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Abstract
This paper explores the application of interactiv

genetic algorithms to the creation of line drawings. W
have built a system that mates or mutates drawin
selected by the user to create a new generation of dra
ings. The initial population from which the user make
selections may be generated randomly or input man
ally. The process of selection and procreation is repea
many times to evolve a drawing. A wide variety of com
plex sketches with highlighting and shading can b
evolved from very simple drawings. This technique ha
potential for augmenting and enhancing the power
traditional computer-aided drawing tools, and fo
expanding the repertoire of the computer-assisted arti

Keywords: Genetic Algorithm, Interactive Evolu-
tion, Interactive Graphics.

1  Introduction
Interactive fitness evaluation for genetic algorithm

was introduced by zoologist Richard Dawkins in hi
book, “The Blind Watchmaker.” The book describes
computer program for evolving images of creature
Dawkins calls “biomorphs” [Daw87]. Each biomorph is
produced from a compact genetic code that specifies
creature’s particular characteristics. Contained in th
code is the essential information necessary to creat
bit-mapped image of the creature on the comput
screen. Using a technique calledinteractive evolution,
the computer and user collaborate to produce comp
and varied insect-like creatures. With interactive evolu
tion, the user selects the most aesthetically pleasing b
morph from a set of creatures displayed on the scree
By randomly mutating the genetic code of the selecte
biomorph, the computer creates a new generation of b
morphs to display. The new generation is again su
jected to the aesthetic selection criteria of the user
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produce the following generation. This cycle continue
until the user “evolves” a pleasing creature.

Dawkins’ idea has spawned several successful app
cations of interactive evolution to other image desig
and construction problems ([Sim91], [CJ91], [TL92]
[Sth91], [BS93], [Ba93]). This paper presents an intera
tive evolution system for creating line drawings. Th
genetic representation and definition of the genetic op
ators are substantially different from previous interactiv
evolution systems, and it produces corresponding
unique results. The user interface is similar to other sy
tems (especially Sims’ [Sim91] and Dawkins’ [Daw87])
An initial population of drawings, either generated ran
domly by the computer or input by the user, is displaye
on the screen. From the displayed set the user selects
drawing for mutation or two drawings for mating. The
mating and/or mutation operations are applied to th
selected drawings to produce a new set of progeny dra
ings that supply the input for the next round of use
selection. This process is repeated multiple times
“evolve” a drawing of interest to the user. Evolved draw
ings may be saved and later recalled for mating wi
other evolved drawings.

2  Interactive Evolution
Interactive evolution provides a powerful new tech

nique for enabling human-computer collaboration. It
potentially applicable to a wide variety of search prob
lems, provided the candidate solutions can be produc
quickly by a computer and evaluated quickly and easi
by a human. Since humans are often very good at p
cessing and assessing pictures quickly, interactive evo
tion is particularly well suited to search problems whos
candidate solutions can be represented visually.

Traditionally a genetic algorithm (GA) requires the
specification of survival fitness criteria to be evaluate
by the computer [Gol89]. This is typically one of the
most difficult tasks in designing a GA. With interactive
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evolution the user performs this step, applying whatev
complicated measure of fitness is desired. Unfortunate
including a human evaluator also severely weakens t
GA because the human’s speed and patience beco
new limiting factors, restricting the population size an
possible number of generations. Despite this drawba
interactive evolution has been used to produce som
astounding results that could not have been achiev
easily by any other known method [Sim91], [TL92].

The beauty of interactive evolution is that the use
need onlyapply personal fitness criteria, not state o
even understand them. This feature of interactive evo
tion is used very effectively in a system by Caldwell an
Johnston for allowing a crime victim to produce a facia
composite of a criminal suspect [CJ91]. This syste
takes advantage of the remarkable human ability to re
ognize faces. A database of face parts (e.g., eyes, no
mouths) is used to construct candidate faces, which a
then rated by a human operator for their degree of lik
ness to the suspect. Based on these ratings, the faces
recombined and mutated to produce a new generation
faces. This rating and procreation process is repea
until a likeness to the suspect is achieved. Caldwell a
Johnston state that, while “humans have excellent fac
recognition ability,” they “have great difficulty in recall-
ing facial characteristics with sufficient detail to provid
an accurate composite” [CJ91]. This is a perfect exam
ple of the ability to apply a complex fitness test withou
consciously understanding it. Since computers have h
torically performed poorly at face recognition (com
pared to humans), the system employs a particula
suitable division of labor between human and comput

Sims’ system uses interactive evolution to crea
beautiful, abstract color images [Sim91]. The genet
code for an image is a Lisp expression representing
sequence of image-processing functions (i.e., functio
that take as input a set of pixel values and associa
coordinates, and produce new pixel values as outpu
Sims uses a fixed set of image-processing primitive
and uses interactive evolution to evolve increasing
complex functions. The search space consists of all Li
expressions that can be constructed from the primitive
The mutation and mating operators restructure or mo
ify the Lisp expressions and make random parame
changes. Sims also evolves plant forms by applyin
interactive evolution to L-Systems, grammars tha
describe biological models of plant growth [Sim91
[LP89].

Other interactive evolution systems of note include
Dawkins’, which uses a recursive genetic structure th
produces varied, but highly characteristic insect-lik
forms [Daw87]; Todd and Latham’s, which uses con
structive solid geometry techniques to evolve “virtua
er
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sculptures” [TL92]; Smith’s, which uses a Fourier
series-based representation to produce bug-like curv
line forms [Sth91]; and Oppenheimer’s, which produce
life-like 3D tree forms using a recursive fractal represe
tation similar to Dawkins’ [Opp89].

These systems use a variety of genetic represen
tions to explore both infinite and large finite space
Each system relies on the ability to represent candida
solutions visually and on the human ability to evalua
these solutions quickly and in parallel. The evaluatio
criteria used are difficult-to-articulate personalize
assessments of such poorly defined characteristics
“interesting,” “aesthetically beautiful,” “good likeness,”
or “life-like.” These are terms whose definitions ma
vary drastically from person to person or even chan
from moment to moment in the same person. It is th
type of search problem for which interactive evolutio
provides an exciting new tool.

To date only a handful of interactive evolution appli
cations have been built. These few applications ha
shown interactive evolution to be an interesting and us
ful tool, but there is still untapped potential in many
other areas as well. One goal of this research is to add
current understanding of interactive evolution by apply
ing it in a new domain. In doing so we hope to gain fres
insight into both its power and its limitations.

