Sharing and Preserving Computational Analyses for Posterity with
encapsulator

Thomas Pasquier*’, Matthew K. Lauf, Xueyuan Han', Elizabeth Fong$,
Barbara S. Lerner?, Emery Booset, Mercé Crosas”, Aaron Ellison?, Margo Seltzer'
*Department of Computer Science and Technology
University of Cambridge, Cambridge, UK
tSchool of Engineering and Applied Sciences
Harvard University, Cambridge, USA
YHarvard Forest,

Harvard University, Petersham, USA
§Department of Computer Science,

Mount Holyoke College, South Hadley, USA
Y Institute for Quantitative Social Science,

Harvard University, Cambridge, USA

Abstract—Open data and open-source software may
be part of the solution to sciences reproducibility
crisis, but they are insufficient to guarantee re-
producibility. Requiring minimal end-user expertise,
encapsulator creates a “time capsule” with repro-
ducible code in a self-contained computational envi-
ronment. encapsulator provides end-users with a
fully-featured desktop environment for reproducible
research.

1. Introduction

Reproducibility has become a recurring topic
of discussion in many scientific disciplines [1].
Although it may be expected that some studies
will be difficult to reproduce, recent conversations
highlight important aspects of the scientific en-
deavor that could be improved to facilitate re-
producibility. Open data and open-source software
are two important parts of a con-certed effort
to achieve reproducibility [2]. However, multiple
publications point out the short-comings of these
approaches [3, 4], such as the identification of
dependencies, poor documentation of the installa-
tion processes, code rot, failure to capture dynamic
inputs, and technical barriers.

In prior work [3]], we pointed out that open data
and open-source software alone are insufficient to

ensure reproducibility, as they do not capture infor-
mation about the computational execution, i.e., the
“process” and context that produced the results us-
ing the data and code. In keeping with the “open”
culture, we defined open-process as the practice
of both sharing the source and the input data and
providing a description of the entire computational
environment, including the software, libraries, and
operating system used for an analysis. We sug-
gested the use of data provenance [6]], formalized
metadata representing the execution of a computa-
tional task and its context (e.g., dependencies, spe-
cific data versions, and random or pseudo-random
values), which can be captured during computa-
tion.

We view data provenance as key to addressing
these issues, yet still insufficient. We need tools
that leverage provenance to put capabilities, not
complex metadata, into scientists hands. We build
on recent developments that address this need, such
as executable papers [7]] and experiment packaging
systems, e.g., ReproZip [8]. We propose a solution
for scientists running small-to-medium-scale com-
putational experiments or analyses on commodity
machines. Although tools exist to cover analy-
ses done using spreadsheet programs (further dis-
cussed in the Challenges section), we intentionally

wasGeneratedBy

<—
wasGeneratedBy

[

Process

Figure 1. A simple W3C PROV-DM compliant provenance graph.

do not cover that space, as it has inherent barriers
to transparency and identification of the source of
errors [9l [10]. Similarly, we do not attempt to
address the reproducibility of large-scale compu-
tational analysis.

We present a time capsule for small-to-
medium-scale computational analysis. This time
capsule is a self-contained environment that allows
other scientists to explore the results of a published
paper, reproduce them, or build upon them with
minimal effort. We automatically curate the scien-
tist’s code to extract only those elements pertinent
to a particular figure, table, or dataset.

2. Data Provenance

Data provenance [6] has the potential to ad-
dress some of the challenges related to repro-
ducibility. Indeed, to assess the validity or quality
of information, it is necessary to understand the
context of its creation. Unfortunately, digital arti-
facts frequently omit or hide much of the context in
which they were created. As an example, many of
us have been guilty of sharing code we developed
on our machines that our colleagues could not run,
because we often work in the same environment
for months or years, forgetting about software and
libraries we have installed over time.

Meanwhile, small differences in a computa-
tional pipeline can lead to vastly different results.
For example, different analyses of the same dataset
of carbon flux in an Amazonian forest ecosystem

r <1

ZTH+y

Figure 2. A simple provenance graph for an R script.

differed in their estimates by up to 140% [L1],
amounting to differences of up to 7 tons of carbon
in an area of the size of a football field. This
example highlights the significant impact of small
differences in code, especially when analyses or
models contain user-defined or interactive (e.g.,
multiplicative) terms. Seemingly small changes to
inputs or in the computational pipeline can lead to
large differences in results, impeding their repro-
ducibility and verification.

