
Distributed, Secure Load Balancing
with Skew, Heterogeneity, and Churn

Jonathan Ledlie and Margo Seltzer
Division of Engineering and Applied Science

Harvard University

Abstract— Numerous proposals exist for load balancing in
peer-to-peer (p2p) networks. Some focus on namespace balancing,
making the distance between nodes as uniform as possible. This
technique works well under ideal conditions, but not under
those found empirically. Instead, researchers have found heavy-
tailed query distributions (skew), high rates of node join and
leave (churn), and wide variation in node network and storage
capacity (heterogeneity). Other approaches tackle these less-than-
ideal conditions, but give up on important security properties.
We propose an algorithm that both facilitates good performance
and does not dilute security. Our algorithm, k-Choices, achieves
load balance by greedily matching nodes’ target workloads with
actual applied workloads through limited sampling, and limits
any fundamental decrease in security by basing each nodes’ set
of potential identifiers on a single certificate. Our algorithm
compares favorably to four others in trace-driven simulations.
We have implemented our algorithm and found that it improved
aggregate throughput by20% in a widely heterogeneous system
in our experiments.

I. I NTRODUCTION

Decentralized structured overlays and distributed hash tables
proffer a unique vision of computing: each machine seam-
lessly contributes to and benefits from a large service-oriented
network. This vision has yet to be realized, in part, because
machines are not identical, because the workload applied to
the system may be heavy-tailed, and because node availability
and churn rates may change over time. Learning to adapt to
these characteristics through load balancing in a decentralized,
scalable, and secure manner is a step toward realizing this ideal
of computing.

Several existing proposals for load balancing algorithms
in this context have focused on ideal conditions [1], [26],
[30], [32]. They have made unrealistic assumptions about node
heterogeneity, workload skew, and node churn. In general,
they have assumed that nodes are uniform, that there is no
skew in the workload, and that nodes are neither arriving nor
departing. Deployed systems do not adhere to these idealistic
conditions [39], [45].

Other proposals have attempted to handle skew, churn,
and heterogeneity [12], [20], [35]. Those that achieve good
performance let nodes join as normal and then reactively po-
sition nodes to arbitrary locations in the namespace. Arbitrarily
choosing identifiers (IDs) forfeits an important security goal
for p2p systems: a verifiable identifier. Without verifiable IDs
tying virtual overlay addresses to specific agents, application
building blocks such as reputation [13], micropayments [46],
and auctions [23] are not possible outside of a trusted network.

In this paper, we proposek-Choices, a load balancing
algorithm for structured overlays that supports wide variation
in skew, heterogeneity, and churn while retaining the security
and application advantages afforded by verifiable IDs. At a
high level, the algorithm works as follows: (a) each node
generates a set of verifiable IDs based on a single unit of
certified information; (b) at join time, a node greedily reduces
discrepancies between capacity and load both for itself and for
nodes that will be affected by its join; and (c) optionally, each
node experiencing overload or underload may periodically
probe the network and reposition itself to another element from
its set of verifiable IDs. Minimizing discrepancies between
load and capacity achieves load balance, and limiting IDs to
a well-defined set keeps the algorithm secure.

This paper proceeds as follows. In Section II, we introduce
our model and assumptions. In Section III, we present thek-
Choicesalgorithm in detail. In Section IV, we review four
state-of-the-art algorithms for load balancing in p2p systems.
In Sections V and VI, we present results from trace-driven
simulations where we vary system characteristics, including
node heterogeneity, skew, and churn. We also present results
from an implementation ofk-Choices. Sections VII and VIII
present related work and conclusions, respectively.

II. M ODEL

In this section, we introduce our model and assumptions for
load balancing in p2p systems.

Overload. Physical nodes,i.e.,computers, participate in p2p
systems. Each nodeni has a capacityCi, which corresponds
to the maximum amount of load that node can process per unit
time. Nodes create virtual servers (VSs), which join the p2p
network. A noden might havej VSsv1, v2, . . . , vj , each with
loadsw1, w2, . . . , wj , respectively. Load is applied to nodes
via their virtual servers. In a unit of time, nodeni might have
load (work)Wi = w1 + w2 + . . . + wj .

Overload occurs when, for a nodeni, Wi > Ci. An
overloaded node is not able to store objects given to it,
route packets, or perform computation, depending on the
application. A node fails to process requests that impose work
beyond its capacity. Per unit time, the successful work per
node is:

Si =
{

Wi, if (Wi ≤ Ci)
Ci, otherwise

The utilization of a node’sni is Wi/Ci. Nodes may want to
operate below their capacityC to prevent fluctuations in work-

U

w2

w1

workload w4

w3 node
capacity

node
target
workload

virtual
servers

δ

L δ

Fig. 1. Target and Capacity Workload.

load from temporarily overloading them. Using terminology
from Raoet al. [35], we say a nodeni has an upper targetUi

and slackUδ such thatUi = Ci − Uδ. If a node finds itself
receiving more work thanUi, it considers itself overloaded.
Nodes also have a lower targetLi below which they consider
themselves underloaded. How a node responds to either of
these conditions depends on the algorithm. An illustration of
how we represent nodes is shown in Figure 1. We assume each
node knows its capacityC and its upper and lower targets.

Each node stores its virtual servers in a set, calledVSset
of sizeVSset.size . Depending on the algorithm, this size
may have an upper bound ofVSset.maxsize .

Routing. Structured overlays allow routing of messages to
destinations on top of an underlying network constantly under-
going topology change [36], [38], [43], [47]. Each message’s
destination ID is a number on the overlay’s namespaceD, e.g.,
D = 2160. Messages traverse overlay hops from a source VS to
a destination VS. The number of hops is typicallyO(log(N)),
whereN is the current number of VSs.

Each VS has a unique ID chosen from the namespace
D. In our model, the destination of a message is the VS
with the next largest logical identifier on the namespace mod
D. The VS with the next largest (smallest) ID is called
the successor(predecessor). We denote the distance in the
namespace between two virtual serversi andj with dist(i, j).

