic workload is only
out policies of the UNIX fast file system. half of the problem. To accurately characterize the performance of
a file system, the benchmark itself must be executed in an environ-
. ment similar to the conditions under which the file system will be
1 Introduction used in the real world. Unfortunately, the latter requirement seems
to have been widely ignored by file system researchers. Standard
The increasing prevalence of I/O-intensive applications, such aspractice in file system research is to perform benchmarking on
multi-media applications and large databases, has placed increasempty file systems, a condition that is typical of few real world en-
ing pressures on computer storage systems. In response to thesvironments.
pressures, researchers have investigated a variety of new technolc ~ In this paper, we propose a methodology for artificiallying
gies for improving file system performance and functionality. Disk a file system by simulating a long term workload on it. By aging a
arrays (RAIDS) were proposed as an alternative to large, high-per-file system prior to running benchmarks, the resulting benchmark
formance, expensive disk systems [13]. Redundancy leads toperformance resembles that of the real file system from which the
higher availability while the multiple disk system provides oppor- workload was generated. Just as different benchmarking programs
tunities for increased disk bandwidth on large I/O requests and are used to simulate different application workloads, different ag-
increased parallelism for small I/O requests. The log-structured file ing workloads can be used to simulate different execution environ-
system (LFS) [16] was proposed as a way to address thements.
small-write performance problem [13] of RAID devices and the In the next section, we motivate this work by describing some
increasing fraction of disk traffic due to writes. The AutoRAID of the shortcomings associated with running benchmarks on an
storage system [23] combines the benefits of RAID and LFS to empty file system. Section 3 describes our file system aging tech-
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3 , , , , cally highly utilized, contiguous allocation may be difficult (or
impossible) to achieve due to the fragmentation of free space. As a
result, new files may be more fragmented on a highly utilized file
system, resulting in lower file throughput.

The second problem with benchmarking an empty file system
is that it is impossible to study the evolution of the file system over
time. With the passage of time, the state of a file system may
change. As files are created and deleted, patterns of file fragmenta-
tion may change, as well as the relative locations of logically relat-
ed objects on the disk. There are a variety of file system policies
that may have no effect over the short term on an empty file system,
but that can have a noticeable impact on file system performance
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Figure 1: Effect of utilization on file system performance. system can either provide misleading results, or fail to measure the

This graph shows the read throughput for a range of file sizes on effects of significant changes to the underlying file system.

two UNIX file systems. The only difference between the file

systems is the amount of free space available. One file system 2 1 Empty file systems

was empty when the benchmark was performed. The other file

system was a duplicate of a seven month old file system that was The most common problem with benchmarking empty file systems

75% full. The contours of the lines are characteristic of the stems from the fact that it is very difficult to measure the effects of

performance of the UNIX fast file system and are explained in file fragmentation on an empty disk. Because fragmentation is a

detail elsewhere [18]. fact of life in many file system designs, it is foolish to benchmark

such file systems when they are empty, and have no file fragmenta-

tion. To demonstrate this effect, we ran a simple file system bench-

mark on both empty and full UNIX file systems. To measure the

. . performance of a full file system, we copied an active file system

2 Motivation from one of the file servers in our department onto our test
machiné. After benchmarking this file system, we built an empty

Executing a benchmark on an empty file system fails to capture file system, with the same parameters, on the same disk, and mea-

two important characteristics of file system behavior, both of sured its performance.

which can have a substantial effect on file system performance. ~ The benchmark program that we use throughout this paper

First, real file systems are almost never empty. This fact can have ameasures file system throughput reading and writing files of a vari-

profound effect on the performance of a file system. Many file sys-

tems attempt to optimize throughput by allocating physically con- 1 Rather than copying the entire file system, we only copied the file
tiguous disk blocks to logically sequential data, allowing the data system’s metadata. The result was that the test file system had exactly the
to be read and written at near optimal speeds. On empty disks, thissame free blocks and allocated blocks as the original file system that we
type of allocation is simple. On real file systems, which are typi- copied.
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Figure 2: Effect of time on file system behaviorEach of these graphs plots the read throughput for a range of file sizes on file systems
using two different block allocation strategies. In the graph on the left, performance was measured on empty file systems. In the graph on
the right, performance was measured adigingthe two file systems with a simulated ten month workload. On the empty file systems, the
new algorithm performed slightly better, but the performance of the two systems was nearly identical. On the aged file systems, both file
systems perform worse than in the empty case, and the new allocation algorithm provides a large improvement in read throughput. A
complete discussion of this study is presented elsewhere [19].



