File System Aging:
Increasing the Relevance of

Keith A. Smith
Margo I. Seltzer

Harvard University
Division of Engineering and Applied Sciences



File System Performance
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Problem #1

« Full and empty file systems perform
differently.

* Most research uses empty file systems.
e Real world file systems are never empty.



Don’'t benchmark empty
file systems!



Problem #2

 Just filling a file system isn’t enough.

e The history of a file system determines
Its state.

e Design decisions may affect how state
evolves over time.

* Most research uses empty file systems.

 Researchers ignore a large area of
design space.



Don’'t benchmark empty
file systems!



Our Solution

« Use simulated workload to  age file
system.



Overview

e Problem
 File system aging
« Creating the workload
« Verifying the workload
« Example
e Conclusions



File System Aging—Goals

 Examine state of file system after many
months of activity.

e Support different workloads.

 Allow reproducibility.

e Be architecture independent.

 Make easy to use.



File System Aging—Method

» Use real file system usage patterns to
generate artificial aging workload.

e Aging workload is sequence of file create,
write, and delete operations.

e Different workloads mimic different
usage patterns.

« Reproducibility provided by reusing
same workload.

« Workload parameterized in terms of
POSIX interface.



Source for Aging Workload

e Long term trace was impractical.
e Data we had available:
1.Unix file system snapshots
* Describes all files on file system.
 Dally for one year
2.NFS traces
« All NFS requests to large file server.
e Continuous for two weeks.



Generating Aging Workload

1. Start with sequence of snapshots.
2. Populate file system.

» Create files present in first snapshot.
3. Add inter-day file activity.

« Compare successive snapshots.

* |dentify created and deleted files.

e Add corresponding create, write, and
delete operations.



Generating Aging Workload

4. Add intra-day file activity.

e Use NFS traces to model short-lived file
activity.

. Intersp_erse create, write, and delete
operations based on model.



Sample Workload

* Aging Workload:
e Seven months of activity
1 GB file system
e ~1.3 million file operations
e Writes 87.3 GB to disk
e Typical run time is 39 hours.



Verifying Workload

 Start with empty file system.
* Age file system using workload.

e Execute file operations from workload on
the test file system.

« Compare file fragmentation on aged file
system to last snapshot of file system
from which workload was generated.



Verification Metric

e Layout Score
 Measures quality of file layout
 Range: 0.0-1.0
 Inversely proportional to file fragmentation

e Score Is percentage of file system blocks
that are contiguous

« 1.0 => All files are contiguously allocated
* 0.0 => No contiguous allocation
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Example

« Modification to UNIX file system (FFS)

« Use aging to evaluate performance trade-
offs.



Test Platform

e 200 MHz Pentium Pro

e 32 MB RAM

 PCI Bus

* NCR 53c825 SCSI controller
e Fujitsu M2694ES disk

1 GB, 5400 RPM, 15 Heads, 94 Sect./
Track (avg.), 1818 Cyl. 9.5 ms Avg. Seek

« BSD/OS 2.1
« 8 KB file system block size
 maxcontig = 7 blocks (56 KB)



Baseline FFS Performance
(Aged file system)
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The UNIX File System (FFS)
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Cylinder Groups

» Cylinder groups are allocation pools.
e They exploit locality of reference.

 Related data are collocated in same
cylinder group.

o All files in a directory
« Sequential blocks of a file



File Allocation

 First 12 file data blocks are allocated
from same cylinder group as the file’s
directory.

 The 13th and subsequent blocks are
allocated In a different cylinder group.

 All files have a large seek between 12th
and 13th block.

e 12 blocks = 96 KB



Solution

o NoSwitch file system

« Don’t switch cylinder groups after the
12th file block.



Potential Problem

 Too many large files in one directory

would cause cylinder group to run out of
space.

» Creates split files.

 Files in different cylinder group than their
directory.

« Extra seek to get from directory to file.
* But does this happen?

e If so, how does it affect performance?



Evaluation of NoSwitch

* Age two file systems, one that switches
cylinder groups, and one that doesn’t

« Compare the resulting file systems
e Overall performance
 Number of split files.
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Number of Split Files

Baseline NoSwitch
Number of 33,797 33,797
Files
Number of
Split Files 4,312 9,155
Percentage 13% 2704

of Split Files




Hot File Benchmark

 Measure performance using files from
aging workload

 Files modified during final 30 days
« 92 MB (14.5% of allocated storage)
e 3,207 files (9.5% of files)

e 119 files large enough to benefit from
NoSwitch

e Two phase benchmark:
1.Read entire file set
2.0verwrite entire file set



Hot File Performance
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Analysis

e NoSwitch file system improves
performance of medium and large files.

* NoSwitch file system increases the
number of split files.

* Net effect is small performance
Improvement.

« Exact trade-off depends on workload!



Conclusions

 Benchmarking empty file systems is
unrealistic.

 Benchmarking empty file systems can be
misleading.

* File system aging is a technique for
Increasing the relevance of file system
benchmarking.



Don’'t benchmark empty
file systems!
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Fragmentation Metric

e Layout Score measures fragmentation
 Fraction of blocks that are contiguous
* Ignores first block of a file.
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Sequential I/O Benchmark

e 32 MB data set

« Uniform file size (16 — 16,384 KB)

25 files per directory

 Two Phases
e Create Phase: Create and write all files
 Read Phase: Read all files
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Performance (empty)
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Future Work

e Improve aging algorithm
e Expand to cover more workloads.

e Parameterize for amount of aging or size
of file system.
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