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File System Performance
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Problem #1

ems.

mpty.
• Full and empty file systems perform
differently.

• Most research uses empty file syst

• Real world file systems are never e



y
Don’t benchmark empt
file systems!



Problem #2
h.

ines

tate

ems.

f

• Just filling a file system isn’t enoug

• The history of a file system determ
its state.

• Design decisions may affect how s
evolves over time.

• Most research uses empty file syst

• Researchers ignore a large area o
design space.



y
Don’t benchmark empt
file systems!



Our Solution
le
• Use simulated workload to age fi

system.



Overview

• Problem

• File system aging

• Creating the workload

• Verifying the workload

• Example

• Conclusions



File System Aging—Goals
any
• Examine state of file system after m

months of activity.

• Support different workloads.

• Allow reproducibility.

• Be architecture independent.

• Make easy to use.



File System Aging—Method
s to
.
le create,

f

• Use real file system usage pattern
generate artificial aging workload
• Aging workload is sequence of fi

write, and delete operations.

• Different workloads mimic different
usage patterns.

• Reproducibility provided by reusing
same workload.

• Workload parameterized in terms o
POSIX interface.



Source for Aging Workload

.

rver.
• Long term trace was impractical.

• Data we had available:

1.Unix file system snapshots

• Describes all files on file system

• Daily for one year

2.NFS traces

• All NFS requests to large file se

• Continuous for two weeks.



Generating Aging Workload
.

hot.

.

 and
1. Start with sequence of snapshots

2. Populate file system.

• Create files present in first snaps

3. Add inter-day file activity.

• Compare successive snapshots.

• Identify created and deleted files

• Add corresponding create, write,
delete operations.



Generating Aging Workload

ived file

lete
4. Add intra-day file activity.

• Use NFS traces to model short-l
activity.

• Intersperse create, write, and de
operations based on model.



Sample Workload

• Aging Workload:

• Seven months of activity

• 1 GB file system

• ~1.3 million file operations

• Writes 87.3 GB to disk

• Typical run time is 39 hours.



Verifying Workload

load on

d file
em
d.
• Start with empty file system.

• Age file system using workload.

• Execute file operations from work
the test file system.

• Compare file fragmentation on age
system to last snapshot of file syst
from which workload was generate



Verification Metric

entation

 blocks

llocated
• Layout Score

• Measures quality of file layout

• Range: 0.0 – 1.0

• Inversely proportional to file fragm

• Score is percentage of file system
that are contiguous

• 1.0 => All files are contiguously a

• 0.0 => No contiguous allocation



Aging Verification
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Example
FS)

trade-
• Modification to UNIX file system (F

• Use aging to evaluate performance
offs.



Test Platform

Sect./
g. Seek
• 200 MHz Pentium Pro

• 32 MB RAM

• PCI Bus

• NCR 53c825 SCSI controller

• Fujitsu M2694ES disk

• 1 GB, 5400 RPM, 15 Heads, 94 
Track (avg.), 1818 Cyl. 9.5 ms Av

• BSD/OS 2.1

• 8 KB file system block size

• maxcontig = 7 blocks (56 KB)



Baseline FFS Performance
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The UNIX File System (FFS)
...N
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Size
Owner
Permission

Block List

0...

Cylinder
Group

Inode
Block

Inode

Data Blocks

File
System



Cylinder Groups
ls.

e

• Cylinder groups are allocation poo

• They exploit locality of reference.

• Related data are collocated in sam
cylinder group.

• All files in a directory

• Sequential blocks of a file



File Allocation
ed
le’s

re
up.

 12th
• First 12 file data blocks are allocat
from same cylinder group as the fi
directory.

• The 13th and subsequent blocks a
allocated in a different cylinder gro

• All files have a large seek between
and 13th block.

• 12 blocks = 96 KB



Solution

he
• NoSwitch file system

• Don’t switch cylinder groups after t
12th file block.



Potential Problem
ry
out of

an their

o file.

e?
• Too many large files in one directo
would cause cylinder group to run
space.

• Creates split files.

