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Abstract—Numerous proposals exist for load balancing in  In this paper, we propos&-Choices a load balancing
peer-to-peer (p2p) networks. Some focus on namespace balancingalgorithm for structured overlays that supports wide variation
making the distance between nodes as uniform as possible. Th'sin skew, heterogeneity, and churn while retaining the security

technique works well under ideal conditions, but not under . -
those found empirically. Instead, researchers have found heavy- and application advantages afforded by verifiable IDs. At a

tailed query distributions (skew), high rates of node join and high level, the algorithm works as follows: (a) each node
leave (churn), and wide variation in node network and storage generates a set of verifiable IDs based on a single unit of
capacity (heterogeneity). Other approaches tackle these less-than-certified information; (b) at join time, a node greedily reduces
ideal conditions, but give up on important security properties.  iscrepancies between capacity and load both for itself and for

We propose an algorithm that both facilitates good performance . R .
and does not dilute security. Our algorithm, k-Choices achieves nodes that will be affected by its join; and (c) optionally, each

load balance by greedily matching nodes’ target workloads with Node experiencing overload or underload may periodically
actual applied workloads through limited sampling, and limits probe the network and reposition itself to another element from
any fundamental decrease in security by basing each nodes’ setjts set of verifiable IDs. Minimizing discrepancies between

of potential identifiers on a single certificate. Our algorithm load and capacity achieves load balance, and limiting IDs to
compares favorably to four others in trace-driven simulations. . . ’

We have implemented our algorithm and found that it improved a We!l-deflned set keeps the algorithm se(;ure. .
aggregate throughput by 20% in a widely heterogeneous system  This paper proceeds as follows. In Section II, we introduce

in our experiments. our model and assumptions. In Section Ill, we presentkthe
Choicesalgorithm in detail. In Section 1V, we review four
state-of-the-art algorithms for load balancing in p2p systems.
Decentralized structured overlays and distributed hash tablesSections V and VI, we present results from trace-driven
proffer a unigue vision of computing: each machine searsimulations where we vary system characteristics, including
lessly contributes to and benefits from a large service-orientedde heterogeneity, skew, and churn. We also present results
network. This vision has yet to be realized, in part, becaug®m an implementation ok-Choices Sections VII and VIII
machines are not identical, because the workload appliedpi@sent related work and conclusions, respectively.
the system may be heavy-tailed, and because node availability
and churn rates may change over time. Learning to adapt to Il. MopEL
these characteristics through load balancing in a decentralized this section, we introduce our model and assumptions for
scalable, and secure manner is a step toward realizing this ideéad balancing in p2p systems.
of computing. Overload. Physical nodes,e.,computers, participate in p2p
Several existing proposals for load balancing algorithnfy/stems. Each node; has a capacity;, which corresponds
in this context have focused on ideal conditions [1], [26}0 the maximum amount of load that node can process per unit
[30], [32]. They have made unrealistic assumptions about nodf@e. Nodes create virtual servers (VSs), which join the p2p
heterogeneity, workload skew, and node churn. In gener@gtwork. A noden might havej VSsuvy,vs, ..., v;, each with
they have assumed that nodes are uniform, that there is!@@dswi, w2, ..., w;, respectively. Load is applied to nodes
skew in the workload, and that nodes are neither arriving ngi@ their virtual servers. In a unit of time, node might have
departing. Deployed systems do not adhere to these idealié®d (Work) W; = w; + w2 + ... + wj.
conditions [39], [45]. Overload occurs when, for a node;,, W; > C;. An
Other proposals have attempted to handle skew, chufiyerloaded node is not able to store objects given to it
and heterogeneity [12], [20], [35]. Those that achieve god@ute packets, or perform computation, depending on the
performance let nodes join as normal and then reactively giplication. A node fails to process requests that impose work
sition nodes to arbitrary locations in the namespace. Arbitrari§gyond its capacity. Per unit time, the successful work per
choosing identifiers (IDs) forfeits an important security godlode is: .
for p2p systems: a verifiable identifier. Without verifiable IDs S; = { Wi, it (Wi < Cy)
. . - e C;, otherwise
tying virtual overlay addresses to specific agents, application
building blocks such as reputation [13], micropayments [46The utilization of a node’s:; is W;/C;. Nodes may want to
and auctions [23] are not possible outside of a trusted netwodgperate below their capacity to prevent fluctuations in work-

I. INTRODUCTION



Us around the falsification of a node’s identifier are called Sybil
Freme e . attacks [14]. Douceur outlines the main difficulties in allowing

kload . . .
S . nodes to choose their own IDs. He shows that validating nodes
node . , . .
virtual —— o target | capacity must verify all other nodes’ credentials simultaneously, an act
kl ape
servers we workload that may exceed the verifier’s resources.