At the application level, the goal is to build a new
kind of computer-aided drawing tool. Traditional tools
use a compact, object-oriented drawing representat
that makes it easy for a user to apply many operations
the drawing. Unlike a bit-mapped image, this high-leve
representation allows the user easy manipulation of in
vidual drawing features, such as the ability to delete
modify individual lines, points, or other objects. How
ever, creation of drawings in this format requires ver
good eye-hand coordination, and, for anything eve
slightly complex, a great deal of effort and tedium
Using these tools to create drawings beyond a certa
level of complexity can be all but impossible, especiall
for a non-artist. The work presented here is intended
demonstrate the potential for using interactive evolutio
to augment and enhance the power of traditional com
puter-aided drawing tools and to expand the repertoire
the computer-assisted artist.

Section 3 describes the Drawing Evolver and show
how interactive evolution can be used to create compl
drawings in a high-level format. Section 4 discusses o
experience using the Drawing Evolver.

3  Drawing Evolver
The Drawing Evolver is an interactive evolution sys

tem written in the C programming language that run
under X Windows on a Unix workstation. Its basic com
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ponents are: a structured representation for drawings
means of producing an initial population of drawings
mating and mutation operators; and an operator that p
duces a drawing from its corresponding genetic code.

3.1  Drawing Representation
In the language of biologists, the genetic constitutio

of an organism is referred to as itsgenotype, and the
physical manifestation of the organism as itsphenotype.
In the Drawing Evolver, the organisms are drawing
whose appearance (or phenotype) is determined by th
genetic code (or genotype). The core of the system is t
structure of the genotypes used to represent drawings
genotype consists of an ordered set of “strokes,” whe
each stroke is represented by an ordered set of poi
and a method for connecting them (e.g., a spline cur
or straight lines). A stroke may be loosely thought of a
a mark made by a pencil without lifting it off the page
The stroke specification also includes other per-stro
parameters. For example, a symmetry type (horizont
vertical, both, or neither) is given for each stroke. A se
of symmetric marks are encoded as a single mark with
stated symmetry type. In this case several disconnec
marks are still referred to as one stroke. The number
strokes in a drawing, as well as the number of points in
stroke, can vary, resulting in genotypes of varyin
length, and drawings of varying complexity.

In theory, this representation provides for the poss
bility of any line drawing contained within the drawing
frame. The number of possible phenotypes is very larg
but finite. Since there are only two possible values (onor
off) for every pixel in the drawing frame, and we use
250 by 250 pixel square frame, there are a total

distinct phenotypes (over 18000 orders of mag
nitude larger than Caldwell and Johnston’s search spa
of 34 billion possible composites [CJ91]). Figure 1 illus

2
62500

1 O H S 107 146 12 45

86 64 188 101 147 109 199 108

2 S N B 110 157 5 43

12 150 78 105 116 174

Figure 1: A simple example drawing and its corre-
sponding genotype (below it). Although the drawing
has three separate marks, it consists of only two
strokes. The jagged stroke has the property of being
“horizontally symmetric,” so it consists of two separate
marks mirroring  each other across a vertical axis.
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trates a simple drawing and its corresponding genotyp
Table 1 specifies how drawing genotypes are interprete

To mutate a drawing, randomly chosen strokes
stroke points are moved, deleted, or added, and stro
parameters are randomly modified. When two drawin
are mated, a randomly chosen subset of strokes fro
each of the parent drawings are combined to form a ne
drawing. These operations are described in more de
in Section 3.3 and Section 3.4.

3.2  Operation Modes
The system has two modes of operation that diff

with respect to how an initial population of drawings i
created. Inrandom mode, the computer creates an initia
population of randomly generated drawings. Inuser-

INTERPRETING A DRA WING GENOTYPE

Each stroke is represented by two consecutive lines of te
one for the stroke parameters, and one giving an ordered se
the x,y coordinates of the stroke points (i.e., x1 y1 x2 y2 x
y3). The stroke parameters are as follows:

• ID (optional)

An identifier for the stroke.

• STROKE TYPE

O = Open (first and last points are not connected)

S = Space Enclosing (first and last points are connected

G = Glued to Next Stroke (last point is connected to first
point of next stroke)

• SYMMETRY TYPE

N = No Symmetry

V = Vertical Symmetry

H = Horizontal Symmetry

A = Vertical and Horizontal Symmetry

• POINT CONNECTION TYPE

B = Spline Curve

S = Straight Lines

• VERTICAL AXIS

X-Coordinate of the vertical reflection axis.

• HORIZONTAL AXIS

Y-Coordinate of the horizontal reflection axis.

• PERTURBATION FACTOR (optional)

Maximum distance stroke or stroke points may be shifte
during a single mutation.

• MUTATION RATE (optional)

Probability that the stroke will be mutated.

Table 1: This table describes how to interpret the ASCII
text of a drawing genotype. The genotype is a “blue-
print” that defines how to construct the drawing.
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input mode, the user specifies one or more input draw
ings to use for creating the initial population.

3.2.1  Starting With Randomly Generated
Drawings

In random mode, the computer initially creates a
“screenful” of random drawings (20 in the current ver
sion, since that is how many fit comfortably on a 17 inc
workstation screen). The user can repeatedly reques
new set of drawings until interesting ones are foun
Random drawings may also be requested at any tim
during the evolution process, typically to be used fo
mating with an evolved drawing. Examples of four ini
tial random drawings are shown in Figure 2. Figure
shows some drawings that were evolved usingrandom
mode. The butterfly forms were created with no precon
ceived goal in mind and took only a few minutes to pro
duce. The face drawings were created with the spec
goal of producing something face-like. This task prove
to be much more difficult, taking over an hour to accom
plish. However, once a face did emerge, it was qui
easy to produce interesting variations on it. This expe
ence motivated the addition ofuser-input mode
described below.

3.2.2  Starting With a User-Input Drawing
In user-input mode, the user provides one or more

drawings as a starting point. In this way, the syste
begins with a coarse solution (or a set of them), and t
search is immediately focussed on a potentially ric

Figure 2:  Randomly generated drawings. These four
drawings were produced automatically, with random
choices made for the number of strokes, the stroke
points, and stroke parameters. A set of drawings like
these may be used as an initial population.
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area. If only one input drawing is given, it and a scree
ful of its mutated children make up an initial population
If none of the displayed children are sufficiently interes
ing, the user may reselect the initial drawing for muta
tion repeatedly to view new sets of mutated childre
Since one can produce new sets of children from t
same parent(s) repeatedly, the population size at a
generation may be as large as the user desires.

The computed “average face” (from [Bre86]) show
at the top of Figure 4 was used in experiments as an i
tial input drawing and is thesole original ancestorof all
drawings presented in the remainder of this paper.1 An
average face is a useful initial input drawing because
provides a central point for evolving a variety of differ
ent faces. Faces in general are an ideal subject matter
interactive evolution because of the specialized (b
poorly understood) human ability to recognize and pr
cess them. The decision to limit examples to face
evolved from a single ancestor drawing was made
clarify the point that the variation achieved is a produ
of the interactive evolution process and not the result
starting from varied drawings. Figure 4 shows an asso
ment of face drawings evolved from the average face a
illustrates the wide variation that can be achieved wi
the system. These drawings were produced from t
average face by a simple sequence of mutations and m
ings. They were typically evolved in fifteen to one hun

1.  Brennan calculated average features from a large set of face dra
ings of real people, and constructed this “average face” for use in wo
on automating the creation of facial caricatures [Bre85].