• Files in different cylinder group th
directory.

• Extra seek to get from directory t

• But does this happen?

• If so, how does it affect performanc



Evaluation of NoSwitch
ches
n’t
• Age two file systems, one that swit
cylinder groups, and one that does

• Compare the resulting file systems

• Overall performance

• Number of split files.



Performance
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Number of Split Files

witch

,797

,155

7%
Baseline NoS

Number of
Files 33,797 33

Number of
Split Files 4,312 9

Percentage
of Split Files 13% 2



Hot File Benchmark
rom

s

e)

from
• Measure performance using files f
aging workload

• Files modified during final 30 day

• 92 MB (14.5% of allocated storag

• 3,207 files (9.5% of files)

• 119 files large enough to benefit 
NoSwitch

• Two phase benchmark:

1.Read entire file set

2.Overwrite entire file set



Hot File Performance

witch

.931

94

MB/sec

MB/sec
Baseline NoS

Layout
Score 0.928 0

Number of
Split Files 327 5

Read
Throughput 0.81 MB/sec 0.84 

Write
Throughput 0.49 MB/sec 0.50 



Analysis

files.

ad!
• NoSwitch file system improves
performance of medium and large 

• NoSwitch file system increases the
number of split files.

• Net effect is small performance
improvement.

• Exact trade-off depends on worklo



Conclusions
is

an be

r
tem
• Benchmarking empty file systems 
unrealistic.

• Benchmarking empty file systems c
misleading.

• File system aging is a technique fo
increasing the relevance of file sys
benchmarking.
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Don’t benchmark empt
file systems!
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Fragmentation Metric
ation

uous

ntiguous
• Layout Score measures fragment

• Fraction of blocks that are contig

• Ignores first block of a file.

Contiguous Not Co
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Sequential I/O Benchmark

all files
• 32 MB data set

• Uniform file size (16 – 16,384 KB)

• 25 files per directory

• Two Phases

• Create Phase: Create and write 

• Read Phase: Read all files



Comparison (empty)
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Comparison (aged)
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Aging Verification
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Performance (empty)
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Seek Distances in Split Files
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Future Work

or size
• Improve aging algorithm

• Expand to cover more workloads.

• Parameterize for amount of aging
of file system.
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	File System Performance
	Problem #1
	• Full and empty file systems perform differently.
	• Most research uses empty file systems.
	• Real world file systems are never empty.
	Don’t benchmark empty file systems!


	Problem #2
	• Just filling a file system isn’t enough.
	• The history of a file system determines its state.
	• Design decisions may affect how state evolves over time.
	• Most research uses empty file systems.
	• Researchers ignore a large area of design space.
	Don’t benchmark empty file systems!


	Our Solution
	• Use simulated workload to age file system.

	Overview
	• Problem
	• File system aging
	• Creating the workload
	• Verifying the workload

	• Example
	• Conclusions

	File System Aging—Goals
	• Examine state of file system after many months of activity.
	• Support different workloads.
	• Allow reproducibility.
	• Be architecture independent.
	• Make easy to use.

	File System Aging—Method
	• Use real file system usage patterns to generate artificial aging workload.
	• Aging workload is sequence of file create, write, and delete operations.

	• Different workloads mimic different usage patterns.
	• Reproducibility provided by reusing same workload.
	• Workload parameterized in terms of POSIX interface.

	Source for Aging Workload
	• Long term trace was impractical.
	• Data we had available:
	1. Unix file system snapshots
	• Describes all files on file system.
	• Daily for one year
	2. NFS traces

	• All NFS requests to large file server.
	• Continuous for two weeks.


	Generating Aging Workload
	1. Start with sequence of snapshots.
	2. Populate file system.
	• Create files present in first snapshot.
	3. Add inter-day file activity.

	• Compare successive snapshots.
	• Identify created and deleted files.
	• Add corresponding create, write, and delete operations.

	Generating Aging Workload
	4. Add intra-day file activity.
	• Use NFS traces to model short-lived file activity.
	• Intersperse create, write, and delete operations based on model.

