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Abstract
Benchmarks are important because they provide a means for u
and researchers to characterize how their workloads will perfo
on different systems and different system architectures. The fi
of file system design is no different from other areas of research
this regard, and a variety of file system benchmarks are in use, r
resenting a wide range of the different user workloads that may
run on a file system. A realistic benchmark, however, is only o
of the tools that is required in order to understand how a file sy
tem design will perform in the real world. The benchmark mu
also be executed on a realistic file system. While the simple
approach may be to measure the performance of an empty file s
tem, this represents a state that is seldom encountered by
users. In order to study file systems in more representative con
tions, we present a methodology for aging a test file system
replaying a workload similar to that experienced by a real file sy
tem over a period of many months, or even years. Our aging to
allow the same aging workload to be applied to multiple versio
of the same file system, allowing scientific evaluation of the rel
tive merits of competing file system designs.

In addition to describing our aging tools, we demonstrate the
use by applying them to evaluate two enhancements to the file l
out policies of the UNIX fast file system.

1 Introduction

The increasing prevalence of I/O-intensive applications, such
multi-media applications and large databases, has placed incr
ing pressures on computer storage systems. In response to t
pressures, researchers have investigated a variety of new techn
gies for improving file system performance and functionality. Dis
arrays (RAIDS) were proposed as an alternative to large, high-p
formance, expensive disk systems [13]. Redundancy leads
higher availability while the multiple disk system provides oppo
tunities for increased disk bandwidth on large I/O requests a
increased parallelism for small I/O requests. The log-structured
system (LFS) [16] was proposed as a way to address
small-write performance problem [13] of RAID devices and th
increasing fraction of disk traffic due to writes. The AutoRAID
storage system [23] combines the benefits of RAID and LFS
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construct a high performance multi-disk system that trades off p
formance and space utilization by moving data between RAID a
mirrored store. A variety of strategies for application assiste
prefetching and caching [3][9][14] have been explored as mech
nisms to better utilize I/O systems by taking advantage of applic
tion-specific knowledge of I/O patterns.

In order to accurately assess the utility of any of these techn
ogies, researchers need tools that allow them to understand the
havior of their file systems in realistic conditions. In laborator
settings, “realistic conditions” are usually simulated by the use
benchmark programs. A variety of benchmarks have been dev
oped that are useful for predicting the performance of certain typ
of workloads. Some benchmarks, such as TPC-B [21] simulate s
cific application workloads. Other benchmarks, such as LADD
[24], measure particular file system characteristics that are of int
est in a wide range of applications. LADDIS is designed to measu
responsiveness and scalability in NFS file system environmen
The suite of benchmarks from the Transaction Processing Cou
(e.g., TPC-A, TPC-B, and TPC-C) was designed to quantify perfo
mance of on-line transaction and decision support applicatio
Webstone [22] is a more recent benchmark designed to measure
performance and scalability of Web servers.

A benchmark representative of a realistic workload is on
half of the problem. To accurately characterize the performance
a file system, the benchmark itself must be executed in an envir
ment similar to the conditions under which the file system will b
used in the real world. Unfortunately, the latter requirement see
to have been widely ignored by file system researchers. Stand
practice in file system research is to perform benchmarking
empty file systems, a condition that is typical of few real world en
vironments.

In this paper, we propose a methodology for artificiallyaging
a file system by simulating a long term workload on it. By aging
file system prior to running benchmarks, the resulting benchma
performance resembles that of the real file system from which t
workload was generated. Just as different benchmarking progra
are used to simulate different application workloads, different a
ing workloads can be used to simulate different execution enviro
ments.

In the next section, we motivate this work by describing som
of the shortcomings associated with running benchmarks on
empty file system. Section 3 describes our file system aging te
nology. In Section 4, we apply our aging methodology to the eva
uation of two new file layout policies for the UNIX fast file system
Section 5 compares our work with related research. Finally, in S
tion 6, we present our conclusions

.
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2 Motivation

Executing a benchmark on an empty file system fails to capture
two important characteristics of file system behavior, both of
which can have a substantial effect on file system performance.
First, real file systems are almost never empty. This fact can have a
profound effect on the performance of a file system. Many file sys-
tems attempt to optimize throughput by allocating physically con-
tiguous disk blocks to logically sequential data, allowing the data
to be read and written at near optimal speeds. On empty disks, this
type of allocation is simple. On real file systems, which are typi-

cally highly utilized, contiguous allocation may be difficult (or
impossible) to achieve due to the fragmentation of free space. A
result, new files may be more fragmented on a highly utilized fi
system, resulting in lower file throughput.

The second problem with benchmarking an empty file syste
is that it is impossible to study the evolution of the file system ov
time. With the passage of time, the state of a file system m
change. As files are created and deleted, patterns of file fragme
tion may change, as well as the relative locations of logically rela
ed objects on the disk. There are a variety of file system polici
that may have no effect over the short term on an empty file syste
but that can have a noticeable impact on file system performan
over the long run. Decisions that a file system makes today (for e
ample, which blocks to allocate to a new file) may affect the fil
system for months or years into the future.

In this section, we present an example of each of these pr
lems, demonstrating that benchmarks conducted on an empty
system can either provide misleading results, or fail to measure
effects of significant changes to the underlying file system.

2.1 Empty file systems

The most common problem with benchmarking empty file system
stems from the fact that it is very difficult to measure the effects
file fragmentation on an empty disk. Because fragmentation is
fact of life in many file system designs, it is foolish to benchmar
such file systems when they are empty, and have no file fragmen
tion. To demonstrate this effect, we ran a simple file system ben
mark on both empty and full UNIX file systems. To measure th
performance of a full file system, we copied an active file syste
from one of the file servers in our department onto our te
machine1. After benchmarking this file system, we built an empt
file system, with the same parameters, on the same disk, and m
sured its performance.

The benchmark program that we use throughout this pap
measures file system throughput reading and writing files of a va

Figure 1: Effect of utilization on file system performance.
This graph shows the read throughput for a range of file sizes on
two UNIX file systems. The only difference between the file
systems is the amount of free space available. One file system
was empty when the benchmark was performed. The other file
system was a duplicate of a seven month old file system that was
75% full. The contours of the lines are characteristic of the
performance of the UNIX fast file system and are explained in
detail elsewhere [18].