Figure 3: Drawings evolved from random drawings. The
face drawings are related to each other (i.e., they were
evolved during the same session), as are the butterfly
forms.
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Figure 4: The average face (a) and eleven of its descendants (b-l) . These drawings illustrate the
wide variation possible in drawings evolved from a single ancestor. Drawings (b-f) were evolved
by 5 different users and include generation counts (available because these drawings were created
after the automatic generation counter was installed). These users were able to mate their evolved
drawings with some previously evolved library images, which accounts for the high generation
counts of (b, c, and d).  (The library images were also all descendants of the average face, and
included drawing f .)  The evolved drawings range in complexity from very simple (i) to bold
charcoal-like sketches (h). Eyes can be lit with shiny highlights (l), some faces appear distinctly
male (g) and others female (d, h). Some faces appear angry (g, i), pleasant (c, l), or horrified (j).
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c 120b 97

e 15
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dred generations, usually taking five to thirty minutes t
create. Once a library of faces had been evolved, ma
interesting new faces were produced quickly by combi
ing them. The number of generations required is va
able and depends heavily on the user’s goals a
intentions. Some example generation counts are given
Figure 4. These counts were computed by initializin
the average face to a count of zero, increasing the p
ent’s count by one for a mutated child, and increasin
the count of the higher valued parent by one for a chi
produced by mating. Generation counts for drawing
mated with library images thus include the number o
generations required to create the library images, ev
though they were already evolved when the user beg

3.3  Mutation Operator
A mutated “child” drawing is produced from the

genotype of its “parent” by randomly translating, add
ing, or deleting stroke points or entire strokes, and b
randomly modifying stroke parameters (see Table 1
Random translations are effectively a means of jigglin
the strokes, much as an artist might do when trying o
various small adjustments to the lines in a sketch. Mod
fying stroke parameters, on the other hand, genera
causes more substantial structural changes to the dr
ing (for example, imagine changing the symmetry prop
erty of a stroke from vertical to horizontal). The
probability of each type of mutation is individually con-
trolled with adjustable system parameters. By settin
the probability of a given mutation type to zero, it is pos
sible to turn off that type of mutation altogether. Whe
evolving drawings inrandom mode, all mutation types
were used; inuser-input mode, stroke parameter muta-
tions were turned off. With the average face as an inp
drawing, it was not useful to change the basic properti
of the original face (for example, since one normall
always wants two eyes, two ears, etc., it didn’t mak
sense to allow changes to the symmetry properties of
face). By limiting mutations to those that jiggled aroun
existing lines without changing basic properties, it wa
possible to retain the ‘face-ness’ of the original drawin
while still producing a great deal of interesting variation

The genotype specifies aperturbation factorfor each
stroke that restricts the distance (in pixels) that th
stroke or stroke point may be moved during a sing
mutation. The genotype also specifies a mutation ra
indicating the probability that a given stroke will be
mutated during reproduction. Inuser-input modethe
perturbation factors and mutation rates for the inp
drawing may be tailored to the specific subject matte
For example, the hair outline of the average face w
given a larger perturbation factor than the eyes and oth
small features. If the small features are given too large
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perturbation factor, they can jump off the face in on
mutation. If the hair outline is given too small a pertur
bation factor, it’s difficult to get any significant variation
from the bathing-cap look of the original drawing. The
mutation rate for the hair was also set higher than f
other parts of the drawing. The perturbation factors an
mutation rates can also be mutated, but we have not
experimented with this capability2.

Figure 5 shows an example set of single step mu
tions starting with the average face. This is how the in
tial screen might look when the average face is used
the input drawing. The only active mutation types in thi
example are stroke deletions and translations, and po
additions, deletions, and translations, with translatio
more likely than other mutation types. Figure 6 illus
trates the subtle mood and expression changes that
mutation operator can produce in a more comple
evolved face.

3.4  Mating Operators
A mating operator takes two parent drawings as inp

and uses them to produce a child drawing. The bas
approach is to choose a subset of the strokes from e
parent and combine them to form the child. We exper
mented with a number of different mating operator
three of which are used in the current system. There a
two primary mating schemes (referred to asuniform
matingandID-based mating) and a third hybrid scheme
which combines the other two.

3.4.1  Uniform Mating
In uniform mating, each stroke of each parent is inde

pendently considered for inclusion in the child. If a fai
coin is used to make the inclusion decision, this proce
will typically produce a child with approximately half of
the strokes from each parent. Since this is not necessa
the desired outcome, we randomly choose a weight (
bias) for the coin, with a different weight chosen fo
each parent. If the weight is chosen to be any valu
between 0 and 1, the number of strokes in the chi
might be as many as the sum of the number of strokes
the parents, or as few as one. Hence, a child may lo
much more or much less complicated than its parents.
practice, we chose to limit the weights to values betwe
.3 and .7, so that the child may differ in complexity from
its parents, but not too drastically. Depending on the co
weights chosen, the child may have more in commo
with one parent than the other. Figure 7 illustrates un
form mating.

2.  This might be useful for automatic tailoring of perturbation factor
and mutation rates.
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Figure 5: Example of single step mutations starting with the average face. The original average face is shown
This figure is a segment of the screen from an actual run of the system in which the average face was given as a
drawing. Note that small changes in just a few strokes of a drawing can subtly change the appearance of the fa
example, the eyelid mutations in (m) give it a sleepy expression, the point translations in the jaw line of (b) mak
jaw more angular and masculine, and the eyebrow mutations in (g) create bushy eyebrows.