A system may acquire a low level of security by requiring
77777777777777777777777 -- that IDs be based on the hash of the node’s IP address [12].
However, falsifying IP addresses is straightforward; basing
Fig. 1. Target and Capacity Workload. any level of authentication on IP addresses would not repel a
determined attacker. For this reason, Castral. propose that
each IDk is certified by a central authority, which generates
load from temporarily overloading them. Using terminology...: [9]. This option is scalable because each node contacts
from Raoet al. [35], we say a node,; has an upper targéf; this authority once, the first time it joins the system.
and slackUs such thatU; = C; — Us. If a node finds itself  Instead of having this authority certify IDs, we propose that
receiving more work thart/;, it considers itself overloaded.it certify a uniqgue number: for each node, creating c,:.
Nodes also have a lower targbt below which they consider Each node can then use this number to generate its own IDs
themselves underloaded. How a node responds to eitherusing an ID-generating hash functién For a node with ID
these conditions depends on the algorithm. An illustration &f a verifier verifies thak = h(xc.r:) instead ofk = keere.
how we represent nodes is shown in Figure 1. We assume ekgbhoicescreates a set of verifiable IDs by generating each
node knows its capacit¢’ and its upper and lower targets. k = h(z..rt + ¢) Wherec has a well-known bound. We refer
Each node stores its virtual servers in a set, call&det to x..,+ asx below for purposes of presentation.
of size VSset.size . Depending on the algorithm, this size The k-Choicessolution we propose retains this Sybil attack
may have an upper bound ®fSset.maxsize . resilience. Algorithms that permit a node to relocate its virtual
Routing. Structured overlays allow routing of messages teerver to an arbitrary node ID location do not have this quality.
destinations on top of an underlying network constantly undekgorithms that do not allow for certified IDs can only be
going topology change [36], [38], [43], [47]. Each message&xpected to function in a trusted environment.
destination ID is a number on the overlay’s namespace.g., System Characteristics.Although structured overlays are
D = 2160 Messages traverse overlay hops from a source VSttygeted to provide the framework for applications such as
a destination VS. The number of hops is typicallylog(N)), application-level multicast [8], distributed storage [10], [16],
where N is the current number of VSs. and publish-subscribe content distribution [34], [42], there are
Each VS has a unique ID chosen from the namespage benchmark workloads. Gummasit al. and others have
D. In our model, the destination of a message is the MBund Zipf query distributions in their trace analysis of Kazaa
with the next largest logical identifier on the namespace m§8], [24], [39] and this distribution is common to many other
D. The VS with the next largest (smallest) ID is calledisages €.9., web page file access [18], file popularity [17]).
the successor(predecessqr We denote the distance in theWe examine load balancing under uniformly random and
namespace between two virtual serveasmd; with dist(i,j). Zipf queries. A Zipf workload with parameter means that
Each structured overlay allows new VSs to join the systerdestinations are ranked by popularity. Destination with rank
In general, each VS join and departure requié®3og(N)) is a times more likely to be accessed than that with ramk .
maintenance messages. Reactive load balancing algorithms ugecharacteristic related tekewis workload shift Shift refers
artificial join and departure to change IDs. to a change in workload skew. For example, on one day, one
Network as Bottleneck.We focus on how load balancingstored object might be the most popular, on the next, a different
algorithms function at the routing level. Blake and Rodrigueane might be, but the general distribution would be the same.
provide evidence that even in remote storage applications, nétudies of object popularities in deployed p2p systems have
work bandwidth is likely to be the primary bottleneck [2]. Adound the existence of shifting Zipf skewed workloads [24].
storage becomes cheaper and cheaper relative to bandwidtid third characteristic is the distribution of nodapacities
particularly “last-mile” bandwidth, this case will likely becomeAs is generally the case in p2p scenarios, bandwidth is
more common. In compute-dominated scenarios, whether the main capacity limiter [2]. In the traces which we draw
processing or the network will be the bottleneck depends tmom, node capacities vary by six orders-of-magnitude [39]
the application. We let a node’s capacityC; be the number and a simple function does not capture the trace bandwidth
of routing hops it can provide per unit time. We compardistribution well.
algorithms on the percentage of messages that successfulbi final characteristic is the distribution of node joins and
reach their destinations. departures dhurn). As we discuss in Section V, this cannot
Security. A key issue in the operation of a p2p network ide captured with a simple rate Instead, churn tends to be
whether or not one assumes it may contain malicious nod®areto: heavy-tailed and memory-full. Nodes that have been
A malicious node can subvert content or attempt to contrisl the system for a long time tend to remain longer than
particular portions of the identifier space. Attacks that centaverage [3]. Pareto distributions have two parameters, shape
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Fig. 2. As part of theJoin processk-Choicesshifts workload for each of the VSs that are created.

K-CHOICES VS JOIN(ta) menu of potential IDs is chosen, limited by a well-known

1 K {ko —h(z+0),.... -y hz+r—1)} constantx (lines 1-2). These IDs are verifiable because they
2 Remove In-use IDs frond are all based on the certifiedd and because; is bounded.
3 for eachkin K n) To verify that a node is using a valid 10;, another node
4 do Queryiﬁfg@d(ﬁgrﬁs andt, simply has to check that there exists soine « such that
5 T Tist(pred(k),succ(k)) k = h(x+1). Next, each potential ID’s successor is probed to
6 Wy T X Wy discover what is likely to happen were this VS to be placed at
7 w — (1=7) x w™ this location (line 4). It guesses that the current work for this
8 c—ts — w§f>\ + [te — wq| — |ts — wg")\ location will be split based on the percentage of the address
9 Join atk with minimum¢ space the joining VS will take on (lines 6-7). The node uses
10 return w, this to compute the change from the current situation (line
8). Each term in the cost function is the difference between
K-CHOICESNODE JOIN(T)) target work and real work. The first two terms are the sum
1 T—(U;+L;)/2 of the differences if this VS is created and the last is the
2 i kK/2 current situation. We normalize each term based on the node’s
3 while T >0andi >0 capacity. Thus, the lower the cost, the smaller the difference
4 doT « T —K-CHOICESVS JoIN(T) between target and actual work. The last step of the join
5 i—i—1 process is to join at the ID with lowest cost. Because nodes set

their targets lower than their capacities, if all nodes minimized
the mismatchn = |t — w| = 0, then loss would be zero.

If nodes do not attempt to perform any additional load
balancing after joining, we say they grassive Being passive
has its advantages: no additional churn is induced through
o and scale3, and have a mean ¢ VS relocation. However, over time one of the other potential
IDs for this VS can become significantly better in terms of
improving target/workload mismatch.