0

1

2

3

16 64 256 1024 4096 16384

R
ea

d 
T

hr
ou

gh
pu

t (
M

B
/s

ec
)

File Size (in KB)

Empty
Full

1. Rather than copying the entire file system, we only copied the fi
system’s metadata. The result was that the test file system had exactly
same free blocks and allocated blocks as the original file system that
copied.
A: Empty File System Performance B: Aged File System Performance

Figure 2: Effect of time on file system behavior.Each of these graphs plots the read throughput for a range of file sizes on file systems
using two different block allocation strategies. In the graph on the left, performance was measured on empty file systems. In the graph on
the right, performance was measured afteraging the two file systems with a simulated ten month workload. On the empty file systems, the
new algorithm performed slightly better, but the performance of the two systems was nearly identical. On the aged file systems, both file
systems perform worse than in the empty case, and the new allocation algorithm provides a large improvement in read throughput. A
complete discussion of this study is presented elsewhere [19].
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ety of different sizes. Figure 1 shows the read throughput for files
from 16 KB to 16 MB. Throughput on the real file system is as
much as 77% lower than throughput on a comparable empty file
system.

2.2 Life time evolution

Most file systems attempt to optimize performance by clustering
logically related data on the underlying disk(s). The effectiveness
of different clustering strategies may not be apparent when observ-
ing the short term behavior of the file system. Over time, however,
both free and allocated space on the disk may become fragmented,
affecting the ability of the file system to perform clustering. Note
that this fragmentation affects not only the sequential layout of
each file’s data, but also the proximity of related files on the disk,
and the relative locations of a file and the metadata that describes
it. In such cases, the only way to evaluate competing designs is by
comparing file systems after a long period of activity.

In previous work [19], we studied the effect of one such design
parameter on file system performance. The 4.4BSD fast file system
[11] optimizes sequential I/O performance by allocating physically
contiguousclustersof blocks to logically sequential file data. Over
the life of a file system, as free space becomes fragmented, it be-
comes increasingly difficult to find contiguous free space for new
clusters. In comparing two different algorithms for finding and al-
locating free space to new files, we discovered that they provided
nearly identical performance on an empty disk (see Figure 2A). Af-
ter applying a simulated ten month workload to the two file sys-
tems, however, it became apparent that there was a substantial
performance difference between file systems using the two differ-
ent disk allocation policies (see Figure 2B).

3 File System Aging

As the previous section demonstrates, benchmarking empty file
systems cannot provide an accurate assessment of the real-world
behavior of a file system architecture. In order to get a realistic pic-
ture of file system behavior, a file system must be analyzed in real-
istic conditions. This means that the file system should not be
empty, and should have the historical state that would be devel-
oped over many months, if not years, of operation. In order to ana-
lyze file system performance in this manner, we need to apply a
methodology that allows researchers to fill a file system in a realis-
tic manner, resulting in a file system that is similar to one that had
been active in real-world conditions for an extended period of
time. Analyzing file system performance in this manner presents a
variety of problems that do not arise when benchmarking an empty
file system:

• Because different applications apply different
workloads to the file system, it should be possible to
simulate the effects of different file system workloads.
A file system used in a traditional engineering
environment for a year may behave very differently
from one that has been used on a news server for a
similar period of time, even if the underlying file
system architectures are identical.

• The technique used to fill a file system should be
reproducible, allowing scientific comparisons in a
laboratory setting.

• The manner in which file systems are filled should be
independent of the architecture of the underlying file
system, allowing different file system implementations
to be compared.

In order to study file system performance in a realistic manner, and
to address the concerns listed above, we have developed a tech-

nique we callfile system aging.We precompute an artificial work-
load intended to simulate the pattern of file operations that wou
be applied to a file system over an extended period of time.
applying the same workload to different file systems, we can s
how differences in file system architecture affect the long ter
behavior of the file system. The aging workload is generated fro
snapshots and traces of a real file system. Aging workloads rep
sentative of different types of file system activity can be creat
using data collected from appropriate file systems.

Despite our desire for an architecture neutral file system agi
technique, our existing tools have several minor dependencies
the underlying file system (FFS in our case). These dependenc
are discussed in Section 3.3.

In this section we provide a brief overview of the UNIX fas
file system, present the technique we use to generate aging wo
loads, describe the program that actually applies a workload t
test file system, and then evaluate the accuracy of our aging wo
load by comparing artificially aged file systems with the origina
file systems from which the aging workloads were generated.

3.1 The UNIX Fast File System

The Fast File System has been thede factostandard file system on
UNIX systems for the past decade, and is only now being replac
with new journaling file systems such as SGI’s XFS [20], IBM’
JFS [4], and the HP-UX v10 file system. A brief overview of th
relevant aspects of the UNIX Fast File System (FFS) is presen
here. A more detailed explanation may be found inThe Design and
Implementation of the 4.4BSD Operating System [11].

FFS divides the disk into blocks of uniform size (typically fou
or eight kilobytes). These blocks are the standard unit of disk al
cation. Each of these full-sized data blocks may be further sub-
vided into smaller units, calledfragments, to accommodate files
that do not require an integral number of disk blocks.

The disk is also divided intocylinder groups, each of which is
a set of consecutive cylinders. Each cylinder group is static in s
(typically sixteen cylinders) and contains a fixed number of da
blocks. Cylinder groups are used to exploit locality; related data a
co-located in the same cylinder group. Thus FFS allocates logica
sequential blocks of a file in the same cylinder group, and likewi
allocates all of the files in a directory to the same cylinder group
the directory.

Each file has an index node, orinode, that contains all of the
file’s metadata, including its owner, size, and time of last modific
tion. Each cylinder group contains a fixed number of inodes. Whe
ever possible, FFS allocates a file’s inode, as well as its data bloc
in the same cylinder group as the directory containing it. Each ino
also contains pointers to the blocks that contain the file’s data. B
cause inodes are fixed in size, they only contain fifteen of the
block pointers. The first twelve block pointers refer to the firs
twelve data blocks assigned to the file. The final three block poin
ers in the inode refer toindirect blocks, which contain pointers to
additional file blocks or to additional indirect blocks.