Figure 6: Mutations from an evolved face (parent left, children a b c). These particular mutations cause subtle
ences in facial expression, especially around the eyes. The mutations in (b) create an angrier look than the p
whereas (a) has a softer friendlier appearance. The eyebrow mutations in (c) create a slightly perplexed look
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Figure 7: Uniform mating (parents above, children below). Note that the children can inherit components of ind
ual features or expression from both parents. In this case, parent (a) has an angry expression and looks mo
than female, while parent (b) looks female. Child (c) inherited some of the angry expression from (a), but the d
outlined eyes and curly lower hairline from (b), making it look more feminine. Assessments of this kind are c
subjective.

a b

c d e f

Figure 8: ID-based mating (parents above, children below). Children receive (for example) the entire set of ey
strokes from parent (a) or from parent (b). This is in contrast to uniform mating, where the eyes are more likely
a mix of the strokes from both parents. Child (d) has inherited the hair, eyebrows, and mouth from parent (a), b
eyes and lack of ears from parent (b), creating an entirely new look.
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3.4.2  ID-Based Mating
Uniform mating tends to produce interesting high

lighting and shading effects because drawings are co
bined at a fine level of granularity (e.g., a subset o
strokes from one parent’s nose are combined with a su
set of the strokes from the other parent’s nose) a
because similar strokes can be overlapped (e.g., the ch
may receive eyelid strokes from both parents). Howev
there is no knowledge of individual drawing feature
(such as the nose or eyes). In contrast, ID-based mat
makes it possible to combine the parents at a coar
level, allowing, for example, the child to inherit the
mother’s nose in its entirety and the father’s eyes in the
entirety. To accomplish this, an ID field was added to th
stroke representation. With the introduction of an ID
field, a user can indicate that certain strokes in an inp
drawing are related (such as those for the eyes) by g
ing them the same ID. If no IDs are provided, it is
assumed that each stroke has a unique ID, which is th
assigned automatically. IDs were added to the repres
tation for the average face such that the set of strok
composing each facial feature shared the same ID.
mate two drawings, corresponding sets of strokes (i.
those with the same ID) from the parents are consider
in turn, and one parent is chosen at random to contribu
its entire set to the child. If only one parent contains a s
of strokes with a particular ID (for example, if the fathe
has ears, but the mother doesn’t), a random decision
made as to whether to include that set in the child. Fi
ure 8 illustrates ID-based mating.

3.4.3  Hybrid Mating
Hybrid matingwas developed in an effort to com-

bine the best features of uniform and ID-based matin
For each set of corresponding strokes in the parents, i
decided randomly whether to apply uniform mating o
ID-based mating within that set. This mating operato
could easily produce a child with the entire set of ey
strokes from the mother, the entire set of nose strok
from the father, and some combination of mouth strok
from each.

4  Discussion
Interactive evolution relies heavily on the user, s

each person’s experience is different. This section pr
sents some observations on what it feels like to use t
Drawing Evolver and an assessment of some of the fa
tors that contribute to its successes and failures.

Since most of the user’s time is spent evaluatin
drawings, it is important to provide a high quality set o
candidate solutions at each generation. The set of dra
ings presented to the user should be sufficiently varie
but must also stay within the user’s space-of-intere
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These two goals can be in opposition, because allowi
more variation among a population of drawing
increases the probability that the successful parts of t
drawings will be lost as well. Primary factors influenc
ing the quality of candidate solutions are the mutatio
rates, characteristics of the mating operators, and
genetic representation.

In the Drawing Evolver, a lack of sufficient variation
means that the user is sometimes faced with a screen
of drawings whose differences are very subtle, making
difficult to distinguish between them and to mak
choices. The problem is most evident when using th
mutation operator or when mating two very similar pa
ent drawings. To combat this problem with respect
mutation, we use outrageously high mutation rates (e.
25%) as compared to the tiny fractional rates used in tr
ditional GAs (or that occur in biological evolution).
With respect to mating, having a library of evolved
drawings that can be mated with newly evolved draw
ings was found to be one helpful way to provide the us
with a more varied meta-population. Nonetheless, t
small viewing sample size and the fact that the viewin
sample is composed of children from just one or tw
parents can still conspire to decrease variation.

The mating operators themselves were also found
have an impact on the variation and quality of drawing
While experimenting with different mating operators, i
was somewhat surprising to discover that uniform ma
ing worked well when applied to mutations of the ave
age face. Interesting effects, such as shading a
highlighting, began to emerge in the evolved drawing
and the level of intricacy of a drawing increased. If
face acquired two corresponding strokes (e.g., two no
strokes), this often had the effect of producing a sketc
version of the face, with a more three-dimensional an
textured look. These are effects that an artist can wo
very hard to achieve in a drawing, and seeing the
emerge in drawings produced by a computer is ve
exciting. However, because uniform mating embodies
knowledge of the high-level drawing components, it to
tends to produce sets of children whose differences a
subtle and less dramatic. ID-based mating offers mo
substantial and dramatic perceptual differences, but
less likely to produce the shading and highlightin
effects. Combining both mating types makes it possib
to achieve better variation without also losing the inte
esting effects made possible with uniform mating.

The appropriateness of the representation for the p
ticular search space is yet another factor influencing t
quality of the candidate solutions. The representatio
used in the Drawing Evolver is very general (i.e., it ca
represent any drawing at all) compared to Caldwell an
Johnston’s (whose genotype represents faces on
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[CJ91]. But to limit our search to faces, the user must fi
ter out the drawings that don’t look face-like, while
Caldwell and Johnston’s users always see only va
faces. Of course, having a larger search space is also
advantage, providing the potential to evolve facia
expressions and cartoon or animal faces, as well as m
other things. Thus, the choice of representation is like
to involve a trade-off between focussing the searc
space or narrowing the solution space.

The system is easier and more pleasant to use
browsing than it is for evolving a specified goal image
This is no surprise, since the space contains a myriad
interesting drawings, but a comparatively small numb
that meet some narrowly specified set of requiremen
The narrower the goals, the tougher the search proble
Caldwell and Johnston report success at using their s
tem to evolve a likeness to a criminal suspect, but th
use a very tightly constrained search space, and a ge
type designed with this specific purpose in mind. Th
Drawing Evolver, with its larger and less constraine
search space, is not particularly good at this tas
Attempts to start with the average face and evolve a re
sonable likeness to a particular person were not ve
successful. On the other hand, more loosely specifi
goals, such as a plan for gender and facial express
were fairly easy to carry out.

5  Conclusions
The Drawing Evolver allows a user to produce

wide variety of complex sketches with highlighting an
shading from a single very simple ancestor drawin
These drawings would be quite difficult and tedious (
not impossible) to produce with most conventiona
object-oriented computer-aided drawing tools. The us
in a reactive rather than proactive role, is responsib
only for selecting among sets of drawings produced b
the computer. The user need not have any drawing sk
or eye-hand coordination (at least no more than is nec
sary for selecting drawings with the mouse), but goo
observational and visual skills are useful to be able
distinguish between sometimes subtly different draw
ings. The user forfeits absolute control over the ou
come, but gains an extended repertoire of possib
results.