k-Choicesis a greedy, cost-based load balancing algorithm If we permit reselection of IDs, we say thktChoicesis
for structured overlays. It matches nodes’ workload goals witdtttive To minimize network probing, nodes reselect only a
guesses about how their choices of identifiers will affect bodingle VS ID at a time. They pick the € VSset with the
their own workloads and those of their neighbors. At each M8aximum mismatch. They check if any new ID feimproves
insertion,k-Choicesminimizes the discrepancy between workhe aggregate mismatches of themselves and their neighbors
and capacity by sampling from a small set of potential ID&y ¢, a parameter that dampens improvements of minimal
By limiting the number of potential IDk-Choiceds practical benefit. If it does, the movement is performeds application-
for networks containing malicious participants. dependent: when a system is used for routing, moving will

k-Choicedunctions primarily at node join time as shown inbe relatively painless, as VSs can gracefully notify incoming
k-Choices Node Join in Figure 3. When a node joins, pointers of their departure; if objects are stored and need to be
it chooses a total target workload and an upper bound eant over the network, the cost might be significantly greater.
the number of VSs to create (lines 1-2). Then, it invokddodes only examine the possibility of relocating if they are
k-Choices VS Join  and reduces its remaining capacityoverloaded or underloaded. If nodes have relocated more than
by the anticipated work of that VS (line 3). This continue¥Sset.size  times and are still overloaded or underloaded,
until it has created</2 VSs or reached its target workloadthey create or destroy VSs within the rangex). In practice
Making several VSs together at join time amortizes the cose found that nodes did not create more than a handful of
of sampling. additional VSs.

The join for each VS is composed of four steps, as shown ink-Choicespossesses several attractive features and makes
Figure 2 and irk-Choices VS Join  in Figure 3. A small certain assumptions. When run passivemode, it adds no

Fig. 3. k-Choicesjoin algorithm.wén) and w§f> denote the successor’s

work now and in the future, respectively.

I11. k-ChoiceSALGORITHM



reactive churn. In fact, without an active componeneduires Stack

1

1

natural churn. By making a good choice before routing is set X
up, objects are stored, or computations are stakechoices Capacity VS !
|

1

lessens or eliminates this reactive load balancing penalty. We
assume that nodes do not lie or that Distributed Algorithmic nodes: (a) (b) @
Mechanism Design techniques could be used to encourage the 1V8pernode '  3VSpernode

truthfulness of the information they provide about load [191:i

o . . 4. log(N) VS During join, a node can divide itself into several
[41], another reason why verifiable IDs are important. We al?ﬁftual servers, which then join independently. When all nodes do

assume that the system is not primarily being used for rangg discrepancies in the average total namespace per node diminish.
gueries. Limited ID assignment provably cannot balance load

in this case [26].

Note that VSs could keep more accurate tra(cfl§ of Whe{gss in proportion to capacity at join time and makes adjust-
work is landing in their namespace to makg andws™’ More  ments hased on workloa@ransferandThresholduse arbitrary
accurate. Instead, we decided to use a simple exponentials re|ocation to adjust to skew and heterogeneity.

weighted moving average to reduce the amount of state SeMfyansferand Threshold in particular, are representative of
during probing. _ S the current state-of-the-art in load balancing algorithms for
Optimal ID Choice. k-Choicesexhibits diminishing retums gy ctured overlaysProportional is particularly interesting
as« approaches the size of the namespacevhens = D, pecause of its complete decentralizatitog(N) VSallows us
each joining VS would sample every possible ID (assumingig show the pros and cons of pure namespace balancing. Be-
perfect hash function). In fact, it is feasible to find the ID (0gayseProportional limits VSset.size  to some well-known
IDs) with the lowest cost by examining only a few variableg,aximum, it also does not fundamentally change the security
for each existing VS. While even this sampling would bgparacteristics of the system. However, its performance is

prohibitively expensive in an implementation, performing igjgnificantly inferior toTransfer Threshold andk-Choices
“offline” within a simulator is not.

For each potential successgrwe know its target, and its A o4(N) Virtual Servers
actual workw™. The goal is to find the percent of the address
spacer betweernpred(s) ands that gives the minimum cost
and to find what the cost is for this The optimal ID choice

will be the pred(s) + r x dist(pred(s), s) with the globally ) )
lowest cost. We know that(™ > 0 and thatm, — |t3—w§")| The log(N) VSload balancing algorithm follows from the

is fixed regardless of the chosen. If we do not normalize forobservation that randomly chosen node IDs do not uniformly

each node’s capacity, there are four mutually exclusive cas&y®’ the identifier space. In fact, the distribution of name-
for r and¢: spaces is roughly Poisson, with the largest beiNgog(N))

times the average.
case t, <0 andt, > wi™: log(N) VSis predicated on the assumptions that workload
r=1:.¢ =t, —t, +w£n) _ 2rwsn) and capacity are uniform. When these assumptions hold, if

each node has a single VS, those few nodes at the tail become
bottlenecks. By the Central Limit Theorem, the more VSs

each node makes, the more normal (and balanced) the average

The simplest load balancing technique we discusegéN)
VS It balances node namespaces and does not permit arbitrary
IDs. It was first introduced by Kargest al. [25].

case t, <0 andt, > wi:
r=0;c =t; —te — w™ + 2rw”

case t,+t, <w": (total) namespace of each node becomes. Because there are
re (%,1 - wt(;) i =w™ —t, —t, drawbacks to having too many VSs, this algorithm suggests
case f, + t:> wgn): ° that each node havinlgg(N) VS reacheg a good compromise.
T e (n) All nodes then have average load within a constant factor. An
re(d- W’ Tzﬂ) ¢ =tatts —ws illustration of this is shown in Figure 4. This technique is non-
c=c —m; reactive: it makes no attempt to rebalance load after a node
joins.

In cases 1 and 2, we do not eliminatbecause IDs cannot be

: : . : . This algorithm works well for the case when its assump-
identical. The actual choice will need to be a small d|stan(fe " R
away 16ns on capacities and workload distribution hold. However,

increasing the number of VSs causes a few problems. First,
it increases churn because when one node departs, it must
take its log(IN) VSs with it, causinglog(N) times more
In this section, we discuss the four existing load balanciragljustments to be made. Second, each node musthg(d’)

algorithms against which we will compakeChoices log(N) times as much routing state. Finally, because there are more
VS Proportion, Transfer and Threshold The first,log(N) VS VSs in the system, the number of hops per lookup (and
solely attempts to evenly partition the namespace betweatencies) increases. Proposals have been made to mitigate the
nodes, ignoring heterogeneity and ske®voportion creates last two problems, but they have not been evaluated [12].