Data provenance is a formal representation of
the context and execution of a computation. This
information is represented as a directed acyclic
graph (DAG), a structure amenable to compu-
tational analysis. We use the World Wide Web
Consortium (W3C) standard for data provenance:
PROV-DM. shows a simple provenance
graph. Vertices represent enti-ties (representing
data), activities (representing actions or transfor-
mations), and agents (repre-senting users or or-
ganizations). In a process, controlled by
Scientist Sarah, uses an executable function (i.e., a
program) and an input file (i.e., data) to generate
an output.

Provenance can be captured at various levels
of a system, such as in libraries explicitly called
by a program, in a language interpreter, in system
libraries, or in the operating system. The specific
capture approach produces subtly different types
of provenance: observed provenance is deduced
by a system that monitors execution, whereas dis-
closed provenance is created explicitly by software

that understands the semantics of the computations
performed [12]]. encapsulator uses observed
provenance capture, which reveals the inner work-
ings of an analysis script by collecting fine-grained
provenance.

When provenance is captured for a scripting or
programming language, the provenance DAG rep-
resents relationships among inputs, outputs, tran-
sient data objects, and statements. For example,

illustrates a provenance graph of the fol-
lowing R script:

1 x <=1

2y <= 2

32z <— X t+ Yy

In the figure, the blue rectangles correspond to
statements in the language; the orange circles cor-
respond to data items (i.e., inputs, outputs, or tran-
sient objects); the purple arrows show the control
flow, representing the precise sequence of steps
taken while executing the program; and the blue
and green arrows show data dependencies (i.e., the
data used by an operation, and the data generated
by an operation respectively).

The provenance DAG illustrates data depen-
dencies (i.e., what input generated a given output),
software dependencies (i.e., on what libraries a
script depends), and information about the struc-
ture of a program. We next discuss how we use
provenance DAGs to generate a time capsule.

3. Creating a Time-Capsule

Provenance alone provides a “picture” of a
computational context, yet we want to provide an
active artifact that can reproduce a computational
context: the time capsule. |[Fig. 3| illustrates the
two phases involved in creating a time capsule
from the provenance collected during execution:
1) curate the script to identify the precise lines of
code and input data needed to produce a result; 2)
build the time capsule containing the previously
generated artifact and the environment necessary
to reproduce it.

3.1. Curating the code

Science is, by its very nature, an iterative pro-
cess. The task of cleaning and analyzing data is
a stark example of this. The data obtained from
scientific instruments or other measurements of the

figures/tables

Jscripts)

' Capture Provenance

L | ’J_L |

Provenance

paper

' Encapsulate

latasets script

datasets [: .]script figure/tabl

figure/tablq

time capsule

Figure 3. The encapsulation process.

physical world are frequently a superset of the
data a scientist wants to analyze. The first step in
computation or analysis is often to “process” raw
data to produce something that can be analyzed
to answer a specific scientific question. This pro-
cessing typically includes deciding how to handle
missing data values, extracting parts of the data,
computing new data from pieces of raw data, etc. A
scientist typically performs many such operations,
not all of which end up being useful. Additionally,
code evolves and accretes over time as scientists
try different ways to interpret or analyze the data.
False starts and abandoned analyses frequently
persist in the final scripts that scientists use. The
result is that code often contains a complex and
evolving story of what transpired, rather than a
clear, straight-line path from data to discovery.
Although this history may be interesting, it may
lead to confusing and difficult-to-understand code.
The first phase of encapsulator takes as
input the provenance of the computations execu-
tion, including all the false starts and abandoned
attempts, and produces a curated script correspond-
ing to the generation of a specific result. Such
a curated script contains the minimum sufficient
code to generate the output. Therefore, to un-
derstand a specific result, one can examine the
curated version, rather than having to wade through
potentially large amounts of irrelevant code.

Figure 4. The provenance graph corresponding to a small R
script (around 60 lines of code).