ety of different sizes. Figure 1 shows the read throughput for files nique we calfile system aging/Ve precompute an artificial work-
from 16 KB to 16 MB. Throughput on the real file system is as load intended to simulate the pattern of file operations that would
much as 77% lower than throughput on a comparable empty file be applied to a file system over an extended period of time. By
system. applying the same workload to different file systems, we can see
how differences in file system architecture affect the long term
behavior of the file system. The aging workload is generated from
shapshots and traces of a real file system. Aging workloads repre-
Most file systems attempt to optimize performance by clustering sentative of different types of file system activity can be created
logically related data on the underlying disk(s). The effectiveness using data collected from appropriate file systems.
of different clustering strategies may not be apparent when observ- Despite our desire for an architecture neutral file system aging
ing the short term behavior of the file system. Over time, however, technique, our existing tools have several minor dependencies on
both free and allocated space on the disk may become fragmentedthe underlying file system (FFS in our case). These dependencies
affecting the ability of the file system to perform clustering. Note are discussed in Section 3.3.
that this fragmentation affects not only the sequential layout of In this section we provide a brief overview of the UNIX fast
each file's data, but also the proximity of related files on the disk, file system, present the technique we use to generate aging work-
and the relative locations of a file and the metadata that describedoads, describe the program that actually applies a workload to a
it. In such cases, the only way to evaluate competing designs is bytest file system, and then evaluate the accuracy of our aging work-
comparing file systems after a long period of activity. load by comparing artificially aged file systems with the original
In previous work [19], we studied the effect of one such design file systems from which the aging workloads were generated.
parameter on file system performance. The 4.4BSD fast file system
[11] optimizes sequential I/O performance by allocating physically 3.1 The UNIX Fast File System
contiguou<lustersof blocks to logically sequential file data. Over
the life of a file system, as free space becomes fragmented, it be-The Fast File System has been tleefactostandard file system on
comes increasingly difficult to find contiguous free space for new UNIX systems for the past decade, and is only now being replaced
clusters. In comparing two different algorithms for finding and al- with new journaling file systems such as SGI's XFS [20], IBM’s
locating free space to new files, we discovered that they provided JFS [4], and the HP-UX v10 file system. A brief overview of the
nearly identical performance on an empty disk (see Figure 2A). Af- relevant aspects of the UNIX Fast File System (FFS) is presented
ter applying a simulated ten month workload to the two file sys- here. A more detailed explanation may be foundire Design and
tems, however, it became apparent that there was a substantialmplementation of the 4.4BSD Operating SydtEth
performance difference between file systems using the two differ- FFS divides the disk into blocks of uniform size (typically four
ent disk allocation policies (see Figure 2B). or eight kilobytes). These blocks are the standard unit of disk allo-
cation. Each of these full-sized data blocks may be further sub-di-
vided into smaller units, calleffagments to accommodate files
that do not require an integral number of disk blocks.
The disk is also divided intoylinder groupseach of which is

As the previous section demonstrates, benchmarking empty file@ set of consecutive cylinders. Each cylinder group is static in size
systems cannot provide an accurate assessment of the real-worldtypically sixteen cylinders) and contains a fixed number of data
behavior of a file system architecture. In order to get a realistic pic- blocks. Cylinder groups are used to exploit locality; related data are
ture of file system behavior, a file system must be analyzed in real- co-located in the same cylinder group. Thus FFS allocates logically
istic conditions. This means that the file system should not be sequential blocks of a file in the same cylinder group, and likewise
empty, and should have the historical state that would be devel-allocates all of the files in a directory to the same cylinder group as
oped over many months, if not years, of operation. In order to ana- the directory. . ) _

lyze file system performance in this manner, we need to apply a  Each file has an index node, mode, that contains all of the
methodology that allows researchers to fill a file system in a realis- file’s metadata, including its owner, size, and time of last modifica-
tic manner, resulting in a file system that is similar to one that had tion. Each cylinder group contains a fixed number of inodes. When-
been active in real-world conditions for an extended period of €ver possible, FFS allocates afile’s inode, as well as its data blocks,
time. Analyzing file system performance in this manner presents ain the same cylinder group as the directory containing it. Each inode

variety of pr0b|ems that do not arise when benchmarking an empty also contains pointers to the blocks that contain the file’s data. Be-
file system: cause inodes are fixed in size, they only contain fifteen of these

. Because different applications apply different block pointers. The first twelve block pointers refer to the first
workloads to the file system, it should be possible to twelve data blocks assigned to the file. The final three block point-

2.2 Life time evolution

3 File System Aging

simulate the effects of different file system workloads.
A file system used in a traditional engineering
environment for a year may behave very differently
from one that has been used on a news server for a
similar period of time, even if the underlying file
system architectures are identical.

The technique used to fill a file system should be
reproducible, allowing scientific comparisons in a
laboratory setting.

The manner in which file systems are filled should be
independent of the architecture of the underlying file
system, allowing different file system implementations
to be compared.

ers in the inode refer tmdirect blocks which contain pointers to
additional file blocks or to additional indirect blocks.

FFS attempts to optimize file system throughput by allocating
successive blocks of a file to physically contiguous disk blocks, al-
lowing the file to be read or written sequentially at close to the
disk's maximum bandwidth. Although contiguous disk allocation
usually results in optimal file throughput, FFS does not guarantee
such file layout, and only uses a set of simple heuristics in attempt-
ing to achieve it.

3.2 Generating a Workload

The central problem in aging a file system is generating a realistic

In order to study file system performance in a realistic manner, and Workload. Because a test system is likely to start with an empty
to address the concerns listed above, we have developed a techdisk, this workload should start with an empty file system and sim-



