
File System Aging:
 of
s

ences
Increasing the Relevance
File System Benchmark

Keith A. Smith
Margo I. Seltzer

Harvard University
Division of Engineering and Applied Sci



File System Performance

16384

0

0.5

1.0

1.5

2.0

2.5

3.0

16 64 256 1024 4096

R
ea

d 
T

hr
ou

gh
pu

t (
M

B
/s

ec
)

File Size (KB)

Empty
80% Full



Problem #1

ems.

mpty.
• Full and empty file systems perform
differently.

• Most research uses empty file syst

• Real world file systems are never e



y
Don’t benchmark empt
file systems!



Problem #2
h.

ines

tate

ems.

f

• Just filling a file system isn’t enoug

• The history of a file system determ
its state.

• Design decisions may affect how s
evolves over time.

• Most research uses empty file syst

• Researchers ignore a large area o
design space.



y
Don’t benchmark empt
file systems!



Our Solution
le
• Use simulated workload to age fi

system.



Overview

• Problem

• File system aging

• Creating the workload

• Verifying the workload

• Example

• Conclusions



File System Aging—Goals
any
• Examine state of file system after m

months of activity.

• Support different workloads.

• Allow reproducibility.

• Be architecture independent.

• Make easy to use.



File System Aging—Method
s to
.
le create,

f

• Use real file system usage pattern
generate artificial aging workload
• Aging workload is sequence of fi

write, and delete operations.

• Different workloads mimic different
usage patterns.

• Reproducibility provided by reusing
same workload.

• Workload parameterized in terms o
POSIX interface.



Source for Aging Workload

.

rver.
• Long term trace was impractical.

• Data we had available:

1.Unix file system snapshots

• Describes all files on file system

• Daily for one year

2.NFS traces

• All NFS requests to large file se

• Continuous for two weeks.



Generating Aging Workload
.

hot.

.

 and
1. Start with sequence of snapshots

2. Populate file system.

• Create files present in first snaps

3. Add inter-day file activity.

• Compare successive snapshots.

• Identify created and deleted files

• Add corresponding create, write,
delete operations.



Generating Aging Workload

ived file

lete
4. Add intra-day file activity.

• Use NFS traces to model short-l
activity.

• Intersperse create, write, and de
operations based on model.



Sample Workload

• Aging Workload:

• Seven months of activity

• 1 GB file system

• ~1.3 million file operations

• Writes 87.3 GB to disk

• Typical run time is 39 hours.



Verifying Workload

load on

d file
em
d.
• Start with empty file system.

• Age file system using workload.

• Execute file operations from work
the test file system.

• Compare file fragmentation on age
system to last snapshot of file syst
from which workload was generate



Verification Metric

entation

 blocks

llocated
• Layout Score

• Measures quality of file layout

• Range: 0.0 – 1.0

• Inversely proportional to file fragm

• Score is percentage of file system
that are contiguous

• 1.0 => All files are contiguously a

• 0.0 => No contiguous allocation



Aging Verification

200

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150

La
yo

ut
 S

co
re

Time (Days)

Simulated
Real



Example
FS)

trade-
• Modification to UNIX file system (F

• Use aging to evaluate performance
offs.



Test Platform

Sect./
g. Seek
• 200 MHz Pentium Pro

• 32 MB RAM

• PCI Bus

• NCR 53c825 SCSI controller

• Fujitsu M2694ES disk

• 1 GB, 5400 RPM, 15 Heads, 94 
Track (avg.), 1818 Cyl. 9.5 ms Av

• BSD/OS 2.1

• 8 KB file system block size

• maxcontig = 7 blocks (56 KB)



Baseline FFS Performance

16384
(Aged file system)

0.0

0.5

1.0

1.5

2.0

2.5

16 64 256 1024 4096

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

File Size (KB)

Read
Write

96KB



The UNIX File System (FFS)
...N
......

Size
Owner
Permission

Block List

0...

Cylinder
Group

Inode
Block

Inode

Data Blocks

File
System



Cylinder Groups
ls.

e

• Cylinder groups are allocation poo

• They exploit locality of reference.

• Related data are collocated in sam
cylinder group.

• All files in a directory

• Sequential blocks of a file



File Allocation
ed
le’s

re
up.

 12th
• First 12 file data blocks are allocat
from same cylinder group as the fi
directory.

• The 13th and subsequent blocks a
allocated in a different cylinder gro

• All files have a large seek between
and 13th block.

• 12 blocks = 96 KB



Solution

he
• NoSwitch file system

• Don’t switch cylinder groups after t
12th file block.



Potential Problem
ry
out of

an their

o file.

e?
• Too many large files in one directo
would cause cylinder group to run
space.

• Creates split files.

• Files in different cylinder group th
directory.

• Extra seek to get from directory t

• But does this happen?

• If so, how does it affect performanc



Evaluation of NoSwitch
ches
n’t
• Age two file systems, one that swit
cylinder groups, and one that does

• Compare the resulting file systems

• Overall performance

• Number of split files.