To generate the minimal “cleaned” code, we
analyze the provenance graph. Intuitively, the op-
erations relevant to the generation of a figure or
table are those connected in the DAG through
data dependencies to the output. First, we trim
the provenance graph by deleting control flow,
considering only data dependencies. For example,
the provenance graph illustrated in [Fig. 4]is trans-
formed into a set of data dependency graphs shown
in

In a data dependency graph, orange nodes rep-
resent inputs, outputs, or transient data, and blue
nodes represent operations on data items. As we
examine data dependencies in [Fig. 5| we alter-
nate between data items and operations. The code
necessary to generate an output (at the top of the
figure) is the ordered set of operations present on
all paths starting from the output in the original
source code (more intense colored nodes in

Figure 5. The data dependencies tranformation of the prove-

nance graph shown in [Fig. 4]

show an example of such a path for a given out-
put). Similarly, the inputs necessary to generate
an output are those encountered while traversing
those paths. We generate the final, curated code
by retaining all the operations on the paths in the
graph leading to the output of interest, and then
perform a final pass over the provenance DAG to
identify all the required libraries. Once the final
code has been generated, we run a source-code
formatting tool (formatR for R scripts) to bring
the code closer to best practices. We repeat these
steps for every output of interest until we have
generated a curated script for each. The inputs
used to generate the selected outputs are identified
and saved as part of the time capsule. We have
made available (see http://provtools.org/) a stan-

http://provtools.org/

dalone R library (Rclean https://cran.r-project.org/
web/packages/Rclean/) implementing the mecha-
nism described here.

3.2. Building the time capsule

Having shown how we produce curated scripts,
we next explain how to construct a time capsule,
leveraging freely-available tools wherever possible.
Our goal is to generate a self-contained environ-
ment that most scientists can use. This leads to the
following requirements:

o The environment should present a user in-
terface familiar to scientists;

« Encapsulation and use (de-encapsulation)
of time capsules must require minimal
technical expertise;

« The installation process itself must also re-
quire minimum intervention and technical
knowledge;

o Time capsules, their installation, and re-
execution must be platform-independent.

We demonstrate through a practical scenario how
well we meet those requirements in the next sec-
tion.

Based on those criteria, we selected virtual
machines (VMs) as the self-contained environ-
ment for our time capsules (i.e., their behavior
and content is independent of the guest machine,
and will remain identical over time). As one of
the main barriers to reproducibility is technical,
we want to avoid introducing additional techni-
cal complexity. Software, such as VirtualBox
(see https://www.virtualbox.org/), has made VMs
an easy-to-use, “push button” technology, and it
is possible to use a user-friendly interface to run
a virtualized desktop with almost no technical
knowledge. To most scientists, a VM will appear
as a desktop environment similar to the one they
use every day. To facilitate ease of adoption, we
make sure that the time capsule contains all the
tools scientists need to usefully interact with the
computational process.

We use Vagrant (see https://www.vagrantup.
com/) infrastructure and software to build, share,
and distribute time capsules. Its VM provision-
ing is akin to that of Docker for containers.
To provision a VM, one simply writes a script
specifying the base VM (a pre-configured image),

additional software, and files that should be in-
stalled. This is completely transparent to scientists:
encapsulator generates a Vagrant file based
on the information extracted from the provenance
data in the previous phase. Although users can
(optionally) customize the provision script, such
customization should never be necessary. In the
current prototype, the time capsule is Linux-based,
as we leverage its package manager; other operat-
ing systems present licensing challenges (discussed
in [§ 5). However, the creation of the time capsule
itself can be done from experiments running on
Windows, Mac, or any Linux distributions.

The provenance capture is achieved through
program introspection using ProvR (see http://
provtools.org/). This presents some restrictions re-
garding the amount of system details that can
be captured. In the current proof of concept
implementation, we rely on the package man-
ager of the Fedora Linux distribution (see https:
/fedoraproject.org/wiki/dnf) to install the system
dependencies required by a specific version of
an R library. We are exploring the possibility
of complementing our provenance source using
CamFlow [13] (see http://camflow.org/) to capture
system level provenance in the Linux operating
system. However, it must be noted that system-
level provenance capture in closed-source operat-
ing systems remains a challenge.

During encapsulation, the scripts created in the
first phase run in the time-capsule environment.
Their outputs are compared to those from the orig-
inal script (i.e., the one run on the host machine)
to ensure that they are identical. Once the encap-
sulation is finished, the VM is packaged, ready to
be shared. This VM contains individual R scripts
for each selected figure, along with the datasets
used as inputs. The current prototype relies on
Vagrants cloud platform to host the VM.