ulate the load on a new file system over many months or years,which the file was created. When a file was deleted between two
resulting in a file system that is mostly full. The ideal method for snapshots, there was no information providing hints about the time
generating this workload would be to collect extended file system it was deleted. We randomly assigned times to the file deletions that
traces and to age a test file system by replaying the exact set of fileoccurred between two snapshots. This was an ad hoc decision made
operations seen in the trace. The size of the traces required to ddo expedite the development of our file system aging workloads. A
this makes this strategy impractical. Instead, we generated agingmore careful analysis of file deletion times in real file system traces
workloads from two sets of file system data that were already might provide a more accurate solution and improve the realism of
available to us. In doing so, we sacrifice some realism in the work- our aging workloads.
load, in exchange for greater flexibility in tuning the workload to When the same inode was listed in two successive snapshots,
our needs. but with different file attributes, one of two things may have hap-
An aging workload is a sequence of file system operations, pened on the original file system; the file was either modified, or re-
primarily file creates and deletes, that can be applied to a test file placed. The inode generation number allows us to determine which
system to simulate the effects of an extended period of application of these actions actually occurred. If the generation number is the
activity on the file system. Each create operation specifies the sizesame in both snapshots then we know that the file was modified. In
of the file to be created. this case we place a “file modification” operation in the aging
To generate an aging workload, we used a set of file system workload, and assign it a time corresponding to the inode change
snapshotgollected from a file system on a local file server. These time in the later snapshot. If the generation number is different be-
shapshots, originally gathered for a different research project [18], tween the two snapshots, then the original file must have been de-
were collected nightly from approximately fifty file systems on five leted, and a newly created file assigned the same inode number. In
different file servers over periods of time ranging from one to three this case, we place two operations in the workload, a delete, and a
years. Each snapshot describes all of the files on a file system at thesubsequent create. We determine the time of the create as described
time of the snapshot. For each file, the snapshot includes the file’'sabove, and place the delete immediately prior to it.
inode number, inode change time, inode generation number, file After processing the snapshots in this manner, the workload is
type, file size, and a list of the disk blocks allocated to the file. missing an important component of real file system activity. Any
By using a sequence of snapshots of one file system, we gen-file that was both created and deleted between the same pair of
erate an aging workload modeled on the actual activity on that file snapshots will not appear in any snapshot. Trace-based file system
system during the period of time covered by the snapshots. Becausestudies [1][12] have shown that most files live for less than the
we have shapshots from a variety of different file systems, we can twenty-four hours between successive snapshots. These files may
generate aging workloads that are representative of different file have a significant effect on the state of the longer lived files on the
system uses. The extended period of time covered by the file systenfile system.
shapshots allows us to build an aging workload that simulates many To approximate the effect of these short-lived files, we must
months of file system activity. add additional file operations to the workload generated from the
Generating a workload from a sequence of traces is a threesnapshots. In order to add this additional workload, we must answer
step process. First, the target file system must be populated by ini-two questions—what operations should we add, and where (both
tializing it to a state similar to the first snapshot of the original file physically and temporally) should we add them?
system. Next, we create a skeleton of the workload by comparing To determine what file operations we should add to the aging
successive pairs of snapshots and generating a workload to accounvorkload, we examined the patterns of activity displayed by
for the changes on the original file system between the two snap-short-lived files in a seven day trace of NFS requests to a Network
shots. Finally, we flesh out the workload by adding the creation and Appliance file server [8]. For each day in the trace, we made a list
deletion of a variety of short-lived files. of the active directories, and then created a profile of the short-lived
The first step in creating an aging workload is to generate a se- file activity in those directories. The result was 449 different pro-
quence of file system operations that will bring the test file system files, each containing a list of create and delete operations on
into a state similar to the one represented by the first snapshot of theshort-lived files that occurred on one day in one directory. For each
original file system. Because the only state that we are trying to re- day in the aging workload, we selected 25 of these profiles at ran-
produce is the set of files that exist on the file system, this is a sim- dom and added them to the aging workfoad
ple matter of creating each file in the initial snapshot. The actual Given a day of activity from the aging workload, and a set of
create operations are sorted based on the inode change times of thehort-lived file profiles, we integrate the two by finding the most
files in the snapshot in the expectation that this will be a reasonableactive directorie3in that day of the aging workload, and randomly
approximation of the order in which the files were created on the distributing the profiles among them. We time-shifted each profile
original file system. so that it coincided with the peak of activity in the directory to
Next we generate the skeleton of the aging workload. By com- which it was added.
paring the inodes listed in successive pairs of snapshots, we gener-  The NFS trace that we used to generate our profiles of
ate a list of the files that were created, deleted, modified, or replacedshort-lived file activity was originally collected during a study of
between the times of the two snapshots. The major difficulty at this cleaning algorithms for log-structured file systems [2], and was
stage is determining the sequence in which these actions occurredgenerated from a server used for a typical academic workload, con-
as the snapshots do not provide sufficient information to determine sisting of text editing, compilation, executing simulations, etc. We
the exact time at which these operations took place. therefore only use this trace to generate aging workloads from file
We used several heuristics to assign creation and deletionsystems that were used in similar environments. In order to gener-
times to the file operations generated by comparing successive
shapshots. The inode change time, recorded for each file in a snap- ) ) )
shot, indicates the last time that the file’s metadata was modified. g W‘; actutﬁlly S.Cale? ttrr:e fr_llumbetr of thort"'vﬁdg"e profiles tth%t ;ﬁe used
e . . P . . ased on the size O e Tile system from wnich we generate e agin
Such mOdlflcatlonS.mCIUde the Ongm.al creation (.)f the flle,_ and the workload, adding one profile fo?/every 40 MB on the o?iginal file systen?. d
allocation of new disk blocks to the file. As previous studies have ) i o
shown that files are typically written in one burst, and are seldom 3. Since our file system snapshots d_o not preserve the names of the files in
modified after they are first written [1][12], we used the inode them, we actually used the most active cylinder groups instead of the most

h i | ted file t imate the ti ¢ active directories. This is a reasonable approximation since FFS allocates
Change ume on a newly created lile to approximate the Ume at 4 of the files in a directory to the same cylinder group.




ate aging workloads for other types of file system activity, such as inder group as their directory, this guarantees that all of the files that
database or news servers, we will need to use different traces to apare in the same cylinder group on the original file system are also

proximate the activity to short-lived files. in the same cylinder group on the aged file system.
There are two drawbacks to this approach. First, by creating an
3.3 Rep|aying the Workload extra directory for each cylinder group, we are introducing one file

per cylinder group that did not exist in any of the data sets used to
To age a file system, we apply an aging workload generated asgenerate the aging workload (i.e., the directory). The effect of these
described above to an empty file system. In all of our measure- directories should be negligible, however, as the space that they oc-
ments, we use a target file system that is the same size as the fileupy is much less than that of the files being manipulated during the
system from which the aging workload was generated, although anaging simulation. The second drawback is that by exploiting these
aging workload could also be used on larger file systems. The details of the FFS implementation, we are limiting the applicability
aging program reads records from the workload file, performing of our file system aging tools to file systems that use some physical
the specified file operations. Although the aging workload includes partitioning to improve the clustering of logically related data.
timestamps for each file operation, we simply execute the requests
as fast as possible. Replaying the workload in real time was unnec- - .
essary for our purposes, because in FFS (and many other file sys3-4 Workload Verification
tems) the order in which requests are received by the file system,
not the relative times of the requests, determines the behavior ofin order to evaluate the realism of our simulation, we compared a
the file system. test file system aged using our techniques with the real file system