IV. PRIOR LOAD BALANCING TECHNIQUES
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Fig. 5. Proportiont Underloaded nodes create new virtual serversg. 7.  Transfer Overloaded nodes attempt to transfer virtual
(up to some maximum). Overloaded nodes destroy their own virtusgrvers to underloaded nodes. If they only have one VS and are still

servers (keeping one). overloaded, they split the VS in two equal halves (and transfer one).
TRANSFER)
PROPORTIONADJUST() 1 if loverloaded

1 ( Initially create VSs in proportion to capacily 2 then return

2 if overloaded and VSset.size 1 3 if VSset.size> 1

3 then Delete VS that will best unload us 4 then Contact node: at random

4 if underloaded an@ + 50 —— < U 5 Choosev € VSset such that:

5 and VSset.size< VSset.maxsize 6 (a) Transferring to n will not overloadn

6  then Create VS.id«— h(z + VSsetsize) 7 (b) v is the least loaded virtual server
8 that will halt overload;

Fig. 6. Proportioris Adjust algorithm. 9 Failing that, letv be most loaded VS
10 else v € VSset[0] 4
11 Create VS.id« v.id + 212red)v) mod p
Because several improvements to this basic namespatcg TRANSFER

balancing concept have been proposed (see Section VII), the
log(N) VSalgorithm provides a baseline to suggest how this
type of algorithm can be expected to perform under conditions
of heterogeneity and skew in particular.

Fig. 8. Transfefs Split and Transfer algorithm.

of deletes. Finally, when the system is underloadRdportion
can cause all nodes to create their maximum number of VSs,

Proportion targets heterogenEity primarily, not Workloaq‘lreaﬂy increasing state, routing hopS, and churn.
skew. An administrator initially configures a node with a

num_ber of VSs in proportion to its capacity. _In additione  Transfer
previously observed workload may be taken into account.
After this initial step, each node adds or sheds load without Transfer focuses on actively unloading overloaded nodes.
any communication with other nodes. It was first proposed bystead of having underloaded nodes take on more work
Dabeket al. [12]. in isolation like Proportion, overloaded nodes following the
After setup, each node periodically followsoportion- Transfer algorithm actively seek out underloaded nodes to
Adjust , shown in Figures 5 and 6. A node runniRgopor- inquire about load transfer. Thus, nodes select arbitrary IDs at
tion independently creates and destroys virtual servers. If\0 points: when they split and when they receive transfers.
node is overloaded and is running more than one virtual servERis idea was first proposed by Rabal. [35].
it selects the least loaded VS that will make it underloaded andThe algorithm works as shown in Figures 7 and 8. If a node
deletes it (lines 2-3). If a node is underloaded and believes tligxpverloaded and it has only one VS, then it splits the VS into
adding a VS will not put it over its target load, it creates &o equal parts (line 11). If a node is overloaded and if it has
virtual server (lines 4-6). Without any extra communicatiorinore than one VS (one of which may have just been created
underloaded nodes actively take on more work. The goal W& a split), it attempts to contact an underloaded node and
the algorithm is that, over time, this will ease the burdeffansfer an appropriate VS (lines 3-9). The transfer fails if all
on overloaded nodes because they will assume a smaN&s would overload the potential receiver.
percentage of the workload as the number of VSs increases.Transfer moves work around effectively. Nodes are never
Load balancing in complete isolation has its drawbackk&ansferred work they cannot handle. However, when the
First, a node with only a few VSs may not be able to form system is near capacity, overloaded nodes may need to contact
good estimate of what the cost of creating a new one will beany others to perform a successful transfer.
Second, a meager machine still might be overloaded even ifTransferhas a few permutations. The scheme presented here
it is only running one VS. If a new physical server enters arehd used in the experiments is known as “one-to-one” because
has significantly less capacity than the current low-end servesse node contacts a single other node per unit time. The
the system may take a long time to adjust to this new lowesame work also proposed “one-to-many” and “many-to-many”
common denominator. Third, if an overloaded node deletes oveaiations and found they utilized nodes similarly. Godfety
of its VSs, this may overload its neighbor, resulting in cascadak propose a more complex variation where nodes randomly

B. Proportion



THRESHOLD(v, t) ?; 10 — T . :

1 w.level; — Llogp(%‘m)J g :Eg;n%“gﬁgﬁi.e - ]

2 if v.level, < wv.level,_; 2 o7 B i A — / ]

3 then return g oo ]

4 o' «— adjacent neighbor with lowest level g oat 8

5 if v'.level; < v.level; “?o: odi ]

6 then A~ (1- %) x dist(pred(v),v) g ur g . . . . ]

7 if v/ = pred(v) § 1 10 100 1000 10,000 100,000 1,000,000

8 then pred(v).id — pred(v).id + A Bandwidth (Kbps, log scale)

9 else vid « vid —A Fig. 10. CDFs of Downstream Bandwidth per Average Lifetime Quartile.
10 else /* find new predecessor */

11 S «— set oflog(N) random VSs

12 Chooses € .5 such that: eter §, but introduces a significant parameter jn If p is
13 (@) s is the least utilized too large, load balancing will occur too slowly. If it is too
14 (b) ws + Wsuce(s) < Usucc(s) small, nodes will make many unnecessary adjustments. A
15 sid — pred(v).id + U0 mod D compromise is to set for slow adjustments but to induce load

balancing if the node becomes overloaded even if levels have
not changed. We included this compromise in our implementa-
tion. BecauseT hresholdalways chooses the least utilized VS
to relocate, VSs with very high capacity (and therefore low
choose one of a handful of well-known exchange points thatilization) may tend to be relocated frequently.

periodically reallocate work [22].

Fig. 9. Thresholds load balancing algorithm.