4. Using Encapsulator

Consider the following scenario: Sarah is a
young and brilliant scientist who would like to
make her research results available to the com-
munity, allow reviewers to easily verify her re-
sults, and encourage others to build on them.
Prof. O’Brien is a reviewer, interested in verifying
Sarah’s findings. John is a scientist from a near
future who wishes to use Sarah’s results.

https://cran.r-project.org/web/packages/Rclean/
https://cran.r-project.org/web/packages/Rclean/
https://www.virtualbox.org/
https://www.vagrantup.com/
https://www.vagrantup.com/
http://provtools.org/
http://provtools.org/
https://fedoraproject.org/wiki/dnf
https://fedoraproject.org/wiki/dnf
http://camflow.org/

Alternatives to encapsulator

Some systems are designed to reproduce complex workflows running on grid or cloud infras-
tructures (e.g., Kepler [14]]), and fill a related, but distinct niche. Indeed, encapsulator is
intended to support research run on single commodity machines, which accounts for a significant
proportion of research results in a number of fields. Systems designed for particular domains
already exist (e.g., GenePattern [I35)], and Galaxy [16]), but the role of encapsulator is to
provide a general approach.

ReproZip [8] and CDE are directly comparable to encapsulator. However, they use
system calls to identify dependencies and package experiments. Therefore, computations first must
be run in Linux before they can be packaged. This may prove problematic for many scientists
who do not use Linux. encapsulator relies on language-level observed provenance and is not
subject to such limitations.

The main difference between encapsulator and alternative tools is the focus on ease of use.
Modifying packaged computations generated by the alternatives may require a relatively high
level of technical skill. encapsulator builds a fully functional, self-contained environment
that is easy for scientists to navigate. The list presented here is succinct, but we maintain online a
list of open-source provenance tools including some designed for reproducibility and replication

purposes (see https://projects.iq.harvard.edu/provenance-at-harvard/tools).

The “messycode” examples (see
https://github.com/ProvTools/encapsulator)
illustrate several “lazy coding practices” that
scientists, including Sarah, often use when writing
code for models and analyses:

e near “stream-of-consciousness” coding that
follows a train of thought in script de-
velopment;

« output to console that is not written to disk;

« intermediate objects that are abandoned;

o library and new data calls throughout the
script;

« output written to disk but not used in final
documents;

e code is not modularized;

e code that is syntactically correct but not
particularly comprehensible.

At this stage, we assume that Sarah has fin-
ished her computations, built the figures and tables
for her paper, and has the paper ready for sub-
mission. She is aware of open-data repositories,
such as Dataverse (see https://dataverse.org/),
and source-code repositories, such as GitHub (see
https://github.com/), but she knows they may not
be sufficient to make her code truly re-usable. In
the past, when she tried to re-use code written
by other scientists, she often discovered that it

was poorly documented and hard to use. She also
constantly found herself baffled by questions such
as what external packages the computation de-
pends on, where to obtain those dependent files and
libraries, and what parameters were used to obtain
the published results. Trying to figure out these
details resulted in her wasting countless hours.
She would like to save other scientists from these
challenges, so that they can more easily build upon
her work.

Sarah wants a “picture” of the context of
her computations that allows anyone to repro-
duce them. Provenance captured by tools such
as provR (see http://provtools.org/) for R scripts
contains the following information, represented as
nodes or node attributes in a DAG:

e inputs;

e outputs;

« transient data objects and their values;
e operations;

o library dependencies.

This information facilitates depiction of the de-
velopment environment, accurately capturing, for
example, random seeds used and the version of a
library that was required by the system. Although
this picture is important, it could prove difficult
for John or Prof. O’Brien to use it to create an

https://projects.iq.harvard.edu/provenance-at-harvard/tools
https://github.com/ProvTools/encapsulator
https://dataverse.org/
https://github.com/
http://provtools.org/

environment in which Sarah’s computations can be
reproduced. They may not have the required exper-
tise or the required version of a library has become
unavailable. Thus, Sarah wants her experiments to
be preserved in a time capsule.

Sarah decides to use encapsulator.
She needs to install it and its dependencies:
VirtualBox and Vagrant. On her Mac
laptop, she can do this:

I brew install ruby

> gem install encapsulator
y encapsulator —--install mac

Listing 1. Installing encapsulator and its dependencies.
The next step is to examine her R script and deter-
mine what outputs she wants to include in her time

capsule. She can find out what the possibilities are
using encapsulator’s info capability:

I encapsulator —--info sarah.R
Listing 2. Obtaining a summary of an R script.
This generates the following output:

I Files

Input july_biomass_survey.csv

4 Input dataset_v2_june_from_collaboratorl.
csv

5 Output savel.csv

6 Output figl_biplot.png

7 Output figl_biplot_v2.png

8 Output fig2_biplot.png

10 Packages

12 base v3.4.0

13 gdata v2.18.0

14 lattice v0.20-35
15 permute vO0.9-4

16 txtplot v1.0-3

17 vegan v2.4-3

Listing 3. Installing encapsulator and its dependencies.