Each structured overlay allows new VSs to join the system.
In general, each VS join and departure requiresO(log(N))
maintenance messages. Reactive load balancing algorithms use
artificial join and departure to change IDs.

Network as Bottleneck.We focus on how load balancing
algorithms function at the routing level. Blake and Rodrigues
provide evidence that even in remote storage applications, net-
work bandwidth is likely to be the primary bottleneck [2]. As
storage becomes cheaper and cheaper relative to bandwidth,
particularly “last-mile” bandwidth, this case will likely become
more common. In compute-dominated scenarios, whether the
processing or the network will be the bottleneck depends on
the application. We let a nodeni’s capacityCi be the number
of routing hops it can provide per unit time. We compare
algorithms on the percentage of messages that successfully
reach their destinations.

Security. A key issue in the operation of a p2p network is
whether or not one assumes it may contain malicious nodes.
A malicious node can subvert content or attempt to control
particular portions of the identifier space. Attacks that center

around the falsification of a node’s identifier are called Sybil
attacks [14]. Douceur outlines the main difficulties in allowing
nodes to choose their own IDs. He shows that validating nodes
must verify all other nodes’ credentials simultaneously, an act
that may exceed the verifier’s resources.

A system may acquire a low level of security by requiring
that IDs be based on the hash of the node’s IP address [12].
However, falsifying IP addresses is straightforward; basing
any level of authentication on IP addresses would not repel a
determined attacker. For this reason, Castroet al. propose that
each IDk is certified by a central authority, which generates
kcert [9]. This option is scalable because each node contacts
this authority once, the first time it joins the system.

Instead of having this authority certify IDs, we propose that
it certify a unique numberx for each node, creatingxcert.
Each node can then use this number to generate its own IDs
using an ID-generating hash functionh. For a node with ID
k, a verifier verifies thatk = h(xcert) instead ofk = kcert.
k-Choicescreates a set of verifiable IDs by generating each
k = h(xcert + c) wherec has a well-known bound. We refer
to xcert asx below for purposes of presentation.

The k-Choicessolution we propose retains this Sybil attack
resilience. Algorithms that permit a node to relocate its virtual
server to an arbitrary node ID location do not have this quality.
Algorithms that do not allow for certified IDs can only be
expected to function in a trusted environment.

System Characteristics.Although structured overlays are
targeted to provide the framework for applications such as
application-level multicast [8], distributed storage [10], [16],
and publish-subscribe content distribution [34], [42], there are
no benchmark workloads. Gummadiet al. and others have
found Zipf query distributions in their trace analysis of Kazaa
[3], [24], [39] and this distribution is common to many other
usages (e.g., web page file access [18], file popularity [17]).
We examine load balancing under uniformly random and
Zipf queries. A Zipf workload with parameterα means that
destinations are ranked by popularity. Destination with ranki
is α times more likely to be accessed than that with ranki+1.

A characteristic related toskewis workload shift. Shift refers
to a change in workload skew. For example, on one day, one
stored object might be the most popular, on the next, a different
one might be, but the general distribution would be the same.
Studies of object popularities in deployed p2p systems have
found the existence of shifting Zipf skewed workloads [24].

A third characteristic is the distribution of nodecapacities.
As is generally the case in p2p scenarios, bandwidth is
the main capacity limiter [2]. In the traces which we draw
from, node capacities vary by six orders-of-magnitude [39]
and a simple function does not capture the trace bandwidth
distribution well.

A final characteristic is the distribution of node joins and
departures (churn). As we discuss in Section V, this cannot
be captured with a simple rateλ. Instead, churn tends to be
Pareto: heavy-tailed and memory-full. Nodes that have been
in the system for a long time tend to remain longer than
average [3]. Pareto distributions have two parameters, shape

{
(a, joining)(b,existing)

w1

wb
(f.)wb

(now) ID #1

ID Choice #1 would shift w1 work
from b to a

Desired
Workload

{

,
{

(same a,
 joining)

(c,existing)

w2

wc
(f.)wc

(now) ID #2

ID Choice #2 would shift w2 work
from c to a

Desired
Workload

{

, ID Choice k
would shift ...,

Use simple cost function
to find best workload
shift match and join there.;

Fig. 2. As part of theJoin process,k-Choicesshifts workload for each of the VSs that are created.

K-CHOICESVS JOIN(ta)
1 K ← {k0 ← h(x + 0), . . . , kκ−1 ← h(x + κ− 1)}
2 Remove in-use IDs fromK
3 for each k in K
4 do Querysucc(k) for w

(n)
s and ts

5 r ← dist(pred(k),k)
dist(pred(k),succ(k))

6 wa ← r × w
(n)
s

7 w
(f)
s ← (1− r)× w

(n)
s

8 c← |ts − w
(f)
s |+ |ta − wa| − |ts − w

(n)
s |

9 Join atk with minimum c
10 return wa

K-CHOICESNODE JOIN(T)
1 T ← (Ui + Li)/2
2 i← κ/2
3 while T > 0 and i > 0
4 do T ← T − K-CHOICESVS JOIN(T)
5 i← i− 1

Fig. 3. k-Choicesjoin algorithm. w(n)
s and w

(f)
s denote the successor’s

work now and in the future, respectively.

α and scaleβ, and have a mean ofα×β
α−1 .

III. k-ChoicesALGORITHM

k-Choicesis a greedy, cost-based load balancing algorithm
for structured overlays. It matches nodes’ workload goals with
guesses about how their choices of identifiers will affect both
their own workloads and those of their neighbors. At each VS
insertion,k-Choicesminimizes the discrepancy between work
and capacity by sampling from a small set of potential IDs.
By limiting the number of potential IDs,k-Choicesis practical
for networks containing malicious participants.

k-Choicesfunctions primarily at node join time as shown in
k-Choices Node Join in Figure 3. When a node joins,
it chooses a total target workload and an upper bound on
the number of VSs to create (lines 1-2). Then, it invokes
k-Choices VS Join and reduces its remaining capacity
by the anticipated work of that VS (line 3). This continues
until it has createdκ/2 VSs or reached its target workload.
Making several VSs together at join time amortizes the cost
of sampling.

