File System Aging:
Increasing the Relevance of

Keith A. Smith
Margo I. Seltzer

Harvard University
Division of Engineering and Applied Sciences

File System Performance

©
o

I\
ol

N
o

Read Throughput (MB/sec)
[N
o1

1.0}
0.5 Empty — |
80% Full —
0
16 64 256 1024 4096 16384

File Size (KB)

Problem #1

« Full and empty file systems perform
differently.

* Most research uses empty file systems.
e Real world file systems are never empty.

Don’'t benchmark empty
file systems!

Problem #2

 Just filling a file system isn’t enough.

e The history of a file system determines
Its state.

e Design decisions may affect how state
evolves over time.

* Most research uses empty file systems.

 Researchers ignore a large area of
design space.

Don’'t benchmark empty
file systems!

Our Solution

« Use simulated workload to age file
system.

Overview

e Problem
 File system aging
« Creating the workload
« Verifying the workload
« Example
e Conclusions

File System Aging—Goals

 Examine state of file system after many
months of activity.

e Support different workloads.

 Allow reproducibility.

e Be architecture independent.

 Make easy to use.

File System Aging—Method

» Use real file system usage patterns to
generate artificial aging workload.

e Aging workload is sequence of file create,
write, and delete operations.

e Different workloads mimic different
usage patterns.

« Reproducibility provided by reusing
same workload.

« Workload parameterized in terms of
POSIX interface.

Source for Aging Workload

e Long term trace was impractical.
e Data we had available:
1.Unix file system snapshots
* Describes all files on file system.
 Dally for one year
2.NFS traces
« All NFS requests to large file server.
e Continuous for two weeks.

Generating Aging Workload

1. Start with sequence of snapshots.
2. Populate file system.

» Create files present in first snapshot.
3. Add inter-day file activity.

« Compare successive snapshots.

* |dentify created and deleted files.

e Add corresponding create, write, and
delete operations.

Generating Aging Workload

4. Add intra-day file activity.

e Use NFS traces to model short-lived file
activity.

. Intersp_erse create, write, and delete
operations based on model.

Sample Workload

* Aging Workload:
e Seven months of activity
1 GB file system
e ~1.3 million file operations
e Writes 87.3 GB to disk
e Typical run time is 39 hours.

Verifying Workload

 Start with empty file system.
* Age file system using workload.

e Execute file operations from workload on
the test file system.

« Compare file fragmentation on aged file
system to last snapshot of file system
from which workload was generated.

Verification Metric

e Layout Score
 Measures quality of file layout
 Range: 0.0-1.0
 Inversely proportional to file fragmentation

e Score Is percentage of file system blocks
that are contiguous

« 1.0 => All files are contiguously allocated
* 0.0 => No contiguous allocation

Layout Score

Aging Verification

1.0
0.6
0.4]
0.21 Simulated —
Real —
0.0
0 50 100 150 200

Time (Days)

Example

« Modification to UNIX file system (FFS)

« Use aging to evaluate performance trade-
offs.

Test Platform

e 200 MHz Pentium Pro

e 32 MB RAM

 PCI Bus

* NCR 53c825 SCSI controller
e Fujitsu M2694ES disk

1 GB, 5400 RPM, 15 Heads, 94 Sect./
Track (avg.), 1818 Cyl. 9.5 ms Avg. Seek

« BSD/OS 2.1
« 8 KB file system block size
 maxcontig = 7 blocks (56 KB)

Baseline FFS Performance
(Aged file system)

D
&

o
&

Throughput (MB/sec)

N
o

=
ol

=
O

Write —

Read — |

64 *

96KB

256

1024

File Size (KB)

4096

16384

The UNIX File System (FFS)

0...

File
System

/ Data Block

Cylinder
Group

Inode
Block

Size
Owner
Inode Permission

Block List

Cylinder Groups

» Cylinder groups are allocation pools.
e They exploit locality of reference.

 Related data are collocated in same
cylinder group.

o All files in a directory
« Sequential blocks of a file

File Allocation

 First 12 file data blocks are allocated
from same cylinder group as the file’s
directory.

 The 13th and subsequent blocks are
allocated In a different cylinder group.

 All files have a large seek between 12th
and 13th block.

e 12 blocks = 96 KB

Solution

o NoSwitch file system

« Don’t switch cylinder groups after the
12th file block.

Potential Problem

 Too many large files in one directory

would cause cylinder group to run out of
space.

» Creates split files.

 Files in different cylinder group than their
directory.

« Extra seek to get from directory to file.
* But does this happen?

e If so, how does it affect performance?