Interactive evolution is an important new tool fo
using the computer as a creative collaborator in th
exploration of large search spaces. While empowered
human-evaluated fitness testing, it is also limited by th
slow pace of interactive use. Despite its limitations
interactive evolution has again proved a powerful tool
a new setting, adding more evidence to suggest that
full potential is yet to be explored.
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Abstract
This paper explores the application of interactiv

genetic algorithms to the creation of line drawings. W
have built a system that mates or mutates drawin
selected by the user to create a new generation of dra
ings. The initial population from which the user make
selections may be generated randomly or input man
ally. The process of selection and procreation is repea
many times to evolve a drawing. A wide variety of com
plex sketches with highlighting and shading can b
evolved from very simple drawings. This technique ha
potential for augmenting and enhancing the power
traditional computer-aided drawing tools, and fo
expanding the repertoire of the computer-assisted arti

Keywords: Genetic Algorithm, Interactive Evolu-
tion, Interactive Graphics.

1  Introduction
Interactive fitness evaluation for genetic algorithm

was introduced by zoologist Richard Dawkins in hi
book, “The Blind Watchmaker.” The book describes
computer program for evolving images of creature
Dawkins calls “biomorphs” [Daw87]. Each biomorph is
produced from a compact genetic code that specifies
creature’s particular characteristics. Contained in th
code is the essential information necessary to creat
bit-mapped image of the creature on the comput
screen. Using a technique calledinteractive evolution,
the computer and user collaborate to produce comp
and varied insect-like creatures. With interactive evolu
tion, the user selects the most aesthetically pleasing b
morph from a set of creatures displayed on the scree
By randomly mutating the genetic code of the selecte
biomorph, the computer creates a new generation of b
morphs to display. The new generation is again su
jected to the aesthetic selection criteria of the user
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produce the following generation. This cycle continue
until the user “evolves” a pleasing creature.

Dawkins’ idea has spawned several successful app
cations of interactive evolution to other image desig
and construction problems ([Sim91], [CJ91], [TL92]
[Sth91], [BS93], [Ba93]). This paper presents an intera
tive evolution system for creating line drawings. Th
genetic representation and definition of the genetic op
ators are substantially different from previous interactiv
evolution systems, and it produces corresponding
unique results. The user interface is similar to other sy
tems (especially Sims’ [Sim91] and Dawkins’ [Daw87])
An initial population of drawings, either generated ran
domly by the computer or input by the user, is displaye
on the screen. From the displayed set the user selects
drawing for mutation or two drawings for mating. The
mating and/or mutation operations are applied to th
selected drawings to produce a new set of progeny dra
ings that supply the input for the next round of use
selection. This process is repeated multiple times
“evolve” a drawing of interest to the user. Evolved draw
ings may be saved and later recalled for mating wi
other evolved drawings.

2  Interactive Evolution
Interactive evolution provides a powerful new tech

nique for enabling human-computer collaboration. It
potentially applicable to a wide variety of search prob
lems, provided the candidate solutions can be produc
quickly by a computer and evaluated quickly and easi
by a human. Since humans are often very good at p
cessing and assessing pictures quickly, interactive evo
tion is particularly well suited to search problems whos
candidate solutions can be represented visually.

Traditionally a genetic algorithm (GA) requires the
specification of survival fitness criteria to be evaluate
by the computer [Gol89]. This is typically one of the
most difficult tasks in designing a GA. With interactive
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evolution the user performs this step, applying whatev
complicated measure of fitness is desired. Unfortunate
including a human evaluator also severely weakens t
GA because the human’s speed and patience beco
new limiting factors, restricting the population size an
possible number of generations. Despite this drawba
interactive evolution has been used to produce som
astounding results that could not have been achiev
easily by any other known method [Sim91], [TL92].

The beauty of interactive evolution is that the use
need onlyapply personal fitness criteria, not state o
even understand them. This feature of interactive evo
tion is used very effectively in a system by Caldwell an
Johnston for allowing a crime victim to produce a facia
composite of a criminal suspect [CJ91]. This syste
takes advantage of the remarkable human ability to re
ognize faces. A database of face parts (e.g., eyes, no
mouths) is used to construct candidate faces, which a
then rated by a human operator for their degree of lik
ness to the suspect. Based on these ratings, the faces
recombined and mutated to produce a new generation
faces. This rating and procreation process is repea
until a likeness to the suspect is achieved. Caldwell a
Johnston state that, while “humans have excellent fac
recognition ability,” they “have great difficulty in recall-
ing facial characteristics with sufficient detail to provid
an accurate composite” [CJ91]. This is a perfect exam
ple of the ability to apply a complex fitness test withou
consciously understanding it. Since computers have h
torically performed poorly at face recognition (com
pared to humans), the system employs a particula
suitable division of labor between human and comput

Sims’ system uses interactive evolution to crea
beautiful, abstract color images [Sim91]. The genet
code for an image is a Lisp expression representing
sequence of image-processing functions (i.e., functio
that take as input a set of pixel values and associa
coordinates, and produce new pixel values as outpu
Sims uses a fixed set of image-processing primitive
and uses interactive evolution to evolve increasing
complex functions. The search space consists of all Li
expressions that can be constructed from the primitive
The mutation and mating operators restructure or mo
ify the Lisp expressions and make random parame
changes. Sims also evolves plant forms by applyin
interactive evolution to L-Systems, grammars tha
describe biological models of plant growth [Sim91
[LP89].

Other interactive evolution systems of note include
Dawkins’, which uses a recursive genetic structure th
produces varied, but highly characteristic insect-lik
forms [Daw87]; Todd and Latham’s, which uses con
structive solid geometry techniques to evolve “virtua
er
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sculptures” [TL92]; Smith’s, which uses a Fourier
series-based representation to produce bug-like curv
line forms [Sth91]; and Oppenheimer’s, which produce
life-like 3D tree forms using a recursive fractal represe
tation similar to Dawkins’ [Opp89].

These systems use a variety of genetic represen
tions to explore both infinite and large finite space
Each system relies on the ability to represent candida
solutions visually and on the human ability to evalua
these solutions quickly and in parallel. The evaluatio
criteria used are difficult-to-articulate personalize
assessments of such poorly defined characteristics
“interesting,” “aesthetically beautiful,” “good likeness,”
or “life-like.” These are terms whose definitions ma
vary drastically from person to person or even chan
from moment to moment in the same person. It is th
type of search problem for which interactive evolutio
provides an exciting new tool.

To date only a handful of interactive evolution appli
cations have been built. These few applications ha
shown interactive evolution to be an interesting and us
ful tool, but there is still untapped potential in many
other areas as well. One goal of this research is to add
current understanding of interactive evolution by apply
ing it in a new domain. In doing so we hope to gain fres
insight into both its power and its limitations.