FFS attempts to optimize file system throughput by allocatin
successive blocks of a file to physically contiguous disk blocks, a
lowing the file to be read or written sequentially at close to th
disk’s maximum bandwidth. Although contiguous disk allocatio
usually results in optimal file throughput, FFS does not guarant
such file layout, and only uses a set of simple heuristics in attem
ing to achieve it.

3.2 Generating a Workload

The central problem in aging a file system is generating a realis
workload. Because a test system is likely to start with an emp
disk, this workload should start with an empty file system and sim



wo
me
hat
ade
A

es
of

ots,
-

e-
ich
the
. In
g
ge
e-
de-
r. In
d a

ribed

is
y
r of
tem
e

may
he

st
he
er

oth

ng
y
rk

ist
ed
-
on
ch
n-

f
t

le
o

of
f
s

on-
e

file
er-

ed
ing
.

s in
ost
tes
ulate the load on a new file system over many months or years,
resulting in a file system that is mostly full. The ideal method for
generating this workload would be to collect extended file system
traces and to age a test file system by replaying the exact set of file
operations seen in the trace. The size of the traces required to do
this makes this strategy impractical. Instead, we generated aging
workloads from two sets of file system data that were already
available to us. In doing so, we sacrifice some realism in the work-
load, in exchange for greater flexibility in tuning the workload to
our needs.

An aging workload is a sequence of file system operations,
primarily file creates and deletes, that can be applied to a test file
system to simulate the effects of an extended period of application
activity on the file system. Each create operation specifies the size
of the file to be created.

To generate an aging workload, we used a set of file system
snapshotscollected from a file system on a local file server. These
snapshots, originally gathered for a different research project [18],
were collected nightly from approximately fifty file systems on five
different file servers over periods of time ranging from one to three
years. Each snapshot describes all of the files on a file system at the
time of the snapshot. For each file, the snapshot includes the file’s
inode number, inode change time, inode generation number, file
type, file size, and a list of the disk blocks allocated to the file.

By using a sequence of snapshots of one file system, we gen-
erate an aging workload modeled on the actual activity on that file
system during the period of time covered by the snapshots. Because
we have snapshots from a variety of different file systems, we can
generate aging workloads that are representative of different file
system uses. The extended period of time covered by the file system
snapshots allows us to build an aging workload that simulates many
months of file system activity.

Generating a workload from a sequence of traces is a three
step process. First, the target file system must be populated by ini-
tializing it to a state similar to the first snapshot of the original file
system. Next, we create a skeleton of the workload by comparing
successive pairs of snapshots and generating a workload to account
for the changes on the original file system between the two snap-
shots. Finally, we flesh out the workload by adding the creation and
deletion of a variety of short-lived files.

The first step in creating an aging workload is to generate a se-
quence of file system operations that will bring the test file system
into a state similar to the one represented by the first snapshot of the
original file system. Because the only state that we are trying to re-
produce is the set of files that exist on the file system, this is a sim-
ple matter of creating each file in the initial snapshot. The actual
create operations are sorted based on the inode change times of the
files in the snapshot in the expectation that this will be a reasonable
approximation of the order in which the files were created on the
original file system.

Next we generate the skeleton of the aging workload. By com-
paring the inodes listed in successive pairs of snapshots, we gener-
ate a list of the files that were created, deleted, modified, or replaced
between the times of the two snapshots. The major difficulty at this
stage is determining the sequence in which these actions occurred,
as the snapshots do not provide sufficient information to determine
the exact time at which these operations took place.

We used several heuristics to assign creation and deletion
times to the file operations generated by comparing successive
snapshots. The inode change time, recorded for each file in a snap-
shot, indicates the last time that the file’s metadata was modified.
Such modifications include the original creation of the file, and the
allocation of new disk blocks to the file. As previous studies have
shown that files are typically written in one burst, and are seldom
modified after they are first written [1][12], we used the inode
change time on a newly created file to approximate the time at

which the file was created. When a file was deleted between t
snapshots, there was no information providing hints about the ti
it was deleted. We randomly assigned times to the file deletions t
occurred between two snapshots. This was an ad hoc decision m
to expedite the development of our file system aging workloads.
more careful analysis of file deletion times in real file system trac
might provide a more accurate solution and improve the realism
our aging workloads.

When the same inode was listed in two successive snapsh
but with different file attributes, one of two things may have hap
pened on the original file system; the file was either modified, or r
placed. The inode generation number allows us to determine wh
of these actions actually occurred. If the generation number is
same in both snapshots then we know that the file was modified
this case we place a “file modification” operation in the agin
workload, and assign it a time corresponding to the inode chan
time in the later snapshot. If the generation number is different b
tween the two snapshots, then the original file must have been
leted, and a newly created file assigned the same inode numbe
this case, we place two operations in the workload, a delete, an
subsequent create. We determine the time of the create as desc
above, and place the delete immediately prior to it.

After processing the snapshots in this manner, the workload
missing an important component of real file system activity. An
file that was both created and deleted between the same pai
snapshots will not appear in any snapshot. Trace-based file sys
studies [1][12] have shown that most files live for less than th
twenty-four hours between successive snapshots. These files
have a significant effect on the state of the longer lived files on t
file system.

To approximate the effect of these short-lived files, we mu
add additional file operations to the workload generated from t
snapshots. In order to add this additional workload, we must answ
two questions—what operations should we add, and where (b
physically and temporally) should we add them?

To determine what file operations we should add to the agi
workload, we examined the patterns of activity displayed b
short-lived files in a seven day trace of NFS requests to a Netwo
Appliance file server [8]. For each day in the trace, we made a l
of the active directories, and then created a profile of the short-liv
file activity in those directories. The result was 449 different pro
files, each containing a list of create and delete operations
short-lived files that occurred on one day in one directory. For ea
day in the aging workload, we selected 25 of these profiles at ra
dom and added them to the aging workload2.

Given a day of activity from the aging workload, and a set o
short-lived file profiles, we integrate the two by finding the mos
active directories3 in that day of the aging workload, and randomly
distributing the profiles among them. We time-shifted each profi
so that it coincided with the peak of activity in the directory t
which it was added.