The join for each VS is composed of four steps, as shown in
Figure 2 and ink-Choices VS Join in Figure 3. A small

menu of potential IDs is chosen, limited by a well-known
constantκ (lines 1-2). These IDs are verifiable because they
are all based on the certifiedx and becauseκ is bounded.
To verify that a node is using a valid ID,k, another node
simply has to check that there exists somei < κ such that
k = h(x+ i). Next, each potential ID’s successor is probed to
discover what is likely to happen were this VS to be placed at
this location (line 4). It guesses that the current work for this
location will be split based on the percentage of the address
space the joining VS will take on (lines 6-7). The node uses
this to compute the change from the current situation (line
8). Each term in the cost function is the difference between
target work and real work. The first two terms are the sum
of the differences if this VS is created and the last is the
current situation. We normalize each term based on the node’s
capacity. Thus, the lower the cost, the smaller the difference
between target and actual work. The last step of the join
process is to join at the ID with lowest cost. Because nodes set
their targets lower than their capacities, if all nodes minimized
the mismatchm = |t− w| = 0, then loss would be zero.

If nodes do not attempt to perform any additional load
balancing after joining, we say they arepassive. Being passive
has its advantages: no additional churn is induced through
VS relocation. However, over time one of the other potential
IDs for this VS can become significantly better in terms of
improving target/workload mismatch.

If we permit reselection of IDs, we say thatk-Choicesis
active. To minimize network probing, nodes reselect only a
single VS ID at a time. They pick thev ∈ VSset with the
maximum mismatch. They check if any new ID forv improves
the aggregate mismatches of themselves and their neighbors
by ε, a parameter that dampens improvements of minimal
benefit. If it does, the movement is performed.ε is application-
dependent: when a system is used for routing, moving will
be relatively painless, as VSs can gracefully notify incoming
pointers of their departure; if objects are stored and need to be
sent over the network, the cost might be significantly greater.
Nodes only examine the possibility of relocating if they are
overloaded or underloaded. If nodes have relocated more than
VSset.size times and are still overloaded or underloaded,
they create or destroy VSs within the range(1, κ). In practice
we found that nodes did not create more than a handful of
additional VSs.

k-Choicespossesses several attractive features and makes
certain assumptions. When run inpassivemode, it adds no

reactive churn. In fact, without an active component, itrequires
natural churn. By making a good choice before routing is set
up, objects are stored, or computations are started,k-Choices
lessens or eliminates this reactive load balancing penalty. We
assume that nodes do not lie or that Distributed Algorithmic
Mechanism Design techniques could be used to encourage the
truthfulness of the information they provide about load [19],
[41], another reason why verifiable IDs are important. We also
assume that the system is not primarily being used for range
queries. Limited ID assignment provably cannot balance load
in this case [26].

Note that VSs could keep more accurate track of where
work is landing in their namespace to makewa andw

(f)
s more

accurate. Instead, we decided to use a simple exponentially-
weighted moving average to reduce the amount of state sent
during probing.

Optimal ID Choice. k-Choicesexhibits diminishing returns
asκ approaches the size of the namespaceD. Whenκ = D,
each joining VS would sample every possible ID (assuming a
perfect hash function). In fact, it is feasible to find the ID (or
IDs) with the lowest cost by examining only a few variables
for each existing VS. While even this sampling would be
prohibitively expensive in an implementation, performing it
“offline” within a simulator is not.

For each potential successors, we know its targetts and its
actual workw(n)

s . The goal is to find the percent of the address
spacer betweenpred(s) ands that gives the minimum costc
and to find what the cost is for thiss. The optimal ID choice
will be the pred(s) + r × dist(pred(s), s) with the globally
lowest cost. We know thatw(n)

s ≥ 0 and thatms = |ts−w
(n)
s |

is fixed regardless of ther chosen. If we do not normalize for
each node’s capacity, there are four mutually exclusive cases
for r andc:

case ts ≤ 0 and ta ≥ w
(n)
s :

r = 1; c′ = ta − ts + w
(n)
s − 2rw

(n)
s

case ta ≤ 0 and ts ≥ w
(n)
s :

r = 0; c′ = ts − ta − w
(n)
s + 2rw

(n)
s

case ta + ts < w
(n)
s :

r ∈ (ta

w
(n)
s

, 1− ts

w
(n)
s

); c′ = w
(n)
s − ta − ts

case ta + ts ≥ w
(n)
s :

r ∈ (1− ts

w
(n)
s

, ta

w
(n)
s

); c′ = ta + ts − w
(n)
s

c = c′ −ms

In cases 1 and 2, we do not eliminater because IDs cannot be
identical. The actual choice will need to be a small distance
away.

IV. PRIOR LOAD BALANCING TECHNIQUES

In this section, we discuss the four existing load balancing
algorithms against which we will comparek-Choices: log(N)
VS, Proportion, Transfer, andThreshold. The first,log(N) VS,
solely attempts to evenly partition the namespace between
nodes, ignoring heterogeneity and skew.Proportion creates

VS

Slack

1 VS per node

{Capacity

(a) (b)

VS

3 VS per node
(a) (b)

Slack

nodes:

Fig. 4. log(N) VS: During join, a node can divide itself into several
virtual servers, which then join independently. When all nodes do
this, discrepancies in the average total namespace per node diminish.

VSs in proportion to capacity at join time and makes adjust-
ments based on workload.TransferandThresholduse arbitrary
VS relocation to adjust to skew and heterogeneity.

Transferand Threshold, in particular, are representative of
the current state-of-the-art in load balancing algorithms for
structured overlays.Proportional is particularly interesting
because of its complete decentralization.log(N) VSallows us
to show the pros and cons of pure namespace balancing. Be-
causeProportional limits VSset.size to some well-known
maximum, it also does not fundamentally change the security
characteristics of the system. However, its performance is
significantly inferior toTransfer, Threshold, andk-Choices.

A. log(N) Virtual Servers

The simplest load balancing technique we discuss islog(N)
VS. It balances node namespaces and does not permit arbitrary
IDs. It was first introduced by Kargeret al. [25].