V. SIMULATOR

D. Threshold We built a simulator to compare the load balancing algo-
Thresholdfocuses on keeping all nodes’ utilizations withirrithms discussed in Sections Il and V. While simulators exist
a ratiop, as opposed to between target overload and underldad several p2p algorithms, none supports virtual servers or
values like the other algorithms. It also keeps the numbedrops packets under overload [6], [21]. This section describes
of VSs to a minimum (one per nodeyhresholdallows the the simulator and how queries succeed and fail.
selection of arbitrary IDs in both its neighbor adjustment The simulator operates in discrete time steps. Each time step
and VS relocation phases. We present a modified versionooinsists of the following phases: node arrival and departure,
Ganesaret al’s algorithm [20]. We made two modifications:routing table updates, queries, and load balancing.
(a) we use utilization instead of workload because the originalNode arrival and departure. At each step, nodes arrive and
algorithm assumes homogeneous capacities and (b) nodes delyart. A typical method for generating birth/death processes
initiate rebalancing when they increase in level. is to assume Poisson distributed lifetimes (and deathtimes)
Each node has exactly one VS whose ID is initially chosemith some mean\ [28], [29], [33]. However, Bustamente
at random. The rebalancing algorithm shown in Figure 9 & al. have found, through trace analysis of Gnutella, that
called by a node with V% at timet¢. Nodes set their current p2p systems do not follow this memory-less distribution and,
utilization level such that a level increases by one if worln fact, approximate longer-tailed Pareto distributions more
has increased by a factgr wherec is some small constant closely [3].
(line 1). If a node’s level has increased, it starts load balancingFor our trace-based experiment, we use a Gnutella trace
(line 2). It first attempts to make adjustments with its neighbodirectly [40]. Because we wanted to include the correlation
(lines 4-9). VSu first sees if local adjustments in the IDs of itdbetween node lifetimes and their capacities, we extracted
successor or predecessor are feasible, potentially shifting sdnoen the trace the nodes for which upstream or downstream
work to them. If the predecessor is lightly loaded compared bandwidths were available. The extracted traces consist of
v, its ID is shifted towardv (line 8). This action should result 5508 nodes joining and leaving the Gnutella network for 60
in its taking some ofv’s load. v can also move its own ID hours. We based churn on the times when the IP addresses of
closer to its predecessor, which potentially shifts work from the node could be reached in the trace. The median lifetime
to its successor (line 9). If making neighbor adjustments failsf a node was about one hour. We converted from the trace’s
it relocates a lightly loaded node to be its new predecesdmndwidth information to messages per second by assuming
(lines 10-15). Ties between successor and predecessor areaverage message size of 10KB. The median node could
broken arbitrarily. If neither of these options is available, forward 191 messages per second. We show the bandwidth
attempts to find a new predecessor to take (ideally) haifof distribution and modest correlation between bandwidth and
load. v picks a set of VS’s at random and relocates the mdsfetime in Figure 10. The trace does not include any topology
underutilized whose departure will not overload its successaformation, and we do not include any in our simulation.
(line 11-15). For the experiment where we vary node lifetime, we instead
Thresholddiminishes the importance of the tuning paramgenerated several Pareto birth/death distributions with varying



mean. Because Pareto distributions can take a long time to ;‘-5
stabilize, we only took a snapshot of the distribution after 55

this stabilization had occurred. We used= 2 and variedg, g 30 N
avoiding instabilities with smaller values of [11]. g2 i T
One unnatural aspect of both the synthetic and trace-driven> 15 T
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churn is a large number of births at the beginning of each o
experiment. Because each algorithm needs some workload oo e ,Lomesarpsitine
information to operate, they did not activate until a short period . o0 Oﬁ;;pm perorﬁ(;f i oo
into each experiment. We choose an activation time of 400
seconds, as this was when all of the nodes in the Gnutéﬂa ll _There exists a strong qorrelgtion between a'node’s namespace and
trace had first joined. In addition, we recorded statistics on'f}? utilization when the workload is uniform and capacities are constant.
for the second half of each experiment.

Routing Table Updates.New VSs start off with an empty
routing table. They follow the Chord mechanism to find a node

TABLE |
WORKLOAD SKEW UNDER NAMESPACE BALANCING

to fill each of theirlog(N) slots [43]. Each node with 1D | Skew | Random | Balanced |
fills its 4" entry with the node whose ID is the successor to 2 | Succ.% 2 Succ. %
a + 2 mod D. . Uniform 0.95 0.59 > 0.99 1.00
Each routing table entry, dinger, has a timeout set to 30 é:g; EZ — ?:23 8:2? gég 8:?? 8:23
seconds on average. Each time this finger is used successfully, [Zipf (a =2.4) | 0.36 | 0.03 0.31 0.04

the timeout is reset. This simple technique typically has been
found to be effective in supressing maintenance messages [7].
Nodes do not invalidate their fingers on a failed attempt
at forwarding because they do not know if the receiver is
dead or overloaded. When nodes gracefully change their VSs’
identifiers, other virtual servers pointing to them are notified.
When nodes die, VSs pointing to them are not notifie.,(
death is ungraceful), as would be the case were a user to switch
off his or her machine. Nodes make certain their successor _qTransfercan support large amounts of skewed load.

fingers are always valid. _ « We show thak-Choicescan support high churn rates in
Queries. Queries initiate from nodes uniformly at random Section VI-D.

with destinations chosen from either uniform or Zipf distri- | gection VI-E portrays thak-Choicessustains high suc-
butions, depending on the experiment. Each hop in the query cess rates throughout shifting workloads. We also find
uses the appropriate finger to route toward the destination. at Transfer Threshold Proportion exhibit inconsistent
Each use of a VS for routing or maintenance adds one unit of oqits over time.
load per that VS's node. If a hop is to a node whose load for, |, section VI-F, we show that none of the algorithms can
that unit of time matches or exceeds its capacity, the query support very skewed workloads.g.,a = 4.8) and that
fails. Queries succeed when they reach their destination. they increase in variance as skew increases.