The NFS trace that we used to generate our profiles
short-lived file activity was originally collected during a study o
cleaning algorithms for log-structured file systems [2], and wa
generated from a server used for a typical academic workload, c
sisting of text editing, compilation, executing simulations, etc. W
therefore only use this trace to generate aging workloads from
systems that were used in similar environments. In order to gen

2. We actually scaled the number of short-lived file profiles that we us
based on the size of the file system from which we generated the ag
workload, adding one profile for every 40 MB on the original file system

3. Since our file system snapshots do not preserve the names of the file
them, we actually used the most active cylinder groups instead of the m
active directories. This is a reasonable approximation since FFS alloca
all of the files in a directory to the same cylinder group.
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ate aging workloads for other types of file system activity, such as
database or news servers, we will need to use different traces to ap-
proximate the activity to short-lived files.

3.3 Replaying the Workload

To age a file system, we apply an aging workload generated as
described above to an empty file system. In all of our measure-
ments, we use a target file system that is the same size as the file
system from which the aging workload was generated, although an
aging workload could also be used on larger file systems. The
aging program reads records from the workload file, performing
the specified file operations. Although the aging workload includes
timestamps for each file operation, we simply execute the requests
as fast as possible. Replaying the workload in real time was unnec-
essary for our purposes, because in FFS (and many other file sys-
tems) the order in which requests are received by the file system,
not the relative times of the requests, determines the behavior of
the file system.

The task of replaying an aging workload was complicated by
the fact that the file system snapshots did not provide pathnames for
the files. Because FFS exploits expected patterns of locality by al-
locating files in the same directory to the same cylinder group on
the disk, the algorithm used by the aging program to assign files to
directories can have a major impact on the accuracy of the aging
simulation.

Due to the absence of the original pathnames in the file system
snapshots, we decided that it would be sufficient to create the files
in the correct cylinder groups. By creating files in the same cylinder
group on the simulated file system as on the original file system, we
ensured that each cylinder group on the simulated file system re-
ceived the same set of allocation and deallocation requests that
were presented to the corresponding cylinder group on the original
file system from which the snapshots were generated. We used each
files’s inode number to compute the cylinder group to which it was
allocated on the original file system. To force the files into the same
cylinder groups on the aged file system, we exploited several de-
tails of the FFS implementation.

We start the aging process with an empty file system. The first
step is to create one directory for each cylinder group on the file
system. The algorithm used by FFS to assign directories to cylinder
groups ensures that each directory was placed in a different cylinder
group. For each file in the aging workload, we use its inode number
to compute the cylinder group to which it was allocated on the orig-
inal file system, and place the file in the corresponding directory on
the aged file system. Because FFS places all files in the same cyl-

inder group as their directory, this guarantees that all of the files th
are in the same cylinder group on the original file system are a
in the same cylinder group on the aged file system.

There are two drawbacks to this approach. First, by creating
extra directory for each cylinder group, we are introducing one fi
per cylinder group that did not exist in any of the data sets used
generate the aging workload (i.e., the directory). The effect of the
directories should be negligible, however, as the space that they
cupy is much less than that of the files being manipulated during
aging simulation. The second drawback is that by exploiting the
details of the FFS implementation, we are limiting the applicabili
of our file system aging tools to file systems that use some physi
partitioning to improve the clustering of logically related data.

3.4 Workload Verification

In order to evaluate the realism of our simulation, we compared
test file system aged using our techniques with the real file syst
from which the aging workload was generated. Because our t
file system necessarily starts in an empty state, we generated
aging workload from a file system for which we have snapsho
starting the day it was created. This file system, which contains
home directories of several graduate students studying para
computing, was not one of the file systems that we used in deriv
the aging methodology. The aging workload that we generat
from this file system simulates 215 days (approximately sev
months) of activity on a one gigabyte file system. The workloa
contains approximately 1.3 million file operations that write 87
gigabytes of data to the disk and takes 39 hours to replay o
generic FFS implementation. At the end of the workload, the fi
system is 65% full.

We ran this aging workload on a test file system that was co
figured with the same file system parameters as the original syst
and compared the resulting state of the test file system with the s
of the original file system at the end of the sequence of snapsh
In this discussion, we refer to the original file system from whic
the aging workload was generated as thereal file system, and we re-
fer to the test file system that was aged using our artificial worklo
as thesimulated file system.Table 1 describes the hardware config
uration that we used both to age the simulated file system, and
the benchmarks described in Section 4.

One of the primary changes observed in many file system
chitectures as a system ages is an increase of file fragmentation
the disk. Therefore we started by comparing several aspects of fr
mentation on the real and simulated file systems. We define alay-
CPU Parameters Disk Parameters File System Parameters

CPU Intel Pentium Pro Disk Controller NCR 53c825 Size 1024 MB

Clock Speed 200 MHz Disk Type Fujitsu M2694ES Fragment Size 1 KB

Memory 32 MB EDO RAM Total Disk Space 1080 MB Block Size 8 KB

Bus Type PCI Rotational Speed 5400 RPM Max. Cluster Size 56 KB

Cylinders 1818 Rotational Gap 0

Heads 15 Cylinder Groups 63

Avg. Sectors/Track 94Heads 19

Track Buffer 512 KB Sectors/Track 111

Average Seek 9.5 ms

Table 1: Benchmark configuration.This table describes the hardware configuration used for benchmarking and for verifying the file
system aging workload. The file system parameters shown in italics were set to match the file system from which we generated the
aging workload, despite the fact that they do not match the underlying hardware.
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out scoreto quantify the amount of file fragmentation in a file or
file system. The layout score for an individual file is the fraction of
that file’s blocks that are optimally allocated. An optimally allocat-
ed block is one that is contiguous with the preceding block of the
same file. The first block of a file is not included in this calculation,
since it is impossible for it to have a “previous block.” Similarly,
layout score is not defined for one block files, since they cannot be
fragmented. A file with a layout score of 1.00 is perfectly allocated;
all of its blocks are contiguously allocated on the disk. A file with
a layout score of 0.00 has no contiguously allocated blocks.