The log(N) VS load balancing algorithm follows from the
observation that randomly chosen node IDs do not uniformly
cover the identifier space. In fact, the distribution of name-
spaces is roughly Poisson, with the largest beingO(log(N))
times the average.

log(N) VS is predicated on the assumptions that workload
and capacity are uniform. When these assumptions hold, if
each node has a single VS, those few nodes at the tail become
bottlenecks. By the Central Limit Theorem, the more VSs
each node makes, the more normal (and balanced) the average
(total) namespace of each node becomes. Because there are
drawbacks to having too many VSs, this algorithm suggests
that each node havinglog(N) VS reaches a good compromise.
All nodes then have average load within a constant factor. An
illustration of this is shown in Figure 4. This technique is non-
reactive: it makes no attempt to rebalance load after a node
joins.

This algorithm works well for the case when its assump-
tions on capacities and workload distribution hold. However,
increasing the number of VSs causes a few problems. First,
it increases churn because when one node departs, it must
take its log(N) VSs with it, causinglog(N) times more
adjustments to be made. Second, each node must holdlog(N)
times as much routing state. Finally, because there are more
VSs in the system, the number of hops per lookup (and
latencies) increases. Proposals have been made to mitigate the
last two problems, but they have not been evaluated [12].

load shedding
(a) (a)

load acquisition
(b) (b)

Overload New VSs

Fig. 5. Proportion: Underloaded nodes create new virtual servers
(up to some maximum). Overloaded nodes destroy their own virtual
servers (keeping one).

PROPORTION-ADJUST()
1 (Initially create VSs in proportion to capacity)
2 if overloaded and VSset.size> 1
3 then Delete VS that will best unload us
4 if underloaded andW + W

V Sset.size < U
5 and VSset.size< VSset.maxsize
6 then Create VS.id← h(x + VSset.size)

Fig. 6. Proportion’s Adjust algorithm.

Because several improvements to this basic namespace
balancing concept have been proposed (see Section VII), the
log(N) VSalgorithm provides a baseline to suggest how this
type of algorithm can be expected to perform under conditions
of heterogeneity and skew in particular.

B. Proportion

Proportion targets heterogeneity primarily, not workload
skew. An administrator initially configures a node with a
number of VSs in proportion to its capacity. In addition,
previously observed workload may be taken into account.
After this initial step, each node adds or sheds load without
any communication with other nodes. It was first proposed by
Dabeket al. [12].

After setup, each node periodically followsProportion-
Adjust , shown in Figures 5 and 6. A node runningPropor-
tion independently creates and destroys virtual servers. If a
node is overloaded and is running more than one virtual server,
it selects the least loaded VS that will make it underloaded and
deletes it (lines 2-3). If a node is underloaded and believes that
adding a VS will not put it over its target load, it creates a
virtual server (lines 4-6). Without any extra communication,
underloaded nodes actively take on more work. The goal of
the algorithm is that, over time, this will ease the burden
on overloaded nodes because they will assume a smaller
percentage of the workload as the number of VSs increases.

Load balancing in complete isolation has its drawbacks.
First, a node with only a few VSs may not be able to form a
good estimate of what the cost of creating a new one will be.
Second, a meager machine still might be overloaded even if
it is only running one VS. If a new physical server enters and
has significantly less capacity than the current low-end servers,
the system may take a long time to adjust to this new lowest
common denominator. Third, if an overloaded node deletes one
of its VSs, this may overload its neighbor, resulting in cascades

transfer
(a) (b)

split and transfer
(a) (b)(a)

Fig. 7. Transfer: Overloaded nodes attempt to transfer virtual
servers to underloaded nodes. If they only have one VS and are still
overloaded, they split the VS in two equal halves (and transfer one).

TRANSFER()
1 if !overloaded
2 then return
3 if VSset.size> 1
4 then Contact noden at random
5 Choosev ∈ VSset such that:
6 (a) Transferringv to n will not overloadn
7 (b) v is the least loaded virtual server
8 that will halt overload;
9 Failing that, letv be most loaded VS

10 else v ∈ VSset[0]
11 Create VS.id← v.id + dist(pred(v),v)

2 mod D
12 TRANSFER

Fig. 8. Transfer’s Split and Transfer algorithm.

of deletes. Finally, when the system is underloaded,Proportion
can cause all nodes to create their maximum number of VSs,
greatly increasing state, routing hops, and churn.

C. Transfer

Transfer focuses on actively unloading overloaded nodes.
Instead of having underloaded nodes take on more work
in isolation like Proportion, overloaded nodes following the
Transfer algorithm actively seek out underloaded nodes to
inquire about load transfer. Thus, nodes select arbitrary IDs at
two points: when they split and when they receive transfers.
This idea was first proposed by Raoet al. [35].

The algorithm works as shown in Figures 7 and 8. If a node
is overloaded and it has only one VS, then it splits the VS into
two equal parts (line 11). If a node is overloaded and if it has
more than one VS (one of which may have just been created
via a split), it attempts to contact an underloaded node and
transfer an appropriate VS (lines 3-9). The transfer fails if all
VSs would overload the potential receiver.

Transfer moves work around effectively. Nodes are never
transferred work they cannot handle. However, when the
system is near capacity, overloaded nodes may need to contact
many others to perform a successful transfer.

Transferhas a few permutations. The scheme presented here
and used in the experiments is known as “one-to-one” because
one node contacts a single other node per unit time. The
same work also proposed “one-to-many” and “many-to-many”
variations and found they utilized nodes similarly. Godfreyet
al. propose a more complex variation where nodes randomly

THRESHOLD(v, t)
1 v.levelt ← blogρ(v.util

c)c
2 if v.levelt ≤ v.levelt−1

3 then return
4 v′ ← adjacent neighbor with lowest level
5 if v′.levelt < v.levelt
6 then ∆← (1− 1

ρ)× dist(pred(v), v)
7 if v′ = pred(v)
8 then pred(v).id ← pred(v).id + ∆
9 else v.id ← v.id −∆

10 else /* find new predecessor */
11 S ← set of log(N) random VSs
12 Chooses ∈ S such that:
13 (a)s is the least utilized
14 (b) ws + wsucc(s) < Usucc(s)

15 s.id← pred(v).id + dist(pred(v),v)
2 mod D

Fig. 9. Threshold’s load balancing algorithm.

choose one of a handful of well-known exchange points that
periodically reallocate work [22].