Evaluation of NoSwitch

* Age two file systems, one that switches
cylinder groups, and one that doesn’t

« Compare the resulting file systems
e Overall performance
 Number of split files.

w

Performance

N

-

’-

L 4
-

-
-2
-
-
-
-
”

NoSwitch (Read) -----
Baseline (Read) —
NoSwitch (Write) -----
Baseline (Write) —

File System Throughput (MB/sec)

64 256 1024 4096 16384
File Size (KB)

Number of Split Files

Baseline NoSwitch
Number of 33,797 33,797
Files
Number of
Split Files 4,312 9,155
Percentage 13% 2704

of Split Files

Hot File Benchmark

 Measure performance using files from
aging workload

 Files modified during final 30 days
« 92 MB (14.5% of allocated storage)
e 3,207 files (9.5% of files)

e 119 files large enough to benefit from
NoSwitch

e Two phase benchmark:
1.Read entire file set
2.0verwrite entire file set

Hot File Performance

Baseline NoSwitch

Layout 0.928 0.931
Score

Number of

Split Files 327 o994
Read 0.81 MB/sec | 0.84 MB/sec

Throughput
Write 0.49 MB/sec | 0.50 MB/sec

Throughput

Analysis

e NoSwitch file system improves
performance of medium and large files.

* NoSwitch file system increases the
number of split files.

* Net effect is small performance
Improvement.

« Exact trade-off depends on workload!

Conclusions

 Benchmarking empty file systems is
unrealistic.

 Benchmarking empty file systems can be
misleading.

* File system aging is a technique for
Increasing the relevance of file system
benchmarking.

Don’'t benchmark empty
file systems!

File System Aging:
Increasing the Relevance of
File System Benchmarks

Keith A. Smith
Margo |. Seltzer

keith@eecs.harvard.edu
margo@eecs.harvard.edu

http://www.eecs.harvard.edu/~keith/sigmetrics97

Fragmentation Metric

e Layout Score measures fragmentation
 Fraction of blocks that are contiguous
* Ignores first block of a file.

Score
0.0

0.5

1.0

%

Sample File La yout

% Y%
%
Contiguous

N

Not Contiguous

Sequential I/O Benchmark

e 32 MB data set

« Uniform file size (16 — 16,384 KB)

25 files per directory

 Two Phases
e Create Phase: Create and write all files
 Read Phase: Read all files

Read Throughput (MB/sec)

Comparison (empty)

1| Smart Clustering — |
Dumb Clustering —

16 64 256 1024 4096 16384
File Size (KB)

Throughput (MB/sec)

Comparison (aged)

Smart Clustering —
Dumb Clustering —

16 64 256 1024 4096 16384
File Size (KB)

Layout Score

1.0

Aging Verification

0.8}

0.6}

0.4

0.2}

0.0

Simulated ——
Real ——

16

64

256 1024 4096 16384 65536
File Size (KB)

Performance (empty)

w

N

NoSwitch (Read) ----- '
Baseline (Read) —
NoSwitch (Write) -----
Baseline (Write) ——

16 64 256 1024 4096 16384
File Size (KB)

File System Throughput (MB/sec)

Seek Distances in Split Files

10000

(o)} o0
o o
o o
o o
\

2000} NoSwitch —

Baseline —

Number of Split Files (cumul.)
D
o
o
o

0 10 20 30 40 50 60
Distance (# of cylinder groups)

Future Work

e Improve aging algorithm
e Expand to cover more workloads.

e Parameterize for amount of aging or size
of file system.

	File System Aging: Increasing the Relevance of File System Benchmarks
	Keith A. Smith Margo I. Seltzer
	Harvard University Division of Engineering and Applied Sciences

	File System Performance
	Problem #1
	• Full and empty file systems perform differently.
	• Most research uses empty file systems.
	• Real world file systems are never empty.
	Don’t benchmark empty file systems!

	Problem #2
	• Just filling a file system isn’t enough.
	• The history of a file system determines its state.
	• Design decisions may affect how state evolves over time.
	• Most research uses empty file systems.
	• Researchers ignore a large area of design space.
	Don’t benchmark empty file systems!

	Our Solution
	• Use simulated workload to age file system.

	Overview
	• Problem
	• File system aging
	• Creating the workload
	• Verifying the workload

	• Example
	• Conclusions

	File System Aging—Goals
	• Examine state of file system after many months of activity.
	• Support different workloads.
	• Allow reproducibility.
	• Be architecture independent.
	• Make easy to use.

	File System Aging—Method
	• Use real file system usage patterns to generate artificial aging workload.
	• Aging workload is sequence of file create, write, and delete operations.

	• Different workloads mimic different usage patterns.
	• Reproducibility provided by reusing same workload.
	• Workload parameterized in terms of POSIX interface.

	Source for Aging Workload
	• Long term trace was impractical.
	• Data we had available:
	1. Unix file system snapshots
	• Describes all files on file system.
	• Daily for one year
	2. NFS traces

	• All NFS requests to large file server.
	• Continuous for two weeks.