Load Balancing. Nodes check on their load balance once , |5 section VI-G, we find our implementation df-

every 30 seconds on average. They determine their utilization cpgiceswithin Pastry [38] improves throughput 0%
by examining an exponentially-weighted moving average of  on an implementation in a heterogeneous-bandwidth net-
the work their VSs perform. They check if they are above \yorked environment.

or belpw their tgrgets, which were set 105x and .05x More information on the experiments, simulator, tuning,
capacity, respectively. If they are out-of-balance, they perform = ..o 770 Sioile in the accompanying technical
whichever reactive algorithm is currently under test. report [27]

VSset.maxsize  was set to128 as suggested by the '
Chord research group. Each node runrilingnsferbegan with 5 Namespace Balancing
five VSs as suggested by Rabal. [35].

In Section VI-B, we explore parameter choices fofor
k-Choicesand find thatx = 8 performs well for the
workloads we examine.

« In Section VI-C, we compare how the algorithms respond
to varying applied workload when nodes follow trace-
based churn and capacity. We find that okWChoices

These first experiments confirm that, under conditions of

VI. RESULTS constant or near-constant capacity and uniform query distribu-
) ) ) tion, simple namespace balancing is highly effective. However,
The following summarizes our experimental results:  \yhen either of these conditions fails to hold, it is not.

« In Section VI-A, we show that simple namespace balanc-In order to see the correlation between a node’s namespace
ing is effective when workloads are uniform and nodand its utilization, we ran a simple set of experiments in which
capacities are a constant (its assumed conditions). We varied workload skew in a system that was performing
portray the diminished value in this form of balancing aso load balancing. We monitored the incoming routing and
workload becomes skewed. maintenance messages for each node and compared this to
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Fig. 12. k-Choices95" percentile utilization decreases asncreases.  Fig. 13. Percent of successfully routed queries for trace-driven simulations
with varying loads.

the fraction of the ID space for which that node was used as a

hop or destination. We ran two sets of experiments: one whéf@sonable set of parameters for the subsequent experiments.

VS identifiers were chosen at random and a second where theyVe generated a synthetic churn trace of 4k nodes with

were set offline to be exactly equal. This second case shows fi@geto distributed average lifetimes of 60 minutes and a

best that namespace balancing could achieve. We 4@eti Gnutella-like capacity distribution with average capacity of

nodes and set all node capacities so that they could igite 100 messages/second. Each node initiated 10 queries/second.

messages per second. No churn was used because the ex¥¢@lyan each experiment for three hours and monitored node

equal ID computation is only performed offline. We variedtilization. We variedx and rank-Choicesin active and

workload skew from uniform to Zipf withh = 2.4. Because Passivemodes.

no active algorithm was used and there was no churn, eacfThe 95" percentile utilizations are plotted in Figure 12.

experiment stabilized immediately. Every node had one virtudlhen = = 1, k-Choicesis not in use, showing the situation

server and there weré0960 queries per second (10 queriedvithout any load balancing. The results show thative k-

per alive node). Choiceslowers utilization at a significantly faster rate than
We plot the correlation between namespace and node @@ssivedoes as: increases. In both lookup scenarios, #5¢"

lization for a uniform workload in Figure 11. As is expectedpercentile utilizations do not decrease much beyond when

the average namespace per nodegfs; ~ .0002. Because 8 in active mode. The results also show that a skewed query

no load balancing is used, the distribution of namespacesdistribution @ = 1.2) has minimal impact on utilization for

long-tailed. Analytically, the largest distance between two V3sChoices In fact, it even lowers peak utilization as nodes

should beﬁ x 1log(4096) ~ .0029, close to the measuredwith more bandwidth are able to position their VSs where the
value of .0025. Utilizations with random IDs ranged fromWworkload is concentrated. As noted above, there are substantial

almost 0 to about 4. In contrast, the case where the namespati@ybacks to large numbers of VSs per node and to setting
were completely balanced yielded an extremely small rangeoto a large valued.g.,large numbers of probes). Therefore,
utilizations from0.55 to 0.57. we usedx = 8 in subsequent experiments, unless otherwise
As we relax the assumption that workloads are uniform, th@ted. As these results portend, preliminary experiments with
benefit in perfectly uniform address spaces declines. Tabl@ptimal ID choice suggest th&tChoicesworks well without
shows how the correlation and success rates for queries decinBuge sampling of IDs. We also experimented with values
as workload skew increases. Separate experiments confirfi®fac, which we set td).25 in our experiments. These results
similar decline as heterogeneity in nodes’ capacities changé®w thatk-Choicesneeds only a small number of choices to
from a constantWe can conclude from this that, in order toproduce a substantial decrease in node utilization.
achieve reasonable performance, a load balancing algorithmWe ran similar experiments to find good parameters for
must include some workload parameter and cannot aim féhreshold Its two parameters andc were set to8 and0.01

address space balancing alone. respectively.
B. Varying C. Trace Results
The second set of experiments exploreshoices pa- Our third experiment examines how the load balancing

rameters for Gnutella-like systems. Our goal was to find agorithms responded to different degrees of applied workload



10 We plot the results from uniform and skewed & 1.2)

- query distributions in Figure 14. The data confirm our hypothe-
s | R N i sis thatk-Choicesadapts well to rates of high churn. We found
B B that both Transfer and Proportion were able to sustain high
k-Choices —— . . .
Trander | - natural churn rates for uniform queries, but that they induced
| Proportional s e s .
02 Threshold - 1.1 — 1.5x and 5 — 10x more artificial churn, respectively,
NolLB — - . . . . .
00 L L L L L than k-Choices Again, the variation in success rates is more
15min 30 min 1lhr 2hr 4hr . . . . . .
Uniform: Avg, Node Lifetime (Iog scalé) prominent with skewed queries. This is becalks€hoices
10 , , , , , monitors workload before insertioNo Load Balancingm-
proves slightly as lifetimes increase because fingers remain
valid for longer. Againog(N) VShad worse performance than
No Load Balancing
4T R — . In both uniform and Zipf;Threshold'ssuccess rate declines
P i i as nodes’ lifetimes increase. This occurs becaliseshold
00 ) ) ) ) ) makes the gaps between VSs so non-uniform that it signifi-
~ 15min 30min hr 2hr 4hr cantly increases the average number of hapg,, from 5.6
Zipf: Avg. Node Lifetime (log scale) for 15 minute lifetimes td7.3 for 4 hour lifetimes for uniform
Fig. 14. Percentage of successfully routed queries for varying rates of chLﬁ’t_l\J.e_ries- Because queries are taking_more h.OpS and nodes are
similarly load balanced, each query is less likely to succeed.
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E. Workload Shift