	Sample Workload
	• Aging Workload:
	• Seven months of activity
	• 1 GB file system
	• ~1.3 million file operations
	• Writes 87.3 GB to disk
	• Typical run time is 39 hours.


	Verifying Workload
	• Start with empty file system.
	• Age file system using workload.
	• Execute file operations from workload on the test file system.

	• Compare file fragmentation on aged file system to last snapshot of file system from which workl...

	Verification Metric
	• Layout Score
	• Measures quality of file layout
	• Range: 0.0 – 1.0
	• Inversely proportional to file fragmentation
	• Score is percentage of file system blocks that are contiguous
	• 1.0 => All files are contiguously allocated
	• 0.0 => No contiguous allocation


	Aging Verification
	Example
	• Modification to UNIX file system (FFS)
	• Use aging to evaluate performance trade- offs.

	Test Platform
	• 200 MHz Pentium Pro
	• 32 MB RAM
	• PCI Bus
	• NCR 53c825 SCSI controller
	• Fujitsu M2694ES disk
	• 1 GB, 5400 RPM, 15 Heads, 94 Sect./ Track (avg.), 1818 Cyl. 9.5 ms Avg. Seek

	• BSD/OS 2.1
	• 8 KB file system block size
	• maxcontig = 7 blocks (56 KB)

	Baseline FFS Performance
	(Aged file system)

	The UNIX File System (FFS)
	Cylinder Groups
	• Cylinder groups are allocation pools.
	• They exploit locality of reference.
	• Related data are collocated in same cylinder group.
	• All files in a directory
	• Sequential blocks of a file


	File Allocation
	• First 12 file data blocks are allocated from same cylinder group as the file’s directory.
	• The 13th and subsequent blocks are allocated in a different cylinder group.
	• All files have a large seek between 12th and 13th block.
	• 12 blocks = 96 KB

	Solution
	• NoSwitch file system
	• Don’t switch cylinder groups after the 12th file block.

	Potential Problem
	• Too many large files in one directory would cause cylinder group to run out of space.
	• Creates split files.
	• Files in different cylinder group than their directory.
	• Extra seek to get from directory to file.

	• But does this happen?
	• If so, how does it affect performance?

	Evaluation of NoSwitch
	• Age two file systems, one that switches cylinder groups, and one that doesn’t
	• Compare the resulting file systems
	• Overall performance
	• Number of split files.


	Performance
	Number of Split Files
	33,797
	33,797
	4,312
	9,155
	13%
	27%

	Hot File Benchmark
	• Measure performance using files from aging workload
	• Files modified during final 30 days
	• 92 MB (14.5% of allocated storage)
	• 3,207 files (9.5% of files)
	• 119 files large enough to benefit from NoSwitch

	• Two phase benchmark:
	1. Read entire file set
	2. Overwrite entire file set


	Hot File Performance
	0.928
	0.931
	327
	594
	0.81 MB/sec
	0.84 MB/sec
	0.49 MB/sec
	0.50 MB/sec

	Analysis
	• NoSwitch file system improves performance of medium and large files.
	• NoSwitch file system increases the number of split files.
	• Net effect is small performance improvement.
	• Exact trade-off depends on workload!

	Conclusions
	• Benchmarking empty file systems is unrealistic.
	• Benchmarking empty file systems can be misleading.
	• File system aging is a technique for increasing the relevance of file system benchmarking.
	Don’t benchmark empty file systems!
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	Fragmentation Metric
	• Layout Score measures fragmentation
	• Fraction of blocks that are contiguous
	• Ignores first block of a file.


	Sequential I/O Benchmark
	• 32 MB data set
	• Uniform file size (16 – 16,384 KB)
	• 25 files per directory
	• Two Phases
	• Create Phase: Create and write all files
	• Read Phase: Read all files


	Comparison (empty)
	Comparison (aged)
	Aging Verification
	Performance (empty)
	Seek Distances in Split Files
	Future Work
	• Improve aging algorithm
	• Expand to cover more workloads.
	• Parameterize for amount of aging or size of file system.