The task of replaying an aging workload was complicated by from which the aging workload was generated. Because our test
the fact that the file system snapshots did not provide pathnames forfile system necessarily starts in an empty state, we generated our
the files. Because FFS exploits expected patterns of locality by al- aging workload from a file system for which we have snapshots
locating files in the same directory to the same cylinder group on starting the day it was created. This file system, which contains the
the disk, the algorithm used by the aging program to assign files to home directories of several graduate students studying parallel
directories can have a major impact on the accuracy of the agingcomputing, was not one of the file systems that we used in deriving
simulation. the aging methodology. The aging workload that we generated

Due to the absence of the original pathnames in the file systemfrom this file system simulates 215 days (approximately seven
shapshots, we decided that it would be sufficient to create the files months) of activity on a one gigabyte file system. The workload
in the correct cylinder groups. By creating files in the same cylinder contains approximately 1.3 million file operations that write 87.3
group on the simulated file system as on the original file system, we gigabytes of data to the disk and takes 39 hours to replay on a
ensured that each cylinder group on the simulated file system re-generic FFS implementation. At the end of the workload, the file
ceived the same set of allocation and deallocation requests thatsystem is 65% full.
were presented to the corresponding cylinder group on the original We ran this aging workload on a test file system that was con-
file system from which the snapshots were generated. We used eacligured with the same file system parameters as the original system
files's inode number to compute the cylinder group to which it was and compared the resulting state of the test file system with the state
allocated on the original file system. To force the files into the same of the original file system at the end of the sequence of snapshots.
cylinder groups on the aged file system, we exploited several de- In this discussion, we refer to the original file system from which
tails of the FFS implementation. the aging workload was generated asrid file systemand we re-

We start the aging process with an empty file system. The first fer to the test file system that was aged using our artificial workload
step is to create one directory for each cylinder group on the file as thesimulated file systenT.able 1 describes the hardware config-
system. The algorithm used by FFS to assign directories to cylinderuration that we used both to age the simulated file system, and for
groups ensures that each directory was placed in a different cylinderthe benchmarks described in Section 4.
group. For each file in the aging workload, we use its inode number One of the primary changes observed in many file system ar-
to compute the cylinder group to which it was allocated on the orig- chitectures as a system ages is an increase of file fragmentation on
inal file system, and place the file in the corresponding directory on the disk. Therefore we started by comparing several aspects of frag-
the aged file system. Because FFS places all files in the same cyl-mentation on the real and simulated file systems. We deflag-a

CPU Parameters Disk Parameters File System Parameters
CPU Intel Pentium Pro Disk Controller NCR 53c825 Size 1024(MB
Clock Speed 200 MHz Disk Type Fujitsu M2694ES Fragment Size 1KB
Memory 32 MB EDO RAM| Total Disk Space 1080 MB Block Size 8 KB
Bus Type PCl Rotational Speed 5400 RPM Max. Cluster Size 56 KB
Cylinders 1818 Rotational Gap
Heads 15 Cylinder Groups 63
Avg. Sectors/Track 94 Heads 19
Track Buffer 512 KB| Sectors/Track 111
Average Seek 9.5 s

Table 1: Benchmark configuration. This table describes the hardware configuration used for benchmarking and for verifying the file
system aging workload. The file system parameters shown in italics were set to match the file system from which we generated the
aging workload, despite the fact that they do not match the underlying hardware.
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Figure 3: Real vs. simulated file systemThis chart plots the
aggregate layout score for each day in the seven month
simulation period. The “Simulated” line shows the fragmentation
on the artificially aged file system. The “Real” line shows the
fragmentation on the original file system from which the aging
workload was generated. Although the two file systems behave
similarly for the first half of the simulation, the aging workload
fails to capture several of the large changes in the original file
system workload during the later half of the simulation period.

Figure 4: Fragmentation as a function of file size File sizes
were rounded up to an even number of file blocks, and the
aggregate layout score was computed for files of various sizes on
the real and simulated file systems. The results are graphed here.
Both file systems suffer from extreme fragmentation of small
files (< 32 KB). On the real file system, file layout declines
noticeably for large files (2 MB — 4 MB). A similar decline is not
seen on the simulated file system.