D. Threshold

Thresholdfocuses on keeping all nodes’ utilizations within
a ratioρ, as opposed to between target overload and underload
values like the other algorithms. It also keeps the number
of VSs to a minimum (one per node).Thresholdallows the
selection of arbitrary IDs in both its neighbor adjustment
and VS relocation phases. We present a modified version of
Ganesanet al.’s algorithm [20]. We made two modifications:
(a) we use utilization instead of workload because the original
algorithm assumes homogeneous capacities and (b) nodes only
initiate rebalancing when they increase in level.

Each node has exactly one VS whose ID is initially chosen
at random. The rebalancing algorithm shown in Figure 9 is
called by a node with VSv at time t. Nodes set their current
utilization level such that a level increases by one if work
has increased by a factorρ, wherec is some small constant
(line 1). If a node’s level has increased, it starts load balancing
(line 2). It first attempts to make adjustments with its neighbors
(lines 4-9). VSv first sees if local adjustments in the IDs of its
successor or predecessor are feasible, potentially shifting some
work to them. If the predecessor is lightly loaded compared to
v, its ID is shifted towardv (line 8). This action should result
in its taking some ofv’s load. v can also move its own ID
closer to its predecessor, which potentially shifts work fromv
to its successor (line 9). If making neighbor adjustments fails,
it relocates a lightly loaded node to be its new predecessor
(lines 10-15). Ties between successor and predecessor are
broken arbitrarily. If neither of these options is available,v
attempts to find a new predecessor to take (ideally) half ofv’s
load. v picks a set of VS’s at random and relocates the most
underutilized whose departure will not overload its successor
(line 11-15).

Thresholddiminishes the importance of the tuning param-

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

1,000,000100,00010,0001,000100101

Pe
rc

en
ta

ge
 o

f
N

od
es

 p
er

 L
if

et
im

e
Q

ua
rt

ile

Bandwidth (Kbps, log scale)

First Quartile
Second Quartile
Third Quartile
Fourth Quartile

Fig. 10. CDFs of Downstream Bandwidth per Average Lifetime Quartile.

eter δ, but introduces a significant parameter inρ. If ρ is
too large, load balancing will occur too slowly. If it is too
small, nodes will make many unnecessary adjustments. A
compromise is to setρ for slow adjustments but to induce load
balancing if the node becomes overloaded even if levels have
not changed. We included this compromise in our implementa-
tion. BecauseThresholdalways chooses the least utilized VS
to relocate, VSs with very high capacity (and therefore low
utilization) may tend to be relocated frequently.

V. SIMULATOR

We built a simulator to compare the load balancing algo-
rithms discussed in Sections III and IV. While simulators exist
for several p2p algorithms, none supports virtual servers or
drops packets under overload [6], [21]. This section describes
the simulator and how queries succeed and fail.

The simulator operates in discrete time steps. Each time step
consists of the following phases: node arrival and departure,
routing table updates, queries, and load balancing.

Node arrival and departure. At each step, nodes arrive and
depart. A typical method for generating birth/death processes
is to assume Poisson distributed lifetimes (and deathtimes)
with some meanλ [28], [29], [33]. However, Bustamente
et al. have found, through trace analysis of Gnutella, that
p2p systems do not follow this memory-less distribution and,
in fact, approximate longer-tailed Pareto distributions more
closely [3].

For our trace-based experiment, we use a Gnutella trace
directly [40]. Because we wanted to include the correlation
between node lifetimes and their capacities, we extracted
from the trace the nodes for which upstream or downstream
bandwidths were available. The extracted traces consist of
5508 nodes joining and leaving the Gnutella network for 60
hours. We based churn on the times when the IP addresses of
the node could be reached in the trace. The median lifetime
of a node was about one hour. We converted from the trace’s
bandwidth information to messages per second by assuming
an average message size of 10KB. The median node could
forward 191 messages per second. We show the bandwidth
distribution and modest correlation between bandwidth and
lifetime in Figure 10. The trace does not include any topology
information, and we do not include any in our simulation.

For the experiment where we vary node lifetime, we instead
generated several Pareto birth/death distributions with varying

mean. Because Pareto distributions can take a long time to
stabilize, we only took a snapshot of the distribution after
this stabilization had occurred. We usedα = 2 and variedβ,
avoiding instabilities with smaller values ofα [11].

One unnatural aspect of both the synthetic and trace-driven
churn is a large number of births at the beginning of each
experiment. Because each algorithm needs some workload
information to operate, they did not activate until a short period
into each experiment. We choose an activation time of 400
seconds, as this was when all of the nodes in the Gnutella
trace had first joined. In addition, we recorded statistics only
for the second half of each experiment.

Routing Table Updates.New VSs start off with an empty
routing table. They follow the Chord mechanism to find a node
to fill each of theirlog(N) slots [43]. Each node with IDa
fills its ith entry with the node whose ID is the successor to
a + 2i mod D.

Each routing table entry, orfinger, has a timeout set to 30
seconds on average. Each time this finger is used successfully,
the timeout is reset. This simple technique typically has been
found to be effective in supressing maintenance messages [7].
Nodes do not invalidate their fingers on a failed attempt
at forwarding because they do not know if the receiver is
dead or overloaded. When nodes gracefully change their VSs’
identifiers, other virtual servers pointing to them are notified.
When nodes die, VSs pointing to them are not notified (i.e.,
death is ungraceful), as would be the case were a user to switch
off his or her machine. Nodes make certain their successor
fingers are always valid.

Queries. Queries initiate from nodes uniformly at random
with destinations chosen from either uniform or Zipf distri-
butions, depending on the experiment. Each hop in the query
uses the appropriate finger to route toward the destination.
Each use of a VS for routing or maintenance adds one unit of
load per that VS’s node. If a hop is to a node whose load for
that unit of time matches or exceeds its capacity, the query
fails. Queries succeed when they reach their destination.