using trace-driven churn and capacity. In almost all cases, WeFor the fifth simulation experiment. we wanted to see ho
foundk-Choicegerformed the same as or better than the otht%r ' imufatl xper » WE Wi W

algorithms. e algorithms responded to workload shifts. We ran each

. . alﬁorithm using trace-driven churn and capacity for ten hours.
Each experiment used the Gnutella trace as described ifwav throuah each run. we chanaed the query destinations
Section V. Each ran for twelve hours with statistics recordefr y 9 ’ 9 query

. . m one moderately skewed set to another (both with-
for the second half of the exp_enment. We varied the applleL ). We recorded statistics throughout the trace. As noted
query load py orders—of—magnltu_de anq rgcordeq the per.cegaich algorithm activates after 400 seconds. Each node initiated
age of queries that reached their destination. This experimegiy queries per second on average

captures factors such as artificial churn and large numbers™o . - -
VSs per node that some of the algorithms induce. (Ne monitored success rates and VS activity. VS activity

_ aptures the amount of state transfer that occurs due to natural
We plot the results in Figure 13. They show that all of the af— P

. g and artificial churn. When a node enters or leaves the system,
gorithms, except foir hreshold can sustain high success rate{she number of VS actions equals the number of VSs in use
when queries are uniform, althoudhChoicesand Transfer Creating or destroying a VS is also a VS action. Eaeh '
do slightly betterProportion At 100 queries/node, thg‘?th Choicesand Thresholdrelocate  is two VS actioné' each
percentllg of the number of VSs/node W% for Proportion transfer  is one. Conservatively, we did not includé@resh-

(the maximum), compared t©.9 for k-Choicesand 16.1 for old's neighbor-adjustments or Transfefs splits ~ as
Transfer Performance fok-Choicesin passivemode declines

} VS actions.
after 10 queries/node. We plet= 16; < = 8 performed about -
10% worse ands — 64 performed aboutt0% better at this The results are plotted in Figure 15. We show the success

workload level rate on the left y-axis anq VS acti\_/ity on thg right y-axis.
. _ The results show thatctive k-Choicessustains> 75%
When queries are sk_ewed & 1.2), only k-Chmcesand success rates, recovering immediately after the workload shift.
Transfer can sustain high query ”?‘es: At th|s__|evgl, th‘IJDassive k-Choicegnot shown) gradually plateaus at about
other algorlthms are unable to maintain low utilization OEO%. We found that in systems with higher rates of churn,
low capacny. npdesLog(N) V.S performeq worse thamo assivereached equilibrium more quickly. As soon astive
L.oad Balancingin these experiments and is not shown in th -Choiceds activated, the success rates dramatically increase.
figures. With current tuning, howeveractive produces an order-of-
magnitude more VS activity thapassive After the shift, k-
Choices activesettles to a slightly lower success rate because
Becausek-Choiceshelps nodes make good load balancingueries heading to the new highest ranked spot take slightly
choices proactively, we hypothesized that at high churn ratesore hops per average query: a change ftogto 7.3.
it would offer better performance than the other algorithms. To Proportion Transfer and Threshold all portray greater
test this, we created a set of synthetic churn traces with varyimgriance in success rates theiChoices Proportion exhibits
average lifetimes and used the same capacity distribution fréhe greatest average VS activity and has the largest average
the trace. We ran each algorithm with each node initiating 1®p count atl0.5 hops per successful query. The performance
gueries per second on average. of Threshold steadily declines as its gaps become tightly

D. Varying Churn
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40 23331 | 26224(+12%)
All 68370 | 81858(+20%)

G. Emulab Experiment
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Routed Messages

VS Activity (log)

To examinek-Choices effect on a working system, we
Threshold: Time (hours) implemented it within Pastry and ran a query-and-download
scenario. Our primary goal was to measure changes in through-
Fig. 15. Plot of success rate and VS activity during a workload shift. put with k-Choicesusing a fairly large real topology. Our
use of nearest-neighbor-based Pastry demonstrateskthat
Choicesgeneralizes beyond Chord semantics. We based#t-our
clustered. Thaffransferstabilizes at different levels had tWOChoicesimplementation on FreePastry [15]. We feChoices
causes. First, a burst of births soon after the shift CaUSi‘PFbassivemode withx = 16. We used 1 V'S per node because
more accurate fingers than average and a burst of deaths g{eepastry does not currently support multiple VSs. We were
hours caused the decline because many fingers became i”V?@'Quired to anticipate load based on namespace distances
Second, after the shift, the average path to highest rankggbause low bandwidth nodes were unable to successfully
destination was fewer hops than before. Although to a les§gi the network when queries were already taking place. For
extent thanThreshold Transfefs hop count steadily rises asthis same reason, queries were only for uniformly distributed

nodes move to arbitrarily compressed locations. destinations. If the destination responded, each node attempted
) K to download an 8KB block. A query completed if both the
F. Varying Skew query and download were successful.