higher layout scores, indicating that it failed to capture all of the
fragmentation that actually occurred on the real system. It is these
file system. The layout score for an individual file is the fraction of large files that cause the aged file system to have a higher aggregate
that file’s blocks that are optimally allocated. An optimally allocat- layout score then the real one. The difference in layout scores is
ed block is one that is contiguous with the preceding block of the most noteworthy for files of 2 MB — 4 MB. We are unsure of the
same file. The first block of a file is not included in this calculation, cause of this discrepancy. Many files of these sizes on the original
since it is impossible for it to have a “previous block.” Similarly, ~file system are unusually fragmented, and have layout scores of less
layout score is not defined for one block files, since they cannot be than 0.5. On other file systems that we have examined, large files
fragmented. A file with a layout score of 1.00 is perfectly allocated; do not exhibit this degree of fragmentation. We have speculated
all of its blocks are contiguously allocated on the disk. A file with  that file activity concurrent with the creation of these large files,
a layout score of 0.00 has no contiguously allocated blocks. and taking place in the same cylinder groups, may have caused this
To evaluate the fragmentation of a set of files (or of an entire fragmentation, but we do not have the data necessary to confirm
file system), we compute theggregate layout scorfor the files. this hypothesis.
This metric is the fraction of the blocks in all of the files that are op- To summarize, our simulated aging workload mimics the real
timally allocated (again ignoring the first block of each file and one file system from which it was derived in the steady increase in frag-
block files). mentation over time. However, the total amount of fragmentation
At the end of our simulation period, the aggregate layout score on the simulated system is less than on the real file system, largely
on the real file system was 0.815, compared to 0.876 on the simu-because the simulated file system failed to replicate several large
lated file systenf. Thus, although our aging workload does cause changes in fragmentation seen on the real file system. The funda-
fragmentation on the file system, it does not generate as much frag-mental cause of this inaccuracy in our aging workload is that when
mentation as occurred on the real file system. Figure 3, which pre- we did not have sufficient information to perfectly reconstruct the
sents a time series of the aggregate layout scores for both fileworkload on the real file system, we made randomized decisions.
systems over the 215 days of the simulation, indicates that althoughThe two most important areas where we did this were in assigning
the aggregate layout score of the simulated file system tracked thetimes to file delete operations and in simulating the activity of
real file system very closely for the first half of the simulation, dur- short-lived files on the file system. In real file system workloads,
ing the second half of the simulation, the aging workload failed to there are dependencies between these operations and the other ac-
replicate several large changes in file fragmentation on the real file tivity occurring on the file system. An accurate model of these in-
system. terdependencies would allow us to make more realistic decisions
To get a better understanding of the fragmentation differences regarding file delete times and short-lived file activity. The absence
between the real and simulated file systems, we sorted the files onof such a model decreases the verisimilitude of our aging. Never-
both file systems by size and computed the aggregate layout scoresheless, these tools are still effective for evaluating the impact of de-
for files of a variety of sizes. The results are shown in Figure 4. Al- sign decisions on the long term behavior of a file system.
though the two file systems have similar layout scores for small
files (up to 64 KB), for larger files, our simulated file system has

out scoreto quantify the amount of file fragmentation in a file or

4 Applications of Aging

4. Note that these seemingly high layout scores—more than 80% of the . . .
blocks on both the real and simulated file systems were optimally !N an earlier study [19], we used aging to analyze the effectiveness

allocated—are typical of FFS. On all of the file systems in our snapshot Of an improved block allocation scheme in FFS. On an empty file
library, we seldom see an aggregate layout score of less than 0.7 except orsystem, the original and improved schemes were virtually indistin-
news servers, which are subject to extreme file fragmentation. guishable, but on an aged file system the improved scheme
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Figure 5: Performance baseline.These charts show the performance of our baseline file system in the file throughput benchmark. The
benchmark was executed after the file system was aged using the workload described in Section 3.2. Graph A plots read and write
throughput as a function of file size. Graph B plots the layout scores of the test files created during the benchmark. The sharp drops in all of
these graphs as the file size passes 96 KB corresponds to the point where FFS allocates the first indirect block to ctifile {s€e Se

resulted in performance improvements of up to fifty percent. 2. Read: The test file system is unmounted and
Aging enables us to explore the long term effects of a number of remounted to flush the file cache. Then the files are
policy decisions and file system features. In this section, we will read in the same order in which they were created.
use our aging methodology to answer the following questions As with the create phase, I/O is performed in 4 MB
about FFS layout. units.
« Indirect blocks (blocks that contain pointers to data For each file size in our tests, we executed this benchmark ten
blocks) are always allocated to new cylinder groups. times, averaging the resulting throughput measurements. In all test
This imposes a sharp performance penalty on midsize cases, the standard deviation was less than 1% of the average
files (i.e., 104 KB to 256 KB). If we allocate the first throughput.
indirect block of a file in the same cylinder group as This benchmark is unrealistic on one important sense. Real file
the start of the file, how does this affect performance? system workloads seldom create large batches of files of the same
Are there any undesirable side effects? size. Actual usage patterns typically interleave the creation and de-
e Fragments (partial blocks) are rarely allocated letion of files of a variety of sizes, possibly resulting in more file
adjacent to the preceding block of their file. Placing fragmentation than we would see in the sequential I/O benchmark
fragments adjacent to their preceding blocks may described above. Our second benchmark attempts to address the
improve performance, but it may also lead to more problem, by exploiting the more “realistically” created files that are
internal fragmentation. Is changing fragment left on the test file system at the end of the aging workload.
allocation beneficial? Previous research has shown that most older files are seldom

The basic technique used in exploring these two issues was to pro-accessed [17], and therefore that the most active files on a file sys-
pose and implement a modification to FFS. We then aged two file tem tend to be relatively young. We approximated the set of “hot”
systems that differed only in this modification, and ran a variety of files on our simulated file system by using all of the files that were
benchmarks on the aged file system to evaluate the effect of themodified during the last thirty days of the aging workload. These
proposed change on the long term behavior of the file system. files represent 9.5% of the files on the aged file system (3,207 out
In order to compare the performance of two file systems, we of 33,797 files), and use 92.3 megabytes of storage (14.5% of the
used two simple benchmark programs. The first measures the fileallocated disk space).
system throughput sequentially reading and writing files of a vari- Our second benchmark measures file system throughput when
ety of sizes. Each run of the benchmark measures the read and writeeading and writing this complete set of “hot” files. To limit the
performance for one file size. The benchmark operates on 32 MB amount of time spent seeking from one file to the next, we sorted
of data, which is decomposed into the appropriate number of files the files by directory, so multiple files would be read from one cyl-
for the file size being measured. Because FFS allocates all of theinder group before moving to another. To preserve the file layouts,
files in a single directory to the same cylinder group, the data is di- we overwrite the files during the write phase of this test.