Sarah included only figl_biplot_v2.png
and fig2_biplot.png in her article, so she
wants to generate a time capsule containing only
the code (see supplementary material) needed to
generate those two images:
| encapsulator --encapsulate sarah/

experiment sarah.R figl_biplot_v2.
png fig2_biplot.png

Listing 4. Creating the time capsule.
Once encapsulator has finished building the

time capsule, all that is left to do is to upload it to
Sarah’s Vagrant cloud account.

Loz 125ploLnaR profects

FEEEPLTICRA

Figure 6. The time-capsule running on Prof. O’Brien’s machine.

A few months later, Prof. O’Brien is reviewing
Sarah’s paper and wants to understand her analysis.
He sees that Sarah has used encapsulator to
share her work. As Sarah did in her workflow to
produce the published results, he can easily install
it on a Linux machine:

I sudo apt install ruby
> gem install encapsulator
3 encapsulator --install ubuntu

Listing 5. Installing encapsulator and its dependencies

Once it is installed, he retrieves Sarah’s work by
running:

I encapsulator --decapsulate sarah/
experiment

Listing 6. Decapsulating a shared environment.

encapsulator manages the VM download and
startup transparently. After a short time, a window
appears on Prof. O’Brien’s desktop presenting him
with the virtual desktop shown in [Fig. 6] In this
environment, he has access to familiar tools and
can work without difficulty. Further, the code that
he examines for each figure is about a dozen
lines of clean code, not Sarah’s original 60 lines
of messy code. Naturally, encapsulator can
handle longer and more complex scripts.

John reads Sarah’s article five years after its
publication. Using the same sequence of com-
mands that Prof. O’Brien used, he is able to get
the time capsule running on his laptop, and the
environment in the VM is identical to what it
was at the time of publication. John can get to
work easily without worrying about the problem
of outdated dependencies (e.g., old library versions
that are no longer available for download).

5. Challenges

Domain specific environment: Our time capsule
comes with a generic environment, including some
tools generally used for data analysis to provide
an easy-to-use, familiar interface. In future ver-
sions, based on domain-scientist feedback, we will
provide platforms containing standard toolsets spe-
cific to domains (e.g., ecology, genetics, chemistry,
etc.).

Time-capsule OS: The current version of
encapsulator uses Linux, in particular the
package management system, to build a time cap-
sule. Although a large number of tools used by sci-
entists are available on Windows, Mac, and Linux,
some tools may be available only on specific plat-
forms. Furthermore, distributing Mac and Win-
dows capsules introduces licensing issues (propri-
etary software in research is a complex topic [18]]).
At this stage, one can build a capsule on any
platform, but the capsule itself is Linux-based.
This may not pose a major obstacle for domain
scientists whose analytical workflows occur almost
entirely within an IDE, such as RStudio, since
these IDEs are supported on all major operating
systems and appear nearly identical across plat-
forms.

Language support: Our current prototype sup-
ports only the R programming language. We intend
to incorporate support for additional languages
used in data analysis, including Python and prove-
nance capture libraries such as noWorkflow [19].
Because encapsulator uses the PROV-JSON
standard for data provenance, any provenance cap-
ture tool with a statement-level granularity for any
language could be used to generate a capsule. Fur-
thermore, it should be possible to support individ-
ual workflows that use multiple languages, which
are becoming more common in some domains.
Integration with IDEs: Although they are rel-
atively simple to use, a command-line interfaces
are daunting to some users. We are investigat-
ing integrating encapsulator into existing,
commonly-used IDEs, such as an encapsulator
add-in for RStudio, a common IDE for R (see
https://rstudio.github.io/rstudioaddins/). Many re-
searchers use spreadsheet programs for their data
management and analysis. Although the feasibil-
ity and sufficiency of capturing provenance for
such workflows has been demonstrated [20]], and

encapsulation is therefore also theoretically pos-
sible, we argue that these methods are inherently
unstable since they typically rely on proprietary
software with complex underlying data structures.
Additionally, best practices for data science typ-
ically conflict with spreadsheet-based workflows
that tend to lead to informal, and often inaccurate,
data management and analysis.