Performance

16384

0

1

2

3

16 64 256 1024 4096F
ile

 S
ys

te
m

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

File Size (KB)

NoSwitch (Read)
Baseline (Read)

NoSwitch (Write)
Baseline (Write)



Number of Split Files

witch

,797

,155

7%
Baseline NoS

Number of
Files 33,797 33

Number of
Split Files 4,312 9

Percentage
of Split Files 13% 2



Hot File Benchmark
rom

s

e)

from
• Measure performance using files f
aging workload

• Files modified during final 30 day

• 92 MB (14.5% of allocated storag

• 3,207 files (9.5% of files)

• 119 files large enough to benefit 
NoSwitch

• Two phase benchmark:

1.Read entire file set

2.Overwrite entire file set



Hot File Performance

witch

.931

94

MB/sec

MB/sec
Baseline NoS

Layout
Score 0.928 0

Number of
Split Files 327 5

Read
Throughput 0.81 MB/sec 0.84 

Write
Throughput 0.49 MB/sec 0.50 



Analysis

files.

ad!
• NoSwitch file system improves
performance of medium and large 

• NoSwitch file system increases the
number of split files.

• Net effect is small performance
improvement.

• Exact trade-off depends on worklo



Conclusions
is

an be

r
tem
• Benchmarking empty file systems 
unrealistic.

• Benchmarking empty file systems c
misleading.

• File system aging is a technique fo
increasing the relevance of file sys
benchmarking.



y
Don’t benchmark empt
file systems!



File System Aging:
 of
s

metrics97
Increasing the Relevance
File System Benchmark

Keith A. Smith
Margo I. Seltzer

keith@eecs.harvard.edu
margo@eecs.harvard.edu

http://www.eecs.harvard.edu/~keith/sig



Fragmentation Metric
ation

uous

ntiguous
• Layout Score measures fragment

• Fraction of blocks that are contig

• Ignores first block of a file.

Contiguous Not Co

0.0

0.5

1.0

Score Sample File La yout



Sequential I/O Benchmark

all files
• 32 MB data set

• Uniform file size (16 – 16,384 KB)

• 25 files per directory

• Two Phases

• Create Phase: Create and write 

• Read Phase: Read all files



Comparison (empty)

16384

0

1

2

3

4

5

6

16 64 256 1024 4096

R
ea

d 
T

hr
ou

gh
pu

t (
M

B
/s

ec
)

File Size (KB)

Smart Clustering
Dumb Clustering



Comparison (aged)

6384

0

1

2

3

4

5

6

16 64 256 1024 4096 1

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

File Size (KB)

Smart Clustering
Dumb Clustering



Aging Verification

4 65536

0.0

0.2

0.4

0.6

0.8

1.0

16 64 256 1024 4096 1638

La
yo

ut
 S

co
re

File Size (KB)

Simulated
Real



Performance (empty)

16384

)
)
)
)

0

1

2

3

16 64 256 1024 4096F
ile

 S
ys

te
m

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

File Size (KB)

NoSwitch (Read
Baseline (Read

NoSwitch (Write
Baseline (Write



Seek Distances in Split Files

60

0

2000

4000

6000

8000

10000

0 10 20 30 40 50

N
um

be
r 

of
 S

pl
it 

F
ile

s 
(c

um
ul

.)

Distance (# of cylinder groups)

NoSwitch
Baseline



Future Work

or size
• Improve aging algorithm

• Expand to cover more workloads.

• Parameterize for amount of aging
of file system.


	File System Aging: Increasing the Relevance of File System Benchmarks
	Keith A. Smith Margo I. Seltzer
	Harvard University Division of Engineering and Applied Sciences

	File System Performance
	Problem #1
	• Full and empty file systems perform differently.
	• Most research uses empty file systems.
	• Real world file systems are never empty.
	Don’t benchmark empty file systems!


	Problem #2
	• Just filling a file system isn’t enough.
	• The history of a file system determines its state.
	• Design decisions may affect how state evolves over time.
	• Most research uses empty file systems.
	• Researchers ignore a large area of design space.
	Don’t benchmark empty file systems!


	Our Solution
	• Use simulated workload to age file system.

	Overview
	• Problem
	• File system aging
	• Creating the workload
	• Verifying the workload

	• Example
	• Conclusions

	File System Aging—Goals
	• Examine state of file system after many months of activity.
	• Support different workloads.
	• Allow reproducibility.
	• Be architecture independent.
	• Make easy to use.

	File System Aging—Method
	• Use real file system usage patterns to generate artificial aging workload.
	• Aging workload is sequence of file create, write, and delete operations.

	• Different workloads mimic different usage patterns.
	• Reproducibility provided by reusing same workload.
	• Workload parameterized in terms of POSIX interface.