vided into subdirectories, each containing no more than twenty-five We use FFS enhanced with the improved block-clustering al-
files. This increased the number of cylinder groups exercised dur- gorithm [19] mentioned in Section 2.2 as our baseline system. The
ing the benchmark. performance of this file system (after aging) is shown in Figure 5.
The benchmark executes in two phases:
1. Create/write: All of the files are created. For file 4.1 Indirect Block Allocation
sizes of 4 MB or less, the entire file is created with
one write operation. Large files are created using as Each time an indirect block is allocated to a file in FFS, the file
many 4 MB writes as necessary. This phase system assigns that block, and all of the data blocks it references,
measures write throughput, including the time to a different cylinder group than the previous part of the file. The
required to create new files and allocate disk space new cylinder group is chosen by selecting the next cylinder group
to them. on the disk that has at least an average number of free blocks (rela-

tive to the rest of the file system).
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Figure 6: Performance with improved indirect block allocation. These charts compare the read and write throughput of the basedine fil
system to a file system that does not switch cylinder groups when allocating the first indirect block (“NoSwitch”). The graph a@n the lef
shows this comparison on an empty file system; the graph on the right shows this comparison on aged file systems. The NoSwiteh file syste
offers higher throughput in both cases, but the magnitude of the improvement, indicated by the area between the NoSwitch &d Baselin
lines in the graphs, is significantly smaller on the aged file system.

This scheme seems undesirable, as it forces long seeks at peritems in Figure 6 we see that the NoSwitch system outperforms our
odic locations in large files. For very large files, however, these ex- baseline in both cases. The magnitude of the performance improve-
tra seeks are typically amortized over the transfer of the entire file, ment, as shown by the area between the pairs of curves for the two
and have a negligible effect on 1/0 throughput. Given a typical file file systems, is smaller on the aged file system. In the best case (104
system block size of 8 KB, this policy will force a change of cylin- KB files) the NoSwitch file system improves performance by 87%
der groups every 16 MB of the file. We also speculate that switch- on an empty file system, but only by 43% on an aged file system.
ing cylinder groups may be useful in practice, as it prevents a single If our only concern were whether the NoSwitch file system
large file from consuming all of the free space in a cylinder group. would improve performance, we would not have needed to run our

Unfortunately, there is one glaring problem with this policy of benchmarks on an aged file system. By using an aged file system,
switching cylinder groups with the allocation of each indirect block however, we can more accurately assess the magnitude of the per-
of a file—in FFS the first indirect block is allocated after only the formance improvement. The use of an aged file system also allows
twelfth data block of a file. On an 8 KB file system, this means that us to assess an adverse side effect of this enhancement. As de-
FFS imposes an extra seek after the first 96 KB of a file. For medi- scribed earlier, FFS attempts to exploit locality of reference by
um size files of a few hundred kilobytes, this extra seek can have aco-locating all of the files in a directory in the same cylinder group
noticeable impact on performance. The effect of this extra seek is as the directory itself. In a directory with many files, some of which
apparent in the performance of our baseline file system in Figure are large, the original scheme of switching cylinder groups after
5A. The layout score of the test files drops from 0.98 to 0.91 when only twelve blocks of a large file may have ensured that a single
the first indirect block is allocated (between 96 KB and 104 KB) large file did not consume all of the free space in a cylinder group,
and both read and write performance decline precipitously at the forcing subsequently allocated files to be placed in other cylinder
same point. There is a larger drop in read performance (33%) thangroups, thus destroying the desired locality.
in write performance (25%) because the indirect block not only To study this effect, we examined the state of the baseline and
causes a seek during the read, but also interferes with file prefetch-NoSwitch file systems after they had been aged. If the NoSwitch
ing, as the blocks referenced from the indirect block cannot be file system caused an increase in the number of files displaced from
prefetched until the indirect block itself has been read from the disk. the cylinder group of their directory, we would expect to see a larg-

To address this problem, we modified FFS to not switch cyl- er number of files where the first data block of the file is in a differ-
inder groups until it allocates the second indirect block in a file. (In ent cylinder group from the file's inode. (FFS also tries to locate a
our file systems, this occurs when the file size reaches approximate-file’s inode in the same cylinder group as its directory.) We counted
ly 16 MB). We call the implementation of FFS that includes this en- the number of these “split files” on the two file systems, and for
hancemeniNoSwitchWe expected this minor enhancement to have each such file, determined how many cylinder groups separated the
the effect of improving file throughput for files of a few hundred ki-  file's inode and its first data block. The more intervening cylinder
lobytes. Larger files should not see very much improvement as the groups, the longer the seek required to read the file’s data after read-
savings from eliminating one seek are amortized over the time it ing its inode. The results are summarized in Table 2.
takes to read or write the entire file. We used our throughput bench- The NoSwitch file system has more than twice as many of
mark to compare the performance of the NoSwitch file system to these split files as the baseline file system, indicating that not
our baseline file system on both empty and aged partitions. The re-switching cylinder groups when the first indirect block is allocated
sults are shown in Figure 6. does, in fact, cause highly utilized cylinder group to run out of free

As expected, read and write throughput to files of a few hun- space. On the baseline file system, most of the split files require rel-
dred kilobytes improves on the NoSwitch file system. Note that atively short seeks; in more than half the cases, the file’s data is
there is still a slight performance drop as file size passes 96 KB andonly one cylinder group away, and in almost all cases, the data is
the first indirect block is used. This occurs because in addition to within ten cylinder groups of the file’s inode. In contrast, a third of
transferring the file data, the file system must also transfer the indi- the split files on the NoSwitch file system involve seeks of more
rect block. Comparing the performance on empty and aged file sys-than 10 cylinder groups.