To evaluate the fragmentation of a set of files (or of an entire
file system), we compute theaggregate layout scorefor the files.
This metric is the fraction of the blocks in all of the files that are op-
timally allocated (again ignoring the first block of each file and one
block files).

At the end of our simulation period, the aggregate layout score
on the real file system was 0.815, compared to 0.876 on the simu-
lated file system.4 Thus, although our aging workload does cause
fragmentation on the file system, it does not generate as much frag-
mentation as occurred on the real file system. Figure 3, which pre-
sents a time series of the aggregate layout scores for both file
systems over the 215 days of the simulation, indicates that although
the aggregate layout score of the simulated file system tracked the
real file system very closely for the first half of the simulation, dur-
ing the second half of the simulation, the aging workload failed to
replicate several large changes in file fragmentation on the real file
system.

To get a better understanding of the fragmentation differences
between the real and simulated file systems, we sorted the files on
both file systems by size and computed the aggregate layout scores
for files of a variety of sizes. The results are shown in Figure 4. Al-
though the two file systems have similar layout scores for small
files (up to 64 KB), for larger files, our simulated file system has

higher layout scores, indicating that it failed to capture all of th
fragmentation that actually occurred on the real system. It is the
large files that cause the aged file system to have a higher aggre
layout score then the real one. The difference in layout scores
most noteworthy for files of 2 MB – 4 MB. We are unsure of th
cause of this discrepancy. Many files of these sizes on the origi
file system are unusually fragmented, and have layout scores of
than 0.5. On other file systems that we have examined, large fi
do not exhibit this degree of fragmentation. We have specula
that file activity concurrent with the creation of these large file
and taking place in the same cylinder groups, may have caused
fragmentation, but we do not have the data necessary to conf
this hypothesis.

To summarize, our simulated aging workload mimics the re
file system from which it was derived in the steady increase in fra
mentation over time. However, the total amount of fragmentati
on the simulated system is less than on the real file system, larg
because the simulated file system failed to replicate several la
changes in fragmentation seen on the real file system. The fun
mental cause of this inaccuracy in our aging workload is that wh
we did not have sufficient information to perfectly reconstruct th
workload on the real file system, we made randomized decisio
The two most important areas where we did this were in assign
times to file delete operations and in simulating the activity o
short-lived files on the file system. In real file system workload
there are dependencies between these operations and the othe
tivity occurring on the file system. An accurate model of these i
terdependencies would allow us to make more realistic decisio
regarding file delete times and short-lived file activity. The absen
of such a model decreases the verisimilitude of our aging. Nev
theless, these tools are still effective for evaluating the impact of d
sign decisions on the long term behavior of a file system.

4 Applications of Aging

In an earlier study [19], we used aging to analyze the effectivene
of an improved block allocation scheme in FFS. On an empty fi
system, the original and improved schemes were virtually indist
guishable, but on an aged file system the improved sche

4. Note that these seemingly high layout scores—more than 80% of the
blocks on both the real and simulated file systems were optimally
allocated—are typical of FFS. On all of the file systems in our snapshot
library, we seldom see an aggregate layout score of less than 0.7 except on
news servers, which are subject to extreme file fragmentation.

Figure 3: Real vs. simulated file system.This chart plots the
aggregate layout score for each day in the seven month
simulation period. The “Simulated” line shows the fragmentation
on the artificially aged file system. The “Real” line shows the
fragmentation on the original file system from which the aging
workload was generated. Although the two file systems behave
similarly for the first half of the simulation, the aging workload
fails to capture several of the large changes in the original file
system workload during the later half of the simulation period.

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

A
gg

re
ga

te
 L

ay
ou

t S
co

re

Time (Days)

Simulated
Real

Figure 4: Fragmentation as a function of file size.File sizes
were rounded up to an even number of file blocks, and th
aggregate layout score was computed for files of various sizes
the real and simulated file systems. The results are graphed he
Both file systems suffer from extreme fragmentation of sma
files (< 32 KB). On the real file system, file layout declines
noticeably for large files (2 MB – 4 MB). A similar decline is not
seen on the simulated file system.
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A: Read/Write Throughput B: File Fragmentation

Figure 5: Performance baseline.These charts show the performance of our baseline file system in the file throughput benchmark. The
benchmark was executed after the file system was aged using the workload described in Section 3.2. Graph A plots read and write
throughput as a function of file size. Graph B plots the layout scores of the test files created during the benchmark. The sharp drops in all of
these graphs as the file size passes 96 KB corresponds to the point where FFS allocates the first indirect block to a file (see Section 4.1).
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resulted in performance improvements of up to fifty percent.
Aging enables us to explore the long term effects of a number of
policy decisions and file system features. In this section, we will
use our aging methodology to answer the following questions
about FFS layout.

• Indirect blocks (blocks that contain pointers to data
blocks) are always allocated to new cylinder groups.
This imposes a sharp performance penalty on midsize
files (i.e., 104 KB to 256 KB). If we allocate the first
indirect block of a file in the same cylinder group as
the start of the file, how does this affect performance?
Are there any undesirable side effects?

• Fragments (partial blocks) are rarely allocated
adjacent to the preceding block of their file. Placing
fragments adjacent to their preceding blocks may
improve performance, but it may also lead to more
internal fragmentation. Is changing fragment
allocation beneficial?

The basic technique used in exploring these two issues was to pro-
pose and implement a modification to FFS. We then aged two file
systems that differed only in this modification, and ran a variety of
benchmarks on the aged file system to evaluate the effect of the
proposed change on the long term behavior of the file system.

In order to compare the performance of two file systems, we
used two simple benchmark programs. The first measures the file
system throughput sequentially reading and writing files of a vari-
ety of sizes. Each run of the benchmark measures the read and write
performance for one file size. The benchmark operates on 32 MB
of data, which is decomposed into the appropriate number of files
for the file size being measured. Because FFS allocates all of the
files in a single directory to the same cylinder group, the data is di-
vided into subdirectories, each containing no more than twenty-five
files. This increased the number of cylinder groups exercised dur-
ing the benchmark.