	Source for Aging Workload
	• Long term trace was impractical.
	• Data we had available:
	1. Unix file system snapshots
	• Describes all files on file system.
	• Daily for one year
	2. NFS traces

	• All NFS requests to large file server.
	• Continuous for two weeks.


	Generating Aging Workload
	1. Start with sequence of snapshots.
	2. Populate file system.
	• Create files present in first snapshot.
	3. Add inter-day file activity.

	• Compare successive snapshots.
	• Identify created and deleted files.
	• Add corresponding create, write, and delete operations.

	Generating Aging Workload
	4. Add intra-day file activity.
	• Use NFS traces to model short-lived file activity.
	• Intersperse create, write, and delete operations based on model.

	Sample Workload
	• Aging Workload:
	• Seven months of activity
	• 1 GB file system
	• ~1.3 million file operations
	• Writes 87.3 GB to disk
	• Typical run time is 39 hours.


	Verifying Workload
	• Start with empty file system.
	• Age file system using workload.
	• Execute file operations from workload on the test file system.

	• Compare file fragmentation on aged file system to last snapshot of file system from which workl...

	Verification Metric
	• Layout Score
	• Measures quality of file layout
	• Range: 0.0 – 1.0
	• Inversely proportional to file fragmentation
	• Score is percentage of file system blocks that are contiguous
	• 1.0 => All files are contiguously allocated
	• 0.0 => No contiguous allocation


	Aging Verification
	Example
	• Modification to UNIX file system (FFS)
	• Use aging to evaluate performance trade- offs.

	Test Platform
	• 200 MHz Pentium Pro
	• 32 MB RAM
	• PCI Bus
	• NCR 53c825 SCSI controller
	• Fujitsu M2694ES disk
	• 1 GB, 5400 RPM, 15 Heads, 94 Sect./ Track (avg.), 1818 Cyl. 9.5 ms Avg. Seek

	• BSD/OS 2.1
	• 8 KB file system block size
	• maxcontig = 7 blocks (56 KB)

	Baseline FFS Performance
	(Aged file system)

	The UNIX File System (FFS)
	Cylinder Groups
	• Cylinder groups are allocation pools.
	• They exploit locality of reference.
	• Related data are collocated in same cylinder group.
	• All files in a directory
	• Sequential blocks of a file


	File Allocation
	• First 12 file data blocks are allocated from same cylinder group as the file’s directory.
	• The 13th and subsequent blocks are allocated in a different cylinder group.
	• All files have a large seek between 12th and 13th block.
	• 12 blocks = 96 KB

	Solution
	• NoSwitch file system
	• Don’t switch cylinder groups after the 12th file block.

	Potential Problem
	• Too many large files in one directory would cause cylinder group to run out of space.
	• Creates split files.
	• Files in different cylinder group than their directory.
	• Extra seek to get from directory to file.

	• But does this happen?
	• If so, how does it affect performance?

	Evaluation of NoSwitch
	• Age two file systems, one that switches cylinder groups, and one that doesn’t
	• Compare the resulting file systems
	• Overall performance
	• Number of split files.


	Performance
	Number of Split Files
	33,797
	33,797
	4,312
	9,155
	13%
	27%

	Hot File Benchmark
	• Measure performance using files from aging workload
	• Files modified during final 30 days
	• 92 MB (14.5% of allocated storage)
	• 3,207 files (9.5% of files)
	• 119 files large enough to benefit from NoSwitch

	• Two phase benchmark:
	1. Read entire file set
	2. Overwrite entire file set


	Hot File Performance
	0.928
	0.931
	327
	594
	0.81 MB/sec
	0.84 MB/sec
	0.49 MB/sec
	0.50 MB/sec

	Analysis
	• NoSwitch file system improves performance of medium and large files.
	• NoSwitch file system increases the number of split files.
	• Net effect is small performance improvement.
	• Exact trade-off depends on workload!

	Conclusions
	• Benchmarking empty file systems is unrealistic.
	• Benchmarking empty file systems can be misleading.
	• File system aging is a technique for increasing the relevance of file system benchmarking.
	Don’t benchmark empty file systems!


	File System Aging: Increasing the Relevance of File System Benchmarks
	Keith A. Smith Margo I. Seltzer
	keith@eecs.harvard.edu margo@eecs.harvard.edu
	http://www.eecs.harvard.edu/~keith/sigmetrics97


	Fragmentation Metric
	• Layout Score measures fragmentation
	• Fraction of blocks that are contiguous
	• Ignores first block of a file.


	Sequential I/O Benchmark
	• 32 MB data set
	• Uniform file size (16 – 16,384 KB)
	• 25 files per directory
	• Two Phases
	• Create Phase: Create and write all files
	• Read Phase: Read all files


	Comparison (empty)
	Comparison (aged)
	Aging Verification
	Performance (empty)
	Seek Distances in Split Files
	Future Work
	• Improve aging algorithm
	• Expand to cover more workloads.
	• Parameterize for amount of aging or size of file system.