Out-of-tree libraries: Many obscure libraries
may not be available through the package manage-
ment system, either a specific Linux distribution
or a programming language, such as CRAN (see
https://cran.r-project.org/) for R packages. We are
investigating ways to handle such library depen-
dencies. Those that do not have dependencies are
relatively easy to handle by building and installing
the package during the encapsulation process. Oth-
ers that use alternative package managers, such as
Bioconductor (see https://www.bioconductor.org/),
are also relatively easy to handle. However, those
with complex third-party dependencies without
formal definitions are more difficult to support.

Non-deterministic processes: Some scripts use
pseudo-random-number generators and two runs
may not produce identical results. We plan to
incorporate the ability to reproduce such results
in a future release once the provenance capture
system records random values; however, a more
serious issue is non-determinism introduced by
concurrency. This could be ameliorated during the
curation phase by producing scripts that enforce
ordering. It might be preferable to enhance how
we assess whether a given result produced within
the time capsule is correct. In the current proof
of concept, the results must be identical to those
produced on the host machine. However, it might
be reasonable to verify that the results meet some
statistical property instead (e.g., within § of the
original results). We recognize that this is not
a trivial task and that significant investigation is
required to determine a suitable path forward.

Long-term archival: There are two major as-
sumptions that encapsulator makes about
availability of a time capsule for long-term
archival: 1) the continued existence of the Vagrant
cloud; and 2) x86-64 virtualization. The first issue
can be addressed by replicating the time capsule
in a trusted archival repository. One option that
we plan to explore in future work is to publish
the time capsule in a Dataverse repository as

https://rstudio.github.io/rstudioaddins/
https://cran.r-project.org/
https://www.bioconductor.org/

a “replication dataset”, assigning automatically a
DOI and minimal citation metadata and generat-
ing a formal persistent data citation for the time
capsule. The second issue is more complex, so the
answer is speculative. Virtualization depends on
the remaining life span of the x86-64 architecture
and whether the concerned time capsule will have
any relevance after that. This last point is an inter-
esting issue to ponder, as preservation of our digital
world is an issue [21] that goes beyond science and
reproducibility. Artifacts of our modern culture are
already disappearing (e.g., video games and digital
publications), which is an important socio-cultural
issue beyond the scope of our current project.
Container support: Although we claim that
tools such as Docker are not ideal to reduce the
technical barriers to reproducibility for scientists,
they are useful for automating the repetition of re-
sults. As Vagrant supports container provision-
ing, encapsulator could handle such targets.
However, one should also remember that while
containers are lighter, they are not as self-contained
as virtual machines. Indeed, containers run over
the kernel of their host machine; if change to the
kernel were to affect results then reproducibility
could not be guaranteed.

6. Conclusion

We introduce encapsulator, a sophisti-
cated yet simple toolbox that uses the prove-
nance of computational data analysis to produce
a time capsule in which computational workflows
can be re-run and modified. This tool is de-
signed to require minimal overhead for integra-
tion into a user’s workflow and limited technical
expertise. When viewed within the context of in-
creasing computational demands of all disciplines,
encapsulator provides a key tool for facili-
tating transparent research at a crucial time for
science.

Acknowledgment

This work was supported by the US
National ~ Science Foundation grant SSI-
1450277 End-to-End Provenance and grant
ACI-1448123 Citation++. More details

about those projects is available at https:
/lprojects.iq.harvard.edu/provenance-at-harvard.

Our reviewers were Prof. Lorena Barba (School
of Engineering and Applied Science, George
Washington University) and Prof. Carl Boettiger
(Department of Environmental Science, Policy and
Management, University of California Berkeley).
They both helped to clarify the terminology used
around reproducibility. Prof Boettiger helped us to
clarify the extent of the provenance captured.

Software Engineering Practices

All software presented in this paper is open-
source under GPL v3, and available at http://
provtools.org/| or directly through GitHub (https:
//github.com/ProvTools). The latest version (at the
time of submission) can be referenced with the
DOI: 10.5281/zenodo.1199232 and is distributed
via the RubyGems service (https://rubygems.org/
gems/encapsulator). The software presented in this
paper remains under development and is subject
to change. Matthew K. Lau should be contacted
for any additional information about the ProvTools
ecosystem. Further details about continuous inte-
gration and engineering practices are available in
the README.md files of the individual compo-
nents.