At the application level, the goal is to build a new
kind of computer-aided drawing tool. Traditional tools
use a compact, object-oriented drawing representat
that makes it easy for a user to apply many operations
the drawing. Unlike a bit-mapped image, this high-leve
representation allows the user easy manipulation of in
vidual drawing features, such as the ability to delete
modify individual lines, points, or other objects. How
ever, creation of drawings in this format requires ver
good eye-hand coordination, and, for anything eve
slightly complex, a great deal of effort and tedium
Using these tools to create drawings beyond a certa
level of complexity can be all but impossible, especiall
for a non-artist. The work presented here is intended
demonstrate the potential for using interactive evolutio
to augment and enhance the power of traditional com
puter-aided drawing tools and to expand the repertoire
the computer-assisted artist.

Section 3 describes the Drawing Evolver and show
how interactive evolution can be used to create compl
drawings in a high-level format. Section 4 discusses o
experience using the Drawing Evolver.

3  Drawing Evolver
The Drawing Evolver is an interactive evolution sys

tem written in the C programming language that run
under X Windows on a Unix workstation. Its basic com
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ponents are: a structured representation for drawings
means of producing an initial population of drawings
mating and mutation operators; and an operator that p
duces a drawing from its corresponding genetic code.

3.1  Drawing Representation
In the language of biologists, the genetic constitutio

of an organism is referred to as itsgenotype, and the
physical manifestation of the organism as itsphenotype.
In the Drawing Evolver, the organisms are drawing
whose appearance (or phenotype) is determined by th
genetic code (or genotype). The core of the system is t
structure of the genotypes used to represent drawings
genotype consists of an ordered set of “strokes,” whe
each stroke is represented by an ordered set of poi
and a method for connecting them (e.g., a spline cur
or straight lines). A stroke may be loosely thought of a
a mark made by a pencil without lifting it off the page
The stroke specification also includes other per-stro
parameters. For example, a symmetry type (horizont
vertical, both, or neither) is given for each stroke. A se
of symmetric marks are encoded as a single mark with
stated symmetry type. In this case several disconnec
marks are still referred to as one stroke. The number
strokes in a drawing, as well as the number of points in
stroke, can vary, resulting in genotypes of varyin
length, and drawings of varying complexity.

In theory, this representation provides for the poss
bility of any line drawing contained within the drawing
frame. The number of possible phenotypes is very larg
but finite. Since there are only two possible values (onor
off) for every pixel in the drawing frame, and we use
250 by 250 pixel square frame, there are a total

distinct phenotypes (over 18000 orders of mag
nitude larger than Caldwell and Johnston’s search spa
of 34 billion possible composites [CJ91]). Figure 1 illus

2
62500

1 O H S 107 146 12 45

86 64 188 101 147 109 199 108

2 S N B 110 157 5 43

12 150 78 105 116 174

Figure 1: A simple example drawing and its corre-
sponding genotype (below it). Although the drawing
has three separate marks, it consists of only two
strokes. The jagged stroke has the property of being
“horizontally symmetric,” so it consists of two separate
marks mirroring  each other across a vertical axis.
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trates a simple drawing and its corresponding genotyp
Table 1 specifies how drawing genotypes are interprete

To mutate a drawing, randomly chosen strokes
stroke points are moved, deleted, or added, and stro
parameters are randomly modified. When two drawin
are mated, a randomly chosen subset of strokes fro
each of the parent drawings are combined to form a ne
drawing. These operations are described in more de
in Section 3.3 and Section 3.4.

3.2  Operation Modes
The system has two modes of operation that diff

with respect to how an initial population of drawings i
created. Inrandom mode, the computer creates an initia
population of randomly generated drawings. Inuser-

INTERPRETING A DRA WING GENOTYPE

Each stroke is represented by two consecutive lines of te
one for the stroke parameters, and one giving an ordered se
the x,y coordinates of the stroke points (i.e., x1 y1 x2 y2 x
y3). The stroke parameters are as follows:

• ID (optional)

An identifier for the stroke.

• STROKE TYPE

O = Open (first and last points are not connected)

S = Space Enclosing (first and last points are connected

G = Glued to Next Stroke (last point is connected to first
point of next stroke)

• SYMMETRY TYPE

N = No Symmetry

V = Vertical Symmetry

H = Horizontal Symmetry

A = Vertical and Horizontal Symmetry

• POINT CONNECTION TYPE

B = Spline Curve

S = Straight Lines

• VERTICAL AXIS

X-Coordinate of the vertical reflection axis.

• HORIZONTAL AXIS

Y-Coordinate of the horizontal reflection axis.

• PERTURBATION FACTOR (optional)

Maximum distance stroke or stroke points may be shifte
during a single mutation.

• MUTATION RATE (optional)

Probability that the stroke will be mutated.

Table 1: This table describes how to interpret the ASCII
text of a drawing genotype. The genotype is a “blue-
print” that defines how to construct the drawing.



n-
.
t-
-

n.
he
ny

n
ni-

it
-
for
ut
o-
s

to
ct
of
rt-
nd
th
he
at-
-

w-
rk
input mode, the user specifies one or more input draw
ings to use for creating the initial population.

3.2.1  Starting With Randomly Generated
Drawings

In random mode, the computer initially creates a
“screenful” of random drawings (20 in the current ver
sion, since that is how many fit comfortably on a 17 inc
workstation screen). The user can repeatedly reques
new set of drawings until interesting ones are foun
Random drawings may also be requested at any tim
during the evolution process, typically to be used fo
mating with an evolved drawing. Examples of four ini
tial random drawings are shown in Figure 2. Figure
shows some drawings that were evolved usingrandom
mode. The butterfly forms were created with no precon
ceived goal in mind and took only a few minutes to pro
duce. The face drawings were created with the spec
goal of producing something face-like. This task prove
to be much more difficult, taking over an hour to accom
plish. However, once a face did emerge, it was qui
easy to produce interesting variations on it. This expe
ence motivated the addition ofuser-input mode
described below.

3.2.2  Starting With a User-Input Drawing
In user-input mode, the user provides one or more

drawings as a starting point. In this way, the syste
begins with a coarse solution (or a set of them), and t
search is immediately focussed on a potentially ric

Figure 2:  Randomly generated drawings. These four
drawings were produced automatically, with random
choices made for the number of strokes, the stroke
points, and stroke parameters. A set of drawings like
these may be used as an initial population.
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area. If only one input drawing is given, it and a scree
ful of its mutated children make up an initial population
If none of the displayed children are sufficiently interes
ing, the user may reselect the initial drawing for muta
tion repeatedly to view new sets of mutated childre
Since one can produce new sets of children from t
same parent(s) repeatedly, the population size at a
generation may be as large as the user desires.