The benchmark executes in two phases:
1. Create/write: All of the files are created. For file

sizes of 4 MB or less, the entire file is created with
one write operation. Large files are created using as
many 4 MB writes as necessary. This phase
measures write throughput, including the time
required to create new files and allocate disk space
to them.

2. Read: The test file system is unmounted and
remounted to flush the file cache. Then the files are
read in the same order in which they were created.
As with the create phase, I/O is performed in 4 MB
units.

For each file size in our tests, we executed this benchmark
times, averaging the resulting throughput measurements. In all
cases, the standard deviation was less than 1% of the aver
throughput.

This benchmark is unrealistic on one important sense. Real
system workloads seldom create large batches of files of the sa
size. Actual usage patterns typically interleave the creation and
letion of files of a variety of sizes, possibly resulting in more file
fragmentation than we would see in the sequential I/O benchm
described above. Our second benchmark attempts to address
problem, by exploiting the more “realistically” created files that ar
left on the test file system at the end of the aging workload.

Previous research has shown that most older files are seld
accessed [17], and therefore that the most active files on a file s
tem tend to be relatively young. We approximated the set of “ho
files on our simulated file system by using all of the files that we
modified during the last thirty days of the aging workload. Thes
files represent 9.5% of the files on the aged file system (3,207 o
of 33,797 files), and use 92.3 megabytes of storage (14.5% of
allocated disk space).

Our second benchmark measures file system throughput w
reading and writing this complete set of “hot” files. To limit the
amount of time spent seeking from one file to the next, we sort
the files by directory, so multiple files would be read from one cy
inder group before moving to another. To preserve the file layou
we overwrite the files during the write phase of this test.

We use FFS enhanced with the improved block-clustering
gorithm [19] mentioned in Section 2.2 as our baseline system. T
performance of this file system (after aging) is shown in Figure 

4.1 Indirect Block Allocation

Each time an indirect block is allocated to a file in FFS, the fi
system assigns that block, and all of the data blocks it referenc
to a different cylinder group than the previous part of the file. Th
new cylinder group is chosen by selecting the next cylinder gro
on the disk that has at least an average number of free blocks (r
tive to the rest of the file system).
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A: Empty File System Performance B: Aged File System Performance

Figure 6: Performance with improved indirect block allocation. These charts compare the read and write throughput of the baseline file
system to a file system that does not switch cylinder groups when allocating the first indirect block (“NoSwitch”). The graph on the left
shows this comparison on an empty file system; the graph on the right shows this comparison on aged file systems. The NoSwitch file system
offers higher throughput in both cases, but the magnitude of the improvement, indicated by the area between the NoSwitch and Baseline
lines in the graphs, is significantly smaller on the aged file system.
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This scheme seems undesirable, as it forces long seeks at peri-
odic locations in large files. For very large files, however, these ex-
tra seeks are typically amortized over the transfer of the entire file,
and have a negligible effect on I/O throughput. Given a typical file
system block size of 8 KB, this policy will force a change of cylin-
der groups every 16 MB of the file. We also speculate that switch-
ing cylinder groups may be useful in practice, as it prevents a single
large file from consuming all of the free space in a cylinder group.

Unfortunately, there is one glaring problem with this policy of
switching cylinder groups with the allocation of each indirect block
of a file—in FFS the first indirect block is allocated after only the
twelfth data block of a file. On an 8 KB file system, this means that
FFS imposes an extra seek after the first 96 KB of a file. For medi-
um size files of a few hundred kilobytes, this extra seek can have a
noticeable impact on performance. The effect of this extra seek is
apparent in the performance of our baseline file system in Figure
5A. The layout score of the test files drops from 0.98 to 0.91 when
the first indirect block is allocated (between 96 KB and 104 KB)
and both read and write performance decline precipitously at the
same point. There is a larger drop in read performance (33%) than
in write performance (25%) because the indirect block not only
causes a seek during the read, but also interferes with file prefetch-
ing, as the blocks referenced from the indirect block cannot be
prefetched until the indirect block itself has been read from the disk.

To address this problem, we modified FFS to not switch cyl-
inder groups until it allocates the second indirect block in a file. (In
our file systems, this occurs when the file size reaches approximate-
ly 16 MB). We call the implementation of FFS that includes this en-
hancementNoSwitch. We expected this minor enhancement to have
the effect of improving file throughput for files of a few hundred ki-
lobytes. Larger files should not see very much improvement as the
savings from eliminating one seek are amortized over the time it
takes to read or write the entire file. We used our throughput bench-
mark to compare the performance of the NoSwitch file system to
our baseline file system on both empty and aged partitions. The re-
sults are shown in Figure 6.

As expected, read and write throughput to files of a few hun-
dred kilobytes improves on the NoSwitch file system. Note that
there is still a slight performance drop as file size passes 96 KB and
the first indirect block is used. This occurs because in addition to
transferring the file data, the file system must also transfer the indi-
rect block. Comparing the performance on empty and aged file sys-

tems in Figure 6 we see that the NoSwitch system outperforms
baseline in both cases. The magnitude of the performance impro
ment, as shown by the area between the pairs of curves for the
file systems, is smaller on the aged file system. In the best case (
KB files) the NoSwitch file system improves performance by 87%
on an empty file system, but only by 43% on an aged file system

If our only concern were whether the NoSwitch file system
would improve performance, we would not have needed to run o
benchmarks on an aged file system. By using an aged file syst
however, we can more accurately assess the magnitude of the
formance improvement. The use of an aged file system also allo
us to assess an adverse side effect of this enhancement. As
scribed earlier, FFS attempts to exploit locality of reference b
co-locating all of the files in a directory in the same cylinder grou
as the directory itself. In a directory with many files, some of whic
are large, the original scheme of switching cylinder groups aft
only twelve blocks of a large file may have ensured that a sing
large file did not consume all of the free space in a cylinder grou
forcing subsequently allocated files to be placed in other cylind
groups, thus destroying the desired locality.

To study this effect, we examined the state of the baseline a
NoSwitch file systems after they had been aged. If the NoSwit
file system caused an increase in the number of files displaced fr
the cylinder group of their directory, we would expect to see a lar
er number of files where the first data block of the file is in a differ
ent cylinder group from the file’s inode. (FFS also tries to locate
file’s inode in the same cylinder group as its directory.) We count
the number of these “split files” on the two file systems, and fo
each such file, determined how many cylinder groups separated
file’s inode and its first data block. The more intervening cylinde
groups, the longer the seek required to read the file’s data after re
ing its inode. The results are summarized in Table 2.