Load Balancing. Nodes check on their load balance once
every 30 seconds on average. They determine their utilization
by examining an exponentially-weighted moving average of
the work their VSs perform. They check if they are above
or below their targets, which were set to.95× and .05×
capacity, respectively. If they are out-of-balance, they perform
whichever reactive algorithm is currently under test.

VSset.maxsize was set to128 as suggested by the
Chord research group. Each node runningTransferbegan with
five VSs as suggested by Raoet al. [35].

VI. RESULTS

The following summarizes our experimental results:

• In Section VI-A, we show that simple namespace balanc-
ing is effective when workloads are uniform and node
capacities are a constant (its assumed conditions). We
portray the diminished value in this form of balancing as
workload becomes skewed.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

U
til

iz
at

io
n

Namespace per node

Least-squares fit line

Fig. 11. There exists a strong correlation between a node’s namespace and
its utilization when the workload is uniform and capacities are constant.

TABLE I

WORKLOAD SKEW UNDER NAMESPACEBALANCING

Skew Random Balanced

r2 Succ.% r2 Succ.%
Uniform 0.95 0.59 > 0.99 1.00

Zipf (α = 0.8) 0.83 0.46 0.83 0.53
Zipf (α = 1.2) 0.61 0.27 0.57 0.29
Zipf (α = 2.4) 0.36 0.03 0.31 0.04

• In Section VI-B, we explore parameter choices forκ for
k-Choicesand find thatκ = 8 performs well for the
workloads we examine.

• In Section VI-C, we compare how the algorithms respond
to varying applied workload when nodes follow trace-
based churn and capacity. We find that onlyk-Choices
andTransfercan support large amounts of skewed load.

• We show thatk-Choicescan support high churn rates in
Section VI-D.

• Section VI-E portrays thatk-Choicessustains high suc-
cess rates throughout shifting workloads. We also find
that Transfer, Threshold, Proportion exhibit inconsistent
results over time.

• In Section VI-F, we show that none of the algorithms can
support very skewed workloads (e.g.,α = 4.8) and that
they increase in variance as skew increases.

• In Section VI-G, we find our implementation ofk-
Choiceswithin Pastry [38] improves throughput by20%
on an implementation in a heterogeneous-bandwidth net-
worked environment.

More information on the experiments, simulator, tuning,
and validation is available in the accompanying technical
report [27].

A. Namespace Balancing

These first experiments confirm that, under conditions of
constant or near-constant capacity and uniform query distribu-
tion, simple namespace balancing is highly effective. However,
when either of these conditions fails to hold, it is not.

In order to see the correlation between a node’s namespace
and its utilization, we ran a simple set of experiments in which
we varied workload skew in a system that was performing
no load balancing. We monitored the incoming routing and
maintenance messages for each node and compared this to

 0

 5

 10

 15

 20

 25

 30

256128643216842No LB

95
th

 P
er

ce
nt

ile
 U

til
iz

at
io

n

Uniform: Number of IDs Sampled (κ)

Passive
Active

 0

 5

 10

 15

 20

 25

 30

256128643216842No LB

95
th

 P
er

ce
nt

ile
 U

til
iz

at
io

n

Zipf: Number of IDs Sampled (κ)

Passive
Active

Fig. 12. k-Choices95th percentile utilization decreases asκ increases.

the fraction of the ID space for which that node was used as a
hop or destination. We ran two sets of experiments: one where
VS identifiers were chosen at random and a second where they
were set offline to be exactly equal. This second case shows the
best that namespace balancing could achieve. We used4096
nodes and set all node capacities so that they could route100
messages per second. No churn was used because the exactly
equal ID computation is only performed offline. We varied
workload skew from uniform to Zipf withα = 2.4. Because
no active algorithm was used and there was no churn, each
experiment stabilized immediately. Every node had one virtual
server and there were40960 queries per second (10 queries
per alive node).

We plot the correlation between namespace and node uti-
lization for a uniform workload in Figure 11. As is expected,
the average namespace per node is14096 ≈ .0002. Because
no load balancing is used, the distribution of namespaces is
long-tailed. Analytically, the largest distance between two VSs
should be 1

4096 × log(4096) ≈ .0029, close to the measured
value of .0025. Utilizations with random IDs ranged from
almost 0 to about 4. In contrast, the case where the namespaces
were completely balanced yielded an extremely small range of
utilizations from0.55 to 0.57.

As we relax the assumption that workloads are uniform, the
benefit in perfectly uniform address spaces declines. Table I
shows how the correlation and success rates for queries decline
as workload skew increases. Separate experiments confirm a
similar decline as heterogeneity in nodes’ capacities changes
from a constant.We can conclude from this that, in order to
achieve reasonable performance, a load balancing algorithm
must include some workload parameter and cannot aim for
address space balancing alone.

B. Varyingκ

The second set of experiments exploresk-Choices pa-
rameters for Gnutella-like systems. Our goal was to find a

0.0

0.2

0.4

0.6

0.8

1.0

1001010.10.01

Pc
t.

Su
cc

es
sf

ul
ly

 R
ou

te
d

M
es

sa
ge

s

Uniform: Queries per node

k-Choices
Transfer
Proportional
Threshold
No LB

0.0

0.2

0.4

0.6

0.8

1.0

1001010.10.01

Pc
t.

Su
cc

es
sf

ul
ly

 R
ou

te
d

M
es

sa
ge

s

Zipf: Queries per node

Fig. 13. Percent of successfully routed queries for trace-driven simulations
with varying loads.

reasonable set of parameters for the subsequent experiments.
We generated a synthetic churn trace of 4k nodes with

Pareto distributed average lifetimes of 60 minutes and a
Gnutella-like capacity distribution with average capacity of
100 messages/second. Each node initiated 10 queries/second.
We ran each experiment for three hours and monitored node
utilization. We variedκ and ran k-Choices in active and
passivemodes.