The computed “average face” (from [Bre86]) show
at the top of Figure 4 was used in experiments as an i
tial input drawing and is thesole original ancestorof all
drawings presented in the remainder of this paper.1 An
average face is a useful initial input drawing because
provides a central point for evolving a variety of differ
ent faces. Faces in general are an ideal subject matter
interactive evolution because of the specialized (b
poorly understood) human ability to recognize and pr
cess them. The decision to limit examples to face
evolved from a single ancestor drawing was made
clarify the point that the variation achieved is a produ
of the interactive evolution process and not the result
starting from varied drawings. Figure 4 shows an asso
ment of face drawings evolved from the average face a
illustrates the wide variation that can be achieved wi
the system. These drawings were produced from t
average face by a simple sequence of mutations and m
ings. They were typically evolved in fifteen to one hun

1.  Brennan calculated average features from a large set of face dra
ings of real people, and constructed this “average face” for use in wo
on automating the creation of facial caricatures [Bre85].

Figure 3: Drawings evolved from random drawings. The
face drawings are related to each other (i.e., they were
evolved during the same session), as are the butterfly
forms.
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Figure 4: The average face (a) and eleven of its descendants (b-l) . These drawings illustrate the
wide variation possible in drawings evolved from a single ancestor. Drawings (b-f) were evolved
by 5 different users and include generation counts (available because these drawings were created
after the automatic generation counter was installed). These users were able to mate their evolved
drawings with some previously evolved library images, which accounts for the high generation
counts of (b, c, and d).  (The library images were also all descendants of the average face, and
included drawing f .)  The evolved drawings range in complexity from very simple (i) to bold
charcoal-like sketches (h). Eyes can be lit with shiny highlights (l), some faces appear distinctly
male (g) and others female (d, h). Some faces appear angry (g, i), pleasant (c, l), or horrified (j).
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dred generations, usually taking five to thirty minutes t
create. Once a library of faces had been evolved, ma
interesting new faces were produced quickly by combi
ing them. The number of generations required is va
able and depends heavily on the user’s goals a
intentions. Some example generation counts are given
Figure 4. These counts were computed by initializin
the average face to a count of zero, increasing the p
ent’s count by one for a mutated child, and increasin
the count of the higher valued parent by one for a chi
produced by mating. Generation counts for drawing
mated with library images thus include the number o
generations required to create the library images, ev
though they were already evolved when the user beg

3.3  Mutation Operator
A mutated “child” drawing is produced from the

genotype of its “parent” by randomly translating, add
ing, or deleting stroke points or entire strokes, and b
randomly modifying stroke parameters (see Table 1
Random translations are effectively a means of jigglin
the strokes, much as an artist might do when trying o
various small adjustments to the lines in a sketch. Mod
fying stroke parameters, on the other hand, genera
causes more substantial structural changes to the dr
ing (for example, imagine changing the symmetry prop
erty of a stroke from vertical to horizontal). The
probability of each type of mutation is individually con-
trolled with adjustable system parameters. By settin
the probability of a given mutation type to zero, it is pos
sible to turn off that type of mutation altogether. Whe
evolving drawings inrandom mode, all mutation types
were used; inuser-input mode, stroke parameter muta-
tions were turned off. With the average face as an inp
drawing, it was not useful to change the basic properti
of the original face (for example, since one normall
always wants two eyes, two ears, etc., it didn’t mak
sense to allow changes to the symmetry properties of
face). By limiting mutations to those that jiggled aroun
existing lines without changing basic properties, it wa
possible to retain the ‘face-ness’ of the original drawin
while still producing a great deal of interesting variation

The genotype specifies aperturbation factorfor each
stroke that restricts the distance (in pixels) that th
stroke or stroke point may be moved during a sing
mutation. The genotype also specifies a mutation ra
indicating the probability that a given stroke will be
mutated during reproduction. Inuser-input modethe
perturbation factors and mutation rates for the inp
drawing may be tailored to the specific subject matte
For example, the hair outline of the average face w
given a larger perturbation factor than the eyes and oth
small features. If the small features are given too large
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perturbation factor, they can jump off the face in on
mutation. If the hair outline is given too small a pertur
bation factor, it’s difficult to get any significant variation
from the bathing-cap look of the original drawing. The
mutation rate for the hair was also set higher than f
other parts of the drawing. The perturbation factors an
mutation rates can also be mutated, but we have not
experimented with this capability2.

Figure 5 shows an example set of single step mu
tions starting with the average face. This is how the in
tial screen might look when the average face is used
the input drawing. The only active mutation types in thi
example are stroke deletions and translations, and po
additions, deletions, and translations, with translatio
more likely than other mutation types. Figure 6 illus
trates the subtle mood and expression changes that
mutation operator can produce in a more comple
evolved face.

3.4  Mating Operators
A mating operator takes two parent drawings as inp

and uses them to produce a child drawing. The bas
approach is to choose a subset of the strokes from e
parent and combine them to form the child. We exper
mented with a number of different mating operator
three of which are used in the current system. There a
two primary mating schemes (referred to asuniform
matingandID-based mating) and a third hybrid scheme
which combines the other two.

3.4.1  Uniform Mating
In uniform mating, each stroke of each parent is inde

pendently considered for inclusion in the child. If a fai
coin is used to make the inclusion decision, this proce
will typically produce a child with approximately half of
the strokes from each parent. Since this is not necessa
the desired outcome, we randomly choose a weight (
bias) for the coin, with a different weight chosen fo
each parent. If the weight is chosen to be any valu
between 0 and 1, the number of strokes in the chi
might be as many as the sum of the number of strokes
the parents, or as few as one. Hence, a child may lo
much more or much less complicated than its parents.
practice, we chose to limit the weights to values betwe
.3 and .7, so that the child may differ in complexity from
its parents, but not too drastically. Depending on the co
weights chosen, the child may have more in commo
with one parent than the other. Figure 7 illustrates un
form mating.

2.  This might be useful for automatic tailoring of perturbation factor
and mutation rates.
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Figure 5: Example of single step mutations starting with the average face. The original average face is shown
This figure is a segment of the screen from an actual run of the system in which the average face was given as a
drawing. Note that small changes in just a few strokes of a drawing can subtly change the appearance of the fa
example, the eyelid mutations in (m) give it a sleepy expression, the point translations in the jaw line of (b) mak
jaw more angular and masculine, and the eyebrow mutations in (g) create bushy eyebrows.