The NoSwitch file system has more than twice as many
these split files as the baseline file system, indicating that n
switching cylinder groups when the first indirect block is allocate
does, in fact, cause highly utilized cylinder group to run out of fre
space. On the baseline file system, most of the split files require r
atively short seeks; in more than half the cases, the file’s data
only one cylinder group away, and in almost all cases, the data
within ten cylinder groups of the file’s inode. In contrast, a third o
the split files on the NoSwitch file system involve seeks of mo
than 10 cylinder groups.
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In an attempt to balance the performance gain for large files,
which are not allocated in one cylinder group, against the potential
performance loss from the longer seeks required to read the extra
split files that are generated on the NoSwitch file system, we turn
to the results of our hot file benchmark. The results of this bench-
mark, which are summarized in Table 3, show that the NoSwitch
file system offers a modest improvement in read throughput, with
virtually no change in write throughput. This performance im-
provement offered by the NoSwitch file system suggests that the
performance gained via better layout of larger files outweighs the
performance lost by increasing the number of split files. The im-
provement in performance is small enough, however, that it may be
an artifact of the particular workload that we are using, and this file
system modification may not be universally applicable. It is impor-
tant to note, however, that we would have had no means to evaluate
this trade-off if we had only benchmarked NoSwitch on an empty
file system.

4.2 Fragment Allocation in FFS

To limit the amount of internal fragmentation caused by small
files, FFS allows a single file system block to be subdivided into
fragments. The minimum fragment size is determined at the time
that the file system is created, and blocks may only be divided into
pieces that are integral multiples of the fragment size. For files
with no more than twelve data blocks (i.e., files that do not use any
indirect blocks), a partial block containing an integral number of
fragments may be used as the last data block instead of a full-sized
file system block. On our test file system, for example, the block
size was 8 KB and the fragment size was 1 KB. Thus, a 30 KB file
would be allocated as three file blocks, followed by a partial block
containing six fragments.

While this scheme is efficient in reducing the amount of disk
space wasted by internal fragmentation, the algorithm used to allo-
cate fragments to files results in suboptimal file layout. When allo-
cating a fragment, FFS first attempts to find a free fragment of the
appropriate size in the same cylinder group as the file. If such a
fragment is not available, FFS will divide a larger free fragment. Fi-
nally, if no fragment of an appropriate size is available, FFS will al-
locate an entire file system block, and divide it into fragments. Thus
the primary goal of the fragment allocation algorithm is to limit the
amount of free space that exists in fragments. The downside of this
approach is that the fragment at the end of a file is seldom allocated
near the preceding block of the file. In Figure 4, for example, we see

that the layout scores of small files are much lower than those
other files, indicating that small files are more fragmented. Th
fragmentation is almost entirely due to the fragment allocation p
icy. On the baseline file system, for example, only 36% of tw
block files are allocated with their two blocks contiguous on dis
Of the two block files where the second block is a full block rathe
then a fragment, however, 87% are allocated contiguously.

Ideally, we would like the fragment at the end of a file to b
contiguous with the preceding block of the file. To this end, w
modified the fragment allocation algorithm used by FFS. Our ne
algorithm always attempts to allocate the block immediately ad
cent to the previous file block. If that block is available, it is broke
into fragments, and the unused portion is marked as free. If the
sired block is not available, we return to FFS’s original fragment a
location policy. For small files, where the only data block is
fragment, we always use the original FFS policy, hoping to fill i
the free fragments created when full blocks are broken up to p
vide contiguous fragments for larger files. We refer to the versio
of FFS that uses this new fragment allocation policy asSmartFrag.

We used our sequential I/O benchmark to compare the perf
mance of the SmartFrag file system to that of our baseline syste
Since we were interested in the behavior of files that use fragmen
we focused on small files in running this benchmark. Figure
shows the layout score of the small files created by running t
benchmark on the two aged file systems. Figure 8 presents the m
sured performance of the two versions of FFS on both empty a
aged file systems.

Figure 7 shows that the SmartFrag scheme dramatically
creases file fragmentation for files that use fragments. Both t
SmartFrag and baseline file systems achieve nearly perfect lay
for file sizes that are an integral multiple of the eight kilobyte dis
block size. For intermediate sizes, however, SmartFrag elimina
almost all of the fragmentation seen on the baseline system.

This difference in file layout translates to the performance d
ferences seen in Figure 8. The saw-tooth effect in the read per
mance on all of the tested systems is caused by changes in
performance characteristics of the file systems when fragments
used. All file sizes that are even multiples of the file system bloc
size do not require fragments. Note that at these file sizes, the p
formance of the baseline file system is the same as on the Sm
Frag file system, as they both use the same file layout algorith
For file sizes that are not integral multiples of the file system bloc
size, SmartFrag outperforms the baseline system due to the
proved allocation of fragments for these files. Both the SmartFr
and baseline systems have decreased throughput for files that
fragments because FFS issues a separate I/O request to the

Baseline NoSwitch

Number of split files 4312 9155

% of all files that are split 13 27

% of one cyl. group splits 58 37

% of < 10 cyl. group splits 95 67

Table 2: Number of split files on NoSwitch file systems.This
table compares the number of split files (files where the inode
and the first data block are in different cylinder groups) on the
baseline file system and on the aged file system with the
NoSwitch enhancement. The four rows of the table present,
respectively, the total number of split files on each file system,
the percentage of all files on each file system that are split, the
percentage of split files where the data block is only one cylinder
group away from the inode, and the percentage of split files
where the data block is no more than ten cylinder groups away
from the inode. Both file systems had sixty-three cylinder
groups.