The 95th percentile utilizations are plotted in Figure 12.
When κ = 1, k-Choicesis not in use, showing the situation
without any load balancing. The results show thatactive k-
Choices lowers utilization at a significantly faster rate than
passivedoes asκ increases. In both lookup scenarios, the95th

percentile utilizations do not decrease much beyond whenκ =
8 in active mode. The results also show that a skewed query
distribution (α = 1.2) has minimal impact on utilization for
k-Choices. In fact, it even lowers peak utilization as nodes
with more bandwidth are able to position their VSs where the
workload is concentrated. As noted above, there are substantial
drawbacks to large numbers of VSs per node and to setting
κ to a large value (e.g., large numbers of probes). Therefore,
we usedκ = 8 in subsequent experiments, unless otherwise
noted. As these results portend, preliminary experiments with
Optimal ID choice suggest thatk-Choicesworks well without
a huge sampling of IDs. We also experimented with values
for ε, which we set to0.25 in our experiments. These results
show thatk-Choicesneeds only a small number of choices to
produce a substantial decrease in node utilization.

We ran similar experiments to find good parameters for
Threshold. Its two parametersτ andc were set to8 and0.01
respectively.

C. Trace Results

Our third experiment examines how the load balancing
algorithms responded to different degrees of applied workload

0.0

0.2

0.4

0.6

0.8

1.0

4hr2 hr1 hr30 min15 min

Pc
t.

Su
cc

es
sf

ul
ly

 R
ou

te
d

M
es

sa
ge

s

Uniform: Avg. Node Lifetime (log scale)

k-Choices
Transfer
Proportional
Threshold
No LB

0.0

0.2

0.4

0.6

0.8

1.0

4hr2 hr1 hr30 min15 min

Pc
t.

Su
cc

es
sf

ul
ly

 R
ou

te
d

M
es

sa
ge

s

Zipf: Avg. Node Lifetime (log scale)

Fig. 14. Percentage of successfully routed queries for varying rates of churn.

using trace-driven churn and capacity. In almost all cases, we
foundk-Choicesperformed the same as or better than the other
algorithms.

Each experiment used the Gnutella trace as described in
Section V. Each ran for twelve hours with statistics recorded
for the second half of the experiment. We varied the applied
query load by orders-of-magnitude and recorded the percent-
age of queries that reached their destination. This experiment
captures factors such as artificial churn and large numbers of
VSs per node that some of the algorithms induce.

We plot the results in Figure 13. They show that all of the al-
gorithms, except forThreshold, can sustain high success rates
when queries are uniform, althoughk-Choicesand Transfer
do slightly betterProportion. At 100 queries/node, the95th

percentile of the number of VSs/node was128 for Proportion
(the maximum), compared to1.9 for k-Choicesand 16.1 for
Transfer. Performance fork-Choicesin passivemode declines
after 10 queries/node. We plotκ = 16; κ = 8 performed about
10% worse andκ = 64 performed about10% better at this
workload level.

When queries are skewed (α = 1.2), only k-Choicesand
Transfer can sustain high query rates. At this level, the
other algorithms are unable to maintain low utilization of
low capacity nodes.Log(N) VS performed worse thanNo
Load Balancingin these experiments and is not shown in the
figures.

D. Varying Churn

Becausek-Choiceshelps nodes make good load balancing
choices proactively, we hypothesized that at high churn rates,
it would offer better performance than the other algorithms. To
test this, we created a set of synthetic churn traces with varying
average lifetimes and used the same capacity distribution from
the trace. We ran each algorithm with each node initiating 10
queries per second on average.

We plot the results from uniform and skewed (α = 1.2)
query distributions in Figure 14. The data confirm our hypothe-
sis thatk-Choicesadapts well to rates of high churn. We found
that bothTransfer and Proportion were able to sustain high
natural churn rates for uniform queries, but that they induced
1.1 − 1.5× and 5 − 10× more artificial churn, respectively,
than k-Choices. Again, the variation in success rates is more
prominent with skewed queries. This is becausek-Choices
monitors workload before insertion.No Load Balancingim-
proves slightly as lifetimes increase because fingers remain
valid for longer. Againlog(N) VShad worse performance than
No Load Balancing.

In both uniform and Zipf,Threshold’ssuccess rate declines
as nodes’ lifetimes increase. This occurs becauseThreshold
makes the gaps between VSs so non-uniform that it signifi-
cantly increases the average number of hops,e.g., from 5.6
for 15 minute lifetimes to7.3 for 4 hour lifetimes for uniform
queries. Because queries are taking more hops and nodes are
similarly load balanced, each query is less likely to succeed.

E. Workload Shift

For the fifth simulation experiment, we wanted to see how
the algorithms responded to workload shifts. We ran each
algorithm using trace-driven churn and capacity for ten hours.
Halfway through each run, we changed the query destinations
from one moderately skewed set to another (both withα =
1.2). We recorded statistics throughout the trace. As noted,
each algorithm activates after 400 seconds. Each node initiated
10 queries per second on average.

We monitored success rates and VS activity. VS activity
captures the amount of state transfer that occurs due to natural
and artificial churn. When a node enters or leaves the system,
the number of VS actions equals the number of VSs in use.
Creating or destroying a VS is also a VS action. Eachk-
Choicesand Thresholdrelocate is two VS actions; each
transfer is one. Conservatively, we did not includeThresh-
old’s neighbor-adjustments or Transfer’s splits as
VS actions.

The results are plotted in Figure 15. We show the success
rate on the left y-axis and VS activity on the right y-axis.
The results show thatactive k-Choicessustains> 75%
success rates, recovering immediately after the workload shift.
Passive k-Choices(not shown) gradually plateaus at about
40%. We found that in systems with higher rates of churn,
passivereached equilibrium more quickly. As soon asactive
k-Choicesis activated, the success rates dramatically increase.
With current tuning, however,active produces an order-of-
magnitude more VS activity thanpassive. After the shift,k-
Choices activesettles to a slightly lower success rate because
queries heading to the new highest ranked spot take slightly
more hops per average query: a change from6.8 to 7.3.