Baseline NoSwitch Baseline NoSwitch

Number of split files 4312 9155 Aggregate Layout Score 0.928 0.931
% of all files that are split 13 27 # of split files 327 594
% of one cyl. group splits 58 37 Read bandwidth (MB/sec) 0.810 0.835
% of <10 cyl. group splits 95 67 Write bandwidth (MB/sec) 0.494 0.495
Table 2: Number of split files on NoSwitch file systemsThis Table 3: Performance of recently modified files on NoSwitch

table compares the number of split files (files where the inode file system.This table presents the read and write throughput of
and the first data block are in different cylinder groups) on the the files modified during the last thirty days of the aging
baseline file system and on the aged file system with the workload on the baseline and NoSwitch file systems. The
NoSwitch enhancement. The four rows of the table present, aggregate layout scores of the files used during this test, and the
respectively, the total number of split files on each file system, number of these files where the first data block was located in a
the percentage of all files on each file system that are split, the different cylinder group than the file’s inode (“split files”) are also
percentage of split files where the data block is only one cylinder presented. Throughput measurements are the averages of ten test
group away from the inode, and the percentage of split files runs. All standard deviations were less than 0.2% of the reported
where the data block is no more than ten cylinder groups away means.

from the inode. Both file systems had sixty-three cylinder
groups.

that the layout scores of small files are much lower than those for
other files, indicating that small files are more fragmented. This
In an attempt to balance the performance gain for large files, fragmentation is almost entirely due to the fragment allocation pol-
which are not allocated in one cylinder group, against the potential icy. On the baseline file system, for example, only 36% of two
performance loss from the longer seeks required to read the extrablock files are allocated with their two blocks contiguous on disk.
split files that are generated on the NoSwitch file system, we turn Of the two block files where the second block is a full block rather
to the results of our hot file benchmark. The results of this bench- then a fragment, however, 87% are allocated contiguously.
mark, which are summarized in Table 3, show that the NoSwitch Ideally, we would like the fragment at the end of a file to be
file system offers a modest improvement in read throughput, with contiguous with the preceding block of the file. To this end, we
virtually no change in write throughput. This performance im- modified the fragment allocation algorithm used by FFS. Our new
provement offered by the NoSwitch file system suggests that the algorithm always attempts to allocate the block immediately adja-
performance gained via better layout of larger files outweighs the cent to the previous file block. If that block is available, it is broken
performance lost by increasing the number of split files. The im- into fragments, and the unused portion is marked as free. If the de-
provement in performance is small enough, however, that it may be sired block is not available, we return to FFS’s original fragment al-
an artifact of the particular workload that we are using, and this file location policy. For small files, where the only data block is a
system modification may not be universally applicable. Itis impor- fragment, we always use the original FFS policy, hoping to fill in
tant to note, however, that we would have had no means to evaluatehe free fragments created when full blocks are broken up to pro-
this trade-off if we had only benchmarked NoSwitch on an empty vide contiguous fragments for larger files. We refer to the version

file system. of FFS that uses this new fragment allocation policgasartFrag
We used our sequential I/O benchmark to compare the perfor-
4.2 Fragment Allocation in FFS mance of the SmartFrag file system to that of our baseline system.

Since we were interested in the behavior of files that use fragments,

To limit the amount of internal fragmentation caused by small we focused on small files in running this benchmark. Figure 7
files, FFS allows a single file system block to be subdivided into shows the layout score of the small files created by running the
fragments The minimum fragment size is determined at the time benchmark on the two aged file systems. Figure 8 presents the mea-
that the file system is created, and blocks may only be divided into sured performance of the two versions of FFS on both empty and
pieces that are integral multiples of the fragment size. For files aged file systems.
with no more than twelve data blocks (i.e., files that do not use any Figure 7 shows that the SmartFrag scheme dramatically de-
indirect blocks), a partial block containing an integral number of creases file fragmentation for files that use fragments. Both the
fragments may be used as the last data block instead of a full-sizedSmartFrag and baseline file systems achieve nearly perfect layout
file system block. On our test file system, for example, the block for file sizes that are an integral multiple of the eight kilobyte disk
size was 8 KB and the fragment size was 1 KB. Thus, a 30 KB file block size. For intermediate sizes, however, SmartFrag eliminates
would be allocated as three file blocks, followed by a partial block almost all of the fragmentation seen on the baseline system.
containing six fragments. This difference in file layout translates to the performance dif-

While this scheme is efficient in reducing the amount of disk ferences seen in Figure 8. The saw-tooth effect in the read perfor-
space wasted by internal fragmentation, the algorithm used to allo-mance on all of the tested systems is caused by changes in the
cate fragments to files results in suboptimal file layout. When allo- performance characteristics of the file systems when fragments are
cating a fragment, FFS first attempts to find a free fragment of the used. All file sizes that are even multiples of the file system block
appropriate size in the same cylinder group as the file. If such a size do not require fragments. Note that at these file sizes, the per-
fragment is not available, FFS will divide a larger free fragment. Fi- formance of the baseline file system is the same as on the Smart-
nally, if no fragment of an appropriate size is available, FFS will al- Frag file system, as they both use the same file layout algorithm.
locate an entire file system block, and divide itinto fragments. Thus For file sizes that are not integral multiples of the file system block
the primary goal of the fragment allocation algorithm is to limit the size, SmartFrag outperforms the baseline system due to the im-
amount of free space that exists in fragments. The downside of thisproved allocation of fragments for these files. Both the SmartFrag
approach is that the fragment at the end of a file is seldom allocatedand baseline systems have decreased throughput for files that use
near the preceding block of the file. In Figure 4, for example, we see fragments because FFS issues a separate 1/0 request to the disk