	Generating Aging Workload
	1. Start with sequence of snapshots.
	2. Populate file system.
	• Create files present in first snapshot.
	3. Add inter-day file activity.

	• Compare successive snapshots.
	• Identify created and deleted files.
	• Add corresponding create, write, and delete operations.

	Generating Aging Workload
	4. Add intra-day file activity.
	• Use NFS traces to model short-lived file activity.
	• Intersperse create, write, and delete operations based on model.

	Sample Workload
	• Aging Workload:
	• Seven months of activity
	• 1 GB file system
	• ~1.3 million file operations
	• Writes 87.3 GB to disk
	• Typical run time is 39 hours.

	Verifying Workload
	• Start with empty file system.
	• Age file system using workload.
	• Execute file operations from workload on the test file system.

	• Compare file fragmentation on aged file system to last snapshot of file system from which workl...

	Verification Metric
	• Layout Score
	• Measures quality of file layout
	• Range: 0.0 – 1.0
	• Inversely proportional to file fragmentation
	• Score is percentage of file system blocks that are contiguous
	• 1.0 => All files are contiguously allocated
	• 0.0 => No contiguous allocation

	Aging Verification
	Example
	• Modification to UNIX file system (FFS)
	• Use aging to evaluate performance trade- offs.

	Test Platform
	• 200 MHz Pentium Pro
	• 32 MB RAM
	• PCI Bus
	• NCR 53c825 SCSI controller
	• Fujitsu M2694ES disk
	• 1 GB, 5400 RPM, 15 Heads, 94 Sect./ Track (avg.), 1818 Cyl. 9.5 ms Avg. Seek

	• BSD/OS 2.1
	• 8 KB file system block size
	• maxcontig = 7 blocks (56 KB)

	Baseline FFS Performance
	(Aged file system)

	The UNIX File System (FFS)
	Cylinder Groups
	• Cylinder groups are allocation pools.
	• They exploit locality of reference.
	• Related data are collocated in same cylinder group.
	• All files in a directory
	• Sequential blocks of a file

	File Allocation
	• First 12 file data blocks are allocated from same cylinder group as the file’s directory.
	• The 13th and subsequent blocks are allocated in a different cylinder group.
	• All files have a large seek between 12th and 13th block.
	• 12 blocks = 96 KB

	Solution
	• NoSwitch file system
	• Don’t switch cylinder groups after the 12th file block.

	Potential Problem
	• Too many large files in one directory would cause cylinder group to run out of space.
	• Creates split files.
	• Files in different cylinder group than their directory.
	• Extra seek to get from directory to file.

	• But does this happen?
	• If so, how does it affect performance?

	Evaluation of NoSwitch
	• Age two file systems, one that switches cylinder groups, and one that doesn’t
	• Compare the resulting file systems
	• Overall performance
	• Number of split files.

	Performance
	Number of Split Files
	33,797
	33,797
	4,312
	9,155
	13%
	27%

	Hot File Benchmark
	• Measure performance using files from aging workload
	• Files modified during final 30 days
	• 92 MB (14.5% of allocated storage)
	• 3,207 files (9.5% of files)
	• 119 files large enough to benefit from NoSwitch

	• Two phase benchmark:
	1. Read entire file set
	2. Overwrite entire file set

	Hot File Performance
	0.928
	0.931
	327
	594
	0.81 MB/sec
	0.84 MB/sec
	0.49 MB/sec
	0.50 MB/sec

	Analysis
	• NoSwitch file system improves performance of medium and large files.
	• NoSwitch file system increases the number of split files.
	• Net effect is small performance improvement.
	• Exact trade-off depends on workload!

	Conclusions
	• Benchmarking empty file systems is unrealistic.
	• Benchmarking empty file systems can be misleading.
	• File system aging is a technique for increasing the relevance of file system benchmarking.
	Don’t benchmark empty file systems!

	File System Aging: Increasing the Relevance of File System Benchmarks
	Keith A. Smith Margo I. Seltzer
	keith@eecs.harvard.edu margo@eecs.harvard.edu
	http://www.eecs.harvard.edu/~keith/sigmetrics97

	Fragmentation Metric
	• Layout Score measures fragmentation
	• Fraction of blocks that are contiguous
	• Ignores first block of a file.

	Sequential I/O Benchmark
	• 32 MB data set
	• Uniform file size (16 – 16,384 KB)
	• 25 files per directory
	• Two Phases
	• Create Phase: Create and write all files
	• Read Phase: Read all files

	Comparison (empty)
	Comparison (aged)
	Aging Verification
	Performance (empty)
	Seek Distances in Split Files
	Future Work
	• Improve aging algorithm
	• Expand to cover more workloads.
	• Parameterize for amount of aging or size of file system.