References

[1] M. Baker, “1,500 scientists lift the lid on
reproducibility,” Nature, vol. 533, no. 7604,
pp- 452454, 2016.

[2] J. D. Gezelter, “Open source and open data
should be standard practices,” Journal of
Physical Chemistry, 2015.

[3] D. Garijo, S. Kinnings, L. Xie, L. Xie,
Y. Zhang, P. E. Bourne, and Y. Gil, “Quan-
tifying reproducibility in computational biol-
ogy: the case of the tuberculosis drugome,”
PloS one, vol. 8, no. 11, p. e80278, 2013.

[4] L. N. Joppa, G. Mclnerny, R. Harper,
L. Salido, K. Takeda, K. O’hara, D. Gav-
aghan, and S. Emmott, “Troubling trends in
scientific software use,” Science, vol. 340, no.
6134, pp. 814-815, 2013.

[5] T. Pasquier, M. Lau, A. Trisovic, E. Boose,
B. Couturier, M. Crosas, A. Ellison, V. Gib-
son, C. Jones, and M. Seltzer, “If these data
could talk,” Scientific Data, 2017, accepted.

https://projects.iq.harvard.edu/provenance-at-harvard
https://projects.iq.harvard.edu/provenance-at-harvard
http://provtools.org/
http://provtools.org/
https://github.com/ProvTools
https://github.com/ProvTools
https://rubygems.org/gems/encapsulator
https://rubygems.org/gems/encapsulator

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

[14]

[15]

L. Carata, S. Akoush, N. Balakrishnan,
T. Bytheway, R. Sohan, M. Seltzer, and
A. Hopper, “A primer on provenance,” Com-
munications of the ACM, vol. 57, no. 5, pp.
52-60, 2014.

R. Strijkers, R. Cushing, D. Vasyunin,
C. de Laat, A. S. Belloum, and R. Meijer,
“Toward executable scientific publications,”
Procedia Computer Science, vol. 4, pp. 707-
715, 2011.

F. Chirigati, R. Rampin, D. Shasha, and
J. Freire, “Reprozip: Computational repro-
ducibility with ease,” in Proceedings of the
2016 International Conference on Manage-
ment of Data. ACM, 2016, pp. 2085-2088.
J. Cunha, J. P. Fernandes, H. Ribeiro, and
J. Saraiva, “Towards a catalog of spread-
sheet smells,” in International Conference on
Computational Science and Its Applications.
Springer, 2012, pp. 202-216.

M. Ziemann, Y. Eren, and A. El-Osta, “Gene
name errors are widespread in the scientific
literature,” Genome biology, vol. 17, no. 1, p.
177, 2016.

A. M. Ellison, L. J. Osterweil, L. Clarke,
J. L. Hadley, A. Wise, E. Boose, D. R. Foster,
A. Hanson, D. Jensen, P. Kuzeja, E. Riseman,
and H. Schultz, “An analytic web to support
the analysis and synthesis of ecological data,”
Ecology, vol. 87, no. 6, pp. 1345-1358, 2006.
U. Braun, S. Garfinkel, D. Holland, K.-
K. Muniswamy-Reddy, and M. Seltzer, “Is-
sues in automatic provenance collection,”
in Provenance and annotation of data.
Springer, 2006, pp. 171-183.

T. Pasquier, X. Han, M. Goldstein, T. Moyer,
D. Eyers, M. Seltzer, and J. Bacon, “Prac-
tical whole-system provenance capture,” in
Symposium on Cloud Computing (SoCC’17).
ACM, 2017, pp. 405-418.

I. Altintas, C. Berkley, E. Jaeger, M. Jones,
B. Ludascher, and S. Mock, “Kepler: an ex-
tensible system for design and execution of
scientific workflows,” in Scientific and Sta-
tistical Database Management, 2004. Pro-
ceedings. 16th International Conference on.
IEEE, 2004, pp. 423-424.

M. Reich, T. Liefeld, J. Gould, J. Lerner,
P. Tamayo, and J. P. Mesirov, “Genepattern
2.0,” Nature genetics, vol. 38, no. 5, pp. 500—

[16]

(17]

(18]

[19]

(20]

(21]

501, 2006.

B. Giardine, C. Riemer, R. C. Hardison,
R. Burhans, L. Elnitski, P. Shah, Y. Zhang,
D. Blankenberg, 1. Albert, J. Taylor et al.,
“Galaxy: a platform for interactive large-scale
genome analysis,” Genome research, vol. 15,
no. 10, pp. 1451-1455, 2005.