: : : : data on a file system is allocated in full-sized file system blocks. If
, too much of the file system’s free space is in fragments instead of
N full-sized blocks, the file system may run out of free blocks while
there is still a sizeable amount of free space in fragments. Seltzer et
al. have described a particularly spectacular instance of this prob-
lem [18]; one of their news servers reported that it was out of free
space despite the fact the file system had more than ninety mega-
bytes free—all in fragments.
To evaluate how much the SmartFrag file system increases the
! fragmentation of free space, we compared the number of free
"' blocks and free fragments on the baseline and SmartFrag file sys-
/ tems. As expected, both file systems had the same amount of free
0.2 / SmartFrag — b space. On the SmartFrag file system, however, twice as much of
| Baseline -~ this space was in fragments (5% vs. 2.5% of free space). Because
00 P . . . the total amount of fragmented free space is relatively small on both
"o 20 20 60 80 100 file systems, we feel that this side effect of the SmartFrag allocation
File Size (in KB) scheme is tolerable; it is unlikely to cause problems until the file
system is very close to maximum capacity.
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Figure 7: File layout with smart fragment allocation. This
graph shows the amount of file fragmentation for small file sizes

on the baseline and SmartFrag file systems. The layout score is
plotted for the files created for the throughput test in Figure 8B. 5 Related Work

driver for the fragment, regardless of whether the fragment is con- The use of traces and simulated workloads is not a new idea in file
tiguous with the previous file block. system research. These tools have been used for a wide variety of
The differences in write throughput are much smaller because Purposes. In general, the two mechanisms have been used inter-
in FFS write throughput is dominated by the time required to syn- changeably, depending on the availability of appropriate file sys-
chronously update on-disk metadata each time afile is created [18]. tém traces, and the ease of parameterizing a workload for

The write performance on all of the tested systems also shows Simulation. ] ] o
an unexpected jump when the file size reaches 64 KB. This is the Several studies have used file system traces to characterize file

versions of FFS derived from 4.4BSD). Until a full cluster (64 KB) file access times, and patterns of access within a single file. Ouster-
of data has been written to a file, FFS does not use clustered writes.nout et al. performed such a study on the 4.2BSD UNIX file system
The resultis that for smaller file sizes, FFS issues one write request [12]. In a follow up study, Baker et al. examined changes in file ac-
for each file block, regardless of the layout on disk. At these file siz- C€SS patterns six years later, and also investigated issues of file shar-
es, the overhead of performing these individual I/O operations com- ing in the Sprite distributed operating system [1]. Ramakrishnan et
pletely masks any performance differences caused by the fragment@l- performed a similar analysis of file system traces collected from
allocation policy. For files larger than 64 KB, we see that the Smart- large customers of Digital Equipment Corporation [15].

Frag file system provides improved throughput for file sizes that re- File system traces and simulated file system workloads have
quire the use of a fragment. also been used to as input for file system simulations and to stress

The potential downside to the SmartFrag strategy is the test new file system architectures. Both simulated workloads and
amount of fragmentation of free space that it causes. Most of the file System traces have been used by different researchers to evalu-
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Figure 8: Performance with smart fragment allocation. These charts compare the read and write throughput of the baseline file system to
a file system that uses our improved fragment allocation algorithm (“SmartFrag”). The graph on the left shows this comparison on an empty
file system; the graph on the right shows this comparison on aged file systems. The saw-tooth effect shows the effect of changing fragment
size on file system performance. The peaks represent file sizes that are an integral number of blocks. File sizes that require the use of a
fragment do not perform as well because reading or writing the fragment requires an extra I/O operation. The step in write performance at 64
KB files is the result of a performance bug in FFS, described in the body of this paper. All of the performance curves drop precipitously after

96 KB because FFS switches cylinder groups at this point.



ate garbage collection strategies for log-structured file systems
[16][2]. Dahlin et al. used a week-long trace of a large NFS instal-
lation to drive simulations of a new caching scheme for distributed [5]
file systems [5].

As described above, simulated file system workloads have
been generated in a variety of ways and used for a variety of pur-
poses. The most important difference between our work and prior [6]
applications of these tools is not in the methodology used to gener-
ate the workloads, but rather in the application of the workload. Our
file system workloads are not, in themselves, used as benchmarks
or stress tests (although they are quite effective at the latter task).[7]
Instead we use a long-term file system workload to prepare test file
systems for the application of other benchmarks and measuremen{8]
tools.

Not all file system benchmarking has been conducted on emp-
ty file systems. Seltzer et al. [19] examined the effect of varying the [9]
amount of free space on a log-structured file system while running
a transaction processing benchmark. Although this study did show
that performance can vary depending on how full a file system is, it
did not address the question of how the file system should be filled.

Herrin and Finkel [7] tested their Viva file system using an ag- [10]
ing technique that created and deleted files at random, selecting file
sizes from a hyperexponential distribution. Ganger and Kaashoek
[6] used a similar technique in testing their clustering FFS. In both [11]
cases, the goal of aging was to reproduce the type of on-disk layout
that might be experienced after a file system had been in use for an
extended period of time. These aging techniques were not, howev-[12]
er, based on an actual file system workload.

6 Conclusions [13]

The behavior of a file system can change dramatically with the
passage of time. As a file system is filled, or as successive genera-
tions of files are created, modified, and deleted, the performance[14]
characteristics of the system also change. By ignoring these
changes in file system behavior, researchers fail to accurately
assess how file system designs will respond to real-world condi- [15]
tions. Not only do active file systems behave differently from
empty ones, but there are also a variety of file system design deci-
sions whose full effects are only apparent after a long period of [16]
use.

In order to accurately evaluate the long-term behavior of com-
peting file system architectures, we have developed a process for
artificially aging a file system by replaying a long-term workload [17]
on a test file system. As demonstrated by our evaluation of two new
file layout policies for the UNIX fast file system, this technology al-
lows for the scientific evaluation of design decisions that may have [18]
no discernible effect on the short-term characteristics of file system
behavior.
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