Figure 6: Mutations from an evolved face (parent left, children a b c). These particular mutations cause subtle
ences in facial expression, especially around the eyes. The mutations in (b) create an angrier look than the p
whereas (a) has a softer friendlier appearance. The eyebrow mutations in (c) create a slightly perplexed look
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Figure 7: Uniform mating (parents above, children below). Note that the children can inherit components of ind
ual features or expression from both parents. In this case, parent (a) has an angry expression and looks mo
than female, while parent (b) looks female. Child (c) inherited some of the angry expression from (a), but the d
outlined eyes and curly lower hairline from (b), making it look more feminine. Assessments of this kind are c
subjective.
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Figure 8: ID-based mating (parents above, children below). Children receive (for example) the entire set of ey
strokes from parent (a) or from parent (b). This is in contrast to uniform mating, where the eyes are more likely
a mix of the strokes from both parents. Child (d) has inherited the hair, eyebrows, and mouth from parent (a), b
eyes and lack of ears from parent (b), creating an entirely new look.
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3.4.2  ID-Based Mating
Uniform mating tends to produce interesting high

lighting and shading effects because drawings are co
bined at a fine level of granularity (e.g., a subset o
strokes from one parent’s nose are combined with a su
set of the strokes from the other parent’s nose) a
because similar strokes can be overlapped (e.g., the ch
may receive eyelid strokes from both parents). Howev
there is no knowledge of individual drawing feature
(such as the nose or eyes). In contrast, ID-based mat
makes it possible to combine the parents at a coar
level, allowing, for example, the child to inherit the
mother’s nose in its entirety and the father’s eyes in the
entirety. To accomplish this, an ID field was added to th
stroke representation. With the introduction of an ID
field, a user can indicate that certain strokes in an inp
drawing are related (such as those for the eyes) by g
ing them the same ID. If no IDs are provided, it is
assumed that each stroke has a unique ID, which is th
assigned automatically. IDs were added to the repres
tation for the average face such that the set of strok
composing each facial feature shared the same ID.
mate two drawings, corresponding sets of strokes (i.
those with the same ID) from the parents are consider
in turn, and one parent is chosen at random to contribu
its entire set to the child. If only one parent contains a s
of strokes with a particular ID (for example, if the fathe
has ears, but the mother doesn’t), a random decision
made as to whether to include that set in the child. Fi
ure 8 illustrates ID-based mating.

3.4.3  Hybrid Mating
Hybrid matingwas developed in an effort to com-

bine the best features of uniform and ID-based matin
For each set of corresponding strokes in the parents, i
decided randomly whether to apply uniform mating o
ID-based mating within that set. This mating operato
could easily produce a child with the entire set of ey
strokes from the mother, the entire set of nose strok
from the father, and some combination of mouth strok
from each.

4  Discussion
Interactive evolution relies heavily on the user, s

each person’s experience is different. This section pr
sents some observations on what it feels like to use t
Drawing Evolver and an assessment of some of the fa
tors that contribute to its successes and failures.

Since most of the user’s time is spent evaluatin
drawings, it is important to provide a high quality set o
candidate solutions at each generation. The set of dra
ings presented to the user should be sufficiently varie
but must also stay within the user’s space-of-intere
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These two goals can be in opposition, because allowi
more variation among a population of drawing
increases the probability that the successful parts of t
drawings will be lost as well. Primary factors influenc
ing the quality of candidate solutions are the mutatio
rates, characteristics of the mating operators, and
genetic representation.

In the Drawing Evolver, a lack of sufficient variation
means that the user is sometimes faced with a screen
of drawings whose differences are very subtle, making
difficult to distinguish between them and to mak
choices. The problem is most evident when using th
mutation operator or when mating two very similar pa
ent drawings. To combat this problem with respect
mutation, we use outrageously high mutation rates (e.
25%) as compared to the tiny fractional rates used in tr
ditional GAs (or that occur in biological evolution).
With respect to mating, having a library of evolved
drawings that can be mated with newly evolved draw
ings was found to be one helpful way to provide the us
with a more varied meta-population. Nonetheless, t
small viewing sample size and the fact that the viewin
sample is composed of children from just one or tw
parents can still conspire to decrease variation.

The mating operators themselves were also found
have an impact on the variation and quality of drawing
While experimenting with different mating operators, i
was somewhat surprising to discover that uniform ma
ing worked well when applied to mutations of the ave
age face. Interesting effects, such as shading a
highlighting, began to emerge in the evolved drawing
and the level of intricacy of a drawing increased. If
face acquired two corresponding strokes (e.g., two no
strokes), this often had the effect of producing a sketc
version of the face, with a more three-dimensional an
textured look. These are effects that an artist can wo
very hard to achieve in a drawing, and seeing the
emerge in drawings produced by a computer is ve
exciting. However, because uniform mating embodies
knowledge of the high-level drawing components, it to
tends to produce sets of children whose differences a
subtle and less dramatic. ID-based mating offers mo
substantial and dramatic perceptual differences, but
less likely to produce the shading and highlightin
effects. Combining both mating types makes it possib
to achieve better variation without also losing the inte
esting effects made possible with uniform mating.

The appropriateness of the representation for the p
ticular search space is yet another factor influencing t
quality of the candidate solutions. The representatio
used in the Drawing Evolver is very general (i.e., it ca
represent any drawing at all) compared to Caldwell an
Johnston’s (whose genotype represents faces on
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[CJ91]. But to limit our search to faces, the user must fi
ter out the drawings that don’t look face-like, while
Caldwell and Johnston’s users always see only va
faces. Of course, having a larger search space is also
advantage, providing the potential to evolve facia
expressions and cartoon or animal faces, as well as m
other things. Thus, the choice of representation is like
to involve a trade-off between focussing the searc
space or narrowing the solution space.

The system is easier and more pleasant to use
browsing than it is for evolving a specified goal image
This is no surprise, since the space contains a myriad
interesting drawings, but a comparatively small numb
that meet some narrowly specified set of requiremen
The narrower the goals, the tougher the search proble
Caldwell and Johnston report success at using their s
tem to evolve a likeness to a criminal suspect, but th
use a very tightly constrained search space, and a ge
type designed with this specific purpose in mind. Th
Drawing Evolver, with its larger and less constraine
search space, is not particularly good at this tas
Attempts to start with the average face and evolve a re
sonable likeness to a particular person were not ve
successful. On the other hand, more loosely specifi
goals, such as a plan for gender and facial express
were fairly easy to carry out.

5  Conclusions
The Drawing Evolver allows a user to produce

wide variety of complex sketches with highlighting an
shading from a single very simple ancestor drawin
These drawings would be quite difficult and tedious (
not impossible) to produce with most conventiona
object-oriented computer-aided drawing tools. The us
in a reactive rather than proactive role, is responsib
only for selecting among sets of drawings produced b
the computer. The user need not have any drawing sk
or eye-hand coordination (at least no more than is nec
sary for selecting drawings with the mouse), but goo
observational and visual skills are useful to be able
distinguish between sometimes subtly different draw
ings. The user forfeits absolute control over the ou
come, but gains an extended repertoire of possib
results.

Interactive evolution is an important new tool fo
using the computer as a creative collaborator in th
exploration of large search spaces. While empowered
human-evaluated fitness testing, it is also limited by th
slow pace of interactive use. Despite its limitations
interactive evolution has again proved a powerful tool
a new setting, adding more evidence to suggest that
full potential is yet to be explored.
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