Proportion, Transfer, and Threshold all portray greater
variance in success rates thank-Choices. Proportion exhibits
the greatest average VS activity and has the largest average
hop count at10.5 hops per successful query. The performance
of Threshold steadily declines as its gaps become tightly

0.0

0.2

0.4

0.6

0.8

1.0

109876543210

100

10

1

Pc
t.

Su
cc

es
sf

ul
ly

R
ou

te
d

M
es

sa
ge

s

V
S

A
ct

iv
ity

 (
lo

g)

k-Choices (active): Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

109876543210

100

10

1

Pc
t.

Su
cc

es
sf

ul
ly

R
ou

te
d

M
es

sa
ge

s

V
S

A
ct

iv
ity

 (
lo

g)

Transfer: Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

109876543210

100

10

1

Pc
t.

Su
cc

es
sf

ul
ly

R
ou

te
d

M
es

sa
ge

s

V
S

A
ct

iv
ity

 (
lo

g)

Proportional: Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

109876543210

100

10

1

Pc
t.

Su
cc

es
sf

ul
ly

R
ou

te
d

M
es

sa
ge

s

V
S

A
ct

iv
ity

 (
lo

g)

Threshold: Time (hours)

Fig. 15. Plot of success rate and VS activity during a workload shift.

clustered. ThatTransferstabilizes at different levels had two
causes. First, a burst of births soon after the shift caused
more accurate fingers than average and a burst of deaths at6
hours caused the decline because many fingers became invalid.
Second, after the shift, the average path to highest ranked
destination was fewer hops than before. Although to a lesser
extent thanThreshold, Transfer’s hop count steadily rises as
nodes move to arbitrarily compressed locations.

F. Varying Skew

Some workloads are heavily skewed and several of the
algorithms were able to support up toα = 1.2. We wanted
to examine how much skew they might support. To test this,
we used the synthetic 60 minute average lifetime trace and the
capacity distribution from the trace as we variedα. As before,
we ran each algorithm with each node initiating 10 queries per
second on average.

We plot the results in Figure 16. They show that none of
the algorithms can support an extremely skewed workload,
e.g., one where the top destination is almost5× that of
the next rank. Not only do the algorithms decline in their
average success rates, but they also all become less stable.
For example, the standard deviation of success rates sampled
over time fork-Choicesat uniform is 0.001% and atα = 4.8
it is 8%. To see if increasingκ had an impact at high skew,
we rank-Choiceswith κ = 16. We found that it performed
better (at14%) thanκ = 8, but also exhibited high variance.

0.0

0.2

0.4

0.6

0.8

1.0

4.82.41.20.8Unif.

Pc
t.

Su
cc

es
sf

ul
ly

 R
ou

te
d

M
es

sa
ge

s

Skew: Zipf alpha

k-Choices
Transfer
Proportional
Threshold
No LB

Fig. 16. Percentage of successfully routed queries for varying rates of skew.

TABLE II

SUCCESSFULQUERIES FOREMULAB EXPERIMENT

Completed queries
BW (MB/s) No LB k-Choices

.4 4341 5879 (+35%)
1 16672 20217(+21%)
4 24025 29537(+23%)
40 23331 26224(+12%)
All 68370 81858(+20%)

G. Emulab Experiment

To examinek-Choices’s effect on a working system, we
implemented it within Pastry and ran a query-and-download
scenario. Our primary goal was to measure changes in through-
put with k-Choicesusing a fairly large real topology. Our
use of nearest-neighbor-based Pastry demonstrates thatk-
Choicesgeneralizes beyond Chord semantics. We based ourk-
Choicesimplementation on FreePastry [15]. We rank-Choices
in passivemode withκ = 16. We used 1 VS per node because
FreePastry does not currently support multiple VSs. We were
required to anticipate load based on namespace distances
because low bandwidth nodes were unable to successfully
join the network when queries were already taking place. For
this same reason, queries were only for uniformly distributed
destinations. If the destination responded, each node attempted
to download an 8KB block. A query completed if both the
query and download were successful.

We ran our experiment on Emulab, a testbed for networking
research that supports precise bandwidth tuning [44]. The
topology consisted of 256 nodes. There were 64 nodes of
each bandwidth level; the levels were 40Mb/s, 4Mb/s, 1Mb/s,
and0.4Mb/s. Although Emulab has been working on making
their system more scalable to support larger experiments, at
the time, this was the largest topology we could run. Table
II shows the total number of queries completed by bandwidth
type. Each value is averaged over two trials that consisted
of one hour of queries. All nodes used one of the 40MB/s
nodes as their bootstrap. As a result, they were frequently in
other node’s routing tables and had a higher message routing
workload. This is why their completed queries are fewer than
the 4MB/s nodes. As expected, the average number of hops
was a just less than 2, with minimal variance. The main
experimental result, however, is that a20% improvement in
throughput confirms thatk-Choicescan have a substantial

positive impact on performance in a heterogeneous topology
while retaining the important security properties of verifiable
IDs.

VII. R ELATED WORK

Object load balancing.We have oriented our examination
of load balancing around routing, where a node request
must reach the destination ID for it to be successful. If
the network is instead being used for storage, other load
balancing techniques can be applied. Byerset al. describe
a technique that hashes data to be stored using two distinct
hash functions, providing two potential locations [4]. The less
loaded of the two possibilities is chosen. During data lookup,
the query must contact both possible storage locations, or
appropriate forwarding pointers must be used. Under uniform
workload and capacity assumptions and with no churn, they
have recently generalized this result to show that the maximum
load at any server isloglog(N)/log(d)+O(1) whered is the
number of choices [5]. Their method is an example of “the
power of two choices” [31]. Our ID selection process is similar
in spirit, in that we also use multiple hash functions, although
here we do so to provide VSs with a menu of identifiers.

Objects may be cached in the network to reduce hot spots
or overload. Roussopoulos and Baker develop a cooperative
request scheme where nodes direct requests toward the highest
capacity replica [37]. They assume that the source of each
lookup is aware of the capacity of each possible replica holder.
Sources of requests learn the replicas by first contacting the
root of the query, a key’s primary storage node, so it must still