Some workloads are heavily skewed and several of theWe ran our experiment on Emulab, a testbed for networking
algorithms were able to support up to= 1.2. We wanted research that supports precise bandwidth tuning [44]. The
to examine how much skew they might support. To test thigpology consisted of 256 nodes. There were 64 nodes of
we used the synthetic 60 minute average lifetime trace and #ech bandwidth level; the levels were 40Mb/s, 4Mb/s, 1Mb/s,
capacity distribution from the trace as we variedAs before, and0.4Mb/s. Although Emulab has been working on making
we ran each algorithm with each node initiating 10 queries pgreir system more scalable to support larger experiments, at
second on average. the time, this was the largest topology we could run. Table

We plot the results in Figure 16. They show that none df shows the total number of queries completed by bandwidth
the algorithms can support an extremely skewed workloagpe. Each value is averaged over two trials that consisted
e.g., one where the top destination is almdsk that of of one hour of queries. All nodes used one of the 40MB/s
the next rank. Not only do the algorithms decline in theinodes as their bootstrap. As a result, they were frequently in
average success rates, but they also all become less stafitgeer node’s routing tables and had a higher message routing
For example, the standard deviation of success rates sampledkload. This is why their completed queries are fewer than
over time fork-Choicesat uniformis 0.001% and ata = 4.8 the 4MB/s nodes. As expected, the average number of hops
it is 8%. To see if increasing: had an impact at high skew,was a just less than 2, with minimal variance. The main
we rank-Choiceswith x = 16. We found that it performed experimental result, however, is that28% improvement in
better (at14%) thanx = 8, but also exhibited high variance. throughput confirms thak-Choicescan have a substantial



positive impact on performance in a heterogeneous topologkird and fourth, Adler [1] and Naor [32] also have low
while retaining the important security properties of verifiableost algorithms to achieve namespace balancing based on
IDs. unlimited virtual server movement. Both algorithms depend
on the history of node IDs that each node has used and their
analyses are given only for the insertions, not deletions, cases.
Object load balancing. We have oriented our examination Range queries. While we have examined uniform and
of load balancing around routing, where a node requegipf query distributions in our simulations, we have not
must reach the destination ID for it to be successful. #xamined load balancing algorithms targeted at p2p systems
the network is instead being used for storage, other loaghen performing range queries are common. However, if one
balancing techniques can be applied. Byetsal. describe considers using a p2p system more like a typical database
a technique that hashes data to be stored using two distinttere each node is analagous to a disk, it is clear that
hash functions, providing two potential locations [4]. The lessrdering data by key might be warranted. We are aware of
loaded of the two possibilities is chosen. During data lookupwo load balancing algorithms that are targeted for this new
the query must contact both possible storage locations, domain [20], [26]. We evaluated Ganesaifilsresholdin this
appropriate forwarding pointers must be used. Under unifoppaper. Both require unlimited ID selection and, therefore,
workload and capacity assumptions and with no churn, theyffer from Sybil attack liabilities, making them unsuitable for
have recently generalized this result to show that the maximuran-cooperative environments. However, it is unlikely that a
load at any server itbglog(N)/log(d) + O(1) whered is the load balancing technique for range queries exists that supports
number of choices [5]. Their method is an example of “thscalable secure IDs.
power of two choices” [31]. Our ID selection process is similar
in spirit, in that we also use multiple hash functions, although
here we do so to provide VSs with a menu of identifiers. We introduced a novel anticipatory load matching algorithm
Objects may be cached in the network to reduce hot spéts balancing load in peer-to-peer networks. This algorithm
or overload. Roussopoulos and Baker develop a cooperatiwakes explicit the workload assignment problem that previous
request scheme where nodes direct requests toward the highesk attempted to solve implicitly. The algorithm works
capacity replica [37]. They assume that the source of eagteemptively as the node is joining to shift the “right” amount
lookup is aware of the capacity of each possible replica holdef. work to the joining node. Optionally, it can continue to
Sources of requests learn the replicas by first contacting teadjust workload mismatch over time.
root of the query, a key’s primary storage node, so it must still After examining thek-Choicesalgorithm independently, we
perform some work for their method to function. benchmarked its performance and that of other load balancing
These storage-oriented load balancing techniques are algorithms for structured overlays under conditions of node
thogonal and complementary to the methods examined in thisterogeneity, skew, churn, and workload shift using trace-
paper, includingk-Choices For example k-Choicesreduces based simulations.
an overburdened node’s namespace, preventing it from beingPrior work on load balancing for p2p systems has either
contacted in the first place, and Roussopoulos’ technigfezused on namespace balancing or on systems with more
prevents it from being contacted frequently after the replideeterogeneous characteristics. We showed that even perfect
set is known. namespace balancing results in poor performance under real-
Namespace balancingWhile the simplelog(N) VSs per istic conditions. Prior algorithms that do work well under these
node achievesD(1/N) namespace balance per node, momonditions,TransferandThreshold both allow the selection of
recent algorithms have achieved tighter bounds with fewarbitrary IDs, severely circumscribing their utility on insecure
virtual servers. These algorithms are based on the assumptinesvorks. We have shown th&tChoicescan provide good
that the capacity of nodes and workloads are uniform; they tlead balancing under realistic conditions while retaining strong
not include any workload scaling parameter. Because of thesseurity properties necessary for wide-area applications.
factors, they would approximate the behavior and results of the
log(N) VS algorithm. If they did achieve perfect namespace
balancing at zero cost, they could be expected to perform asThe authors would like to thank Miguel Castro, Antony
Balanced does in Table I. Rowstron, and Michael Mitzenmacher for helpful discussions.
Four algorithms fall into this category. First, Karger and
Ruhl propose that each node hag(N) potential IDs, only
one of which is activated at once [26]. Nodes activate and dgt] M. Adler, E. Halperin, R. Karp, and V. Vazirani. A Stochastic Process
activate their VSs to balance the distance between themselves on the Hypercube with Applications to Peer-to-Peer NetworkSTOC
. . . 2003 San Diego, CA, June 2003.
and their successor. Because this algorithm allocates nodgf ¢ gjake and R. Rodrigues. High Availability, Scalable Storage,
a limited number of IDs, it has stronger security properties Dynamic Peer Networks: Pick Two. Proceedings of HotOS PLihue,
than the remam.der of this group. Second, Manku's g!gorlthrg%] F'.IYB,\SsatB;li(;?ﬁé and Y. Qiao. Friendships that last: Peer lifespan and its
reduces the ratio of the largest to the smallest partition to role in P2P protocols. |&ighth International Workshop on Web Content
most 4 w.h.p. and has low arrival and departure cost [30]. Caching and DistributionHawthorne, NY, October 2003.
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