Baseline NoSwitch

Aggregate Layout Score 0.928 0.931

# of split files 327 594

Read bandwidth (MB/sec) 0.810 0.835

Write bandwidth (MB/sec) 0.494 0.495

Table 3: Performance of recently modified files on NoSwitch
file system.This table presents the read and write throughput o
the files modified during the last thirty days of the aging
workload on the baseline and NoSwitch file systems. Th
aggregate layout scores of the files used during this test, and
number of these files where the first data block was located in
different cylinder group than the file’s inode (“split files”) are also
presented. Throughput measurements are the averages of ten
runs. All standard deviations were less than 0.2% of the report
means.
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driver for the fragment, regardless of whether the fragment is con-
tiguous with the previous file block.

The differences in write throughput are much smaller because
in FFS write throughput is dominated by the time required to syn-
chronously update on-disk metadata each time a file is created [18].

The write performance on all of the tested systems also shows
an unexpected jump when the file size reaches 64 KB. This is the
result of a performance bug in our version of FFS (and in all other
versions of FFS derived from 4.4BSD). Until a full cluster (64 KB)
of data has been written to a file, FFS does not use clustered writes.
The result is that for smaller file sizes, FFS issues one write request
for each file block, regardless of the layout on disk. At these file siz-
es, the overhead of performing these individual I/O operations com-
pletely masks any performance differences caused by the fragment
allocation policy. For files larger than 64 KB, we see that the Smart-
Frag file system provides improved throughput for file sizes that re-
quire the use of a fragment.

The potential downside to the SmartFrag strategy is the
amount of fragmentation of free space that it causes. Most of the

data on a file system is allocated in full-sized file system blocks.
too much of the file system’s free space is in fragments instead
full-sized blocks, the file system may run out of free blocks whil
there is still a sizeable amount of free space in fragments. Seltze
al. have described a particularly spectacular instance of this pr
lem [18]; one of their news servers reported that it was out of fr
space despite the fact the file system had more than ninety me
bytes free—all in fragments.

To evaluate how much the SmartFrag file system increases
fragmentation of free space, we compared the number of fr
blocks and free fragments on the baseline and SmartFrag file s
tems. As expected, both file systems had the same amount of
space. On the SmartFrag file system, however, twice as much
this space was in fragments (5% vs. 2.5% of free space). Beca
the total amount of fragmented free space is relatively small on b
file systems, we feel that this side effect of the SmartFrag allocati
scheme is tolerable; it is unlikely to cause problems until the fi
system is very close to maximum capacity.

5 Related Work

The use of traces and simulated workloads is not a new idea in
system research. These tools have been used for a wide variet
purposes. In general, the two mechanisms have been used in
changeably, depending on the availability of appropriate file sy
tem traces, and the ease of parameterizing a workload
simulation.

Several studies have used file system traces to characterize
system workloads, studying such variables as file size distributio
file access times, and patterns of access within a single file. Ous
hout et al. performed such a study on the 4.2BSD UNIX file syste
[12]. In a follow up study, Baker et al. examined changes in file a
cess patterns six years later, and also investigated issues of file s
ing in the Sprite distributed operating system [1]. Ramakrishnan
al. performed a similar analysis of file system traces collected fro
large customers of Digital Equipment Corporation [15].

File system traces and simulated file system workloads ha
also been used to as input for file system simulations and to str
test new file system architectures. Both simulated workloads a
file system traces have been used by different researchers to ev

Figure 7: File layout with smart fragment allocation. This
graph shows the amount of file fragmentation for small file sizes
on the baseline and SmartFrag file systems. The layout score is
plotted for the files created for the throughput test in Figure 8B.
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Figure 8: Performance with smart fragment allocation.These charts compare the read and write throughput of the baseline file system to
a file system that uses our improved fragment allocation algorithm (“SmartFrag”). The graph on the left shows this comparison on an empty
file system; the graph on the right shows this comparison on aged file systems. The saw-tooth effect shows the effect of changing fragment
size on file system performance. The peaks represent file sizes that are an integral number of blocks. File sizes that require the use of a
fragment do not perform as well because reading or writing the fragment requires an extra I/O operation. The step in write performance at 64
KB files is the result of a performance bug in FFS, described in the body of this paper. All of the performance curves drop precipitously after
96 KB because FFS switches cylinder groups at this point.
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ate garbage collection strategies for log-structured file systems
[16][2]. Dahlin et al. used a week-long trace of a large NFS instal-
lation to drive simulations of a new caching scheme for distributed
file systems [5].

As described above, simulated file system workloads have
been generated in a variety of ways and used for a variety of pur-
poses. The most important difference between our work and prior
applications of these tools is not in the methodology used to gener-
ate the workloads, but rather in the application of the workload. Our
file system workloads are not, in themselves, used as benchmarks
or stress tests (although they are quite effective at the latter task).
Instead we use a long-term file system workload to prepare test file
systems for the application of other benchmarks and measurement
tools.

Not all file system benchmarking has been conducted on emp-
ty file systems. Seltzer et al. [19] examined the effect of varying the
amount of free space on a log-structured file system while running
a transaction processing benchmark. Although this study did show
that performance can vary depending on how full a file system is, it
did not address the question of how the file system should be filled.

Herrin and Finkel [7] tested their Viva file system using an ag-
ing technique that created and deleted files at random, selecting file
sizes from a hyperexponential distribution. Ganger and Kaashoek
[6] used a similar technique in testing their clustering FFS. In both
cases, the goal of aging was to reproduce the type of on-disk layout
that might be experienced after a file system had been in use for an
extended period of time. These aging techniques were not, howev-
er, based on an actual file system workload.

6 Conclusions

The behavior of a file system can change dramatically with the
passage of time. As a file system is filled, or as successive genera-
tions of files are created, modified, and deleted, the performance
characteristics of the system also change. By ignoring these
changes in file system behavior, researchers fail to accurately
assess how file system designs will respond to real-world condi-
tions. Not only do active file systems behave differently from
empty ones, but there are also a variety of file system design deci-
sions whose full effects are only apparent after a long period of
use.

In order to accurately evaluate the long-term behavior of com-
peting file system architectures, we have developed a process for
artificially aging a file system by replaying a long-term workload
on a test file system. As demonstrated by our evaluation of two new
file layout policies for the UNIX fast file system, this technology al-
lows for the scientific evaluation of design decisions that may have
no discernible effect on the short-term characteristics of file system
behavior.
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