B. Howe, “Cde: A tool for creating portable
experimental software packages,” Computing
in Science & Engineering, vol. 14, no. 4, pp.
32-35, 2012.

A. Gambardella and B. H. Hall, “Propri-
etary versus public domain licensing of soft-
ware and research products,” Research Policy,
vol. 35, no. 6, pp. 875-892, 2006.

L. Murta, V. Braganholo, F. Chirigati,
D. Koop, and J. Freire, “noWorkflow: Cap-
turing and Analyzing Provenance of Scripts,”
in International Provenance and Annotation
Workshop, 2014, pp. 71-83.

H. U. Asuncion, “In situ data provenance cap-
ture in spreadsheets,” in International Con-
ference on eScience. 1EEE, 12 2011, pp.
240-247.

K.-H. Lee, O. Slattery, R. Lu, X. Tang, and
V. McCrary, “The state of the art and practice
in digital preservation,” Journal of research
of the National institute of standards and
technology, vol. 107, no. 1, p. 93, 2002.

Appendix

##
#H#
###
###
##
#H#

Messy code is a fabricated example
intended to capture the essentials
of a typical, lazy scripter's R code.
It is, however, tremendously more
organized than the vast majority of
scripts.

Depencies are loaded throughout the
script.

Also, some depencies that are loaded
are often

not used anymore but are still
present.

library ('gdata')

i

i
i

Read data from some random file path
Here, a relative path is being used,
but
typically,
root.
data.l6 <- read.csv("projects/2016/july_
biomass_survey.csv")

#H# file paths are given from

Some datasets are loaded and no
longer used.

Like this one

data.l6.2 <- read.csv('projects/data_
forestplot/dataset_v2_Jjune_from_
collaboratorl.csv')

Create a bunch of intermediate

objects
data.vl.ltod4 <- data.l1l6[,1:4]
data.v1l.ltod4. <- data.vl.lto4
data.vl.lto4 <- data.vl.ltod * 2
data.vl.ltod4.2 <- data.vl.ltod * 2

data.l6[,1:4] <-
library ('vegan')
dl <- vegdist (data.l6[,1:2])
d2 <- vegdist (data.l6[,2:3])

data.v1l.1lto4.2

3 ### Conduct some analyses

mantl <- mantel (dl,d2)

mant2 <- mantel (d2,dl)

mantll <- mantel (dl,dl)

fitl <- Im(Sepal.Length”Sepal.Width,data=
data.l6)

Im.summary.l <- summary (fitl)

write some data to file
write.csv(data.vl.1lto4, 'projects/data_
forestplot/savel.csv', row.names = F)

3 ### write some analyses to file

capture.output (1lm.summary.l, file="
analysis_forest/anova_table_1.txt")

write some figures to file
Here's another random, unused package

2

o
- [T TR - 3

®

[N ST

® =

library ('txtplot"')

png('figures_1/figl_biplot.png')
plot (data.1l6[,1:21])
dev.off ()

png ('figures_1/figl_biplot_t2.png')
plot (data.1l6[,1:2]%2)
dev.off ()

png ('figures_2/fig2_biplot.png"')
plot (data.16[,2:31])
dev.off ()

Listing 7. Original “messy” code.

data.l6 <- read.csv("projects/2016/july_
biomass_survey.csv")
data.vl.ltod4 <- data.l6[, 1:4]
data.v1l.lto4 <- data.vl.ltod * 2
data.vl.lto4.2 <- data.vl.ltod * 2
data.l6[, 1:4] <- data.vl.lto4d.2
png ("figures_1/figl_biplot_v2.png")
plot (data.l6[, 1:2] * 2)
dev.off ()

Listing 8. Curated code for figure 1.

data.l6 <- read.csv("projects/2016/july_
biomass_survey.csv")
data.vl.ltod4 <- data.l6[, 1:4]
data.vl.1lto4 <- data.vl.ltod * 2
data.v1l.lto4.2 <- data.vl.ltod = 2
data.l6[, 1:4] <- data.vl.lto4d.2
png ("figures_2/fig2_biplot.png")
plot (data.16[, 2:3])
dev.off ()

Listing 9. Curated code for figure 2.

	Introduction
	Data Provenance
	Creating a Time-Capsule
	Curating the code
	Building the time capsule

	Using Encapsulator
	Challenges
	Conclusion
	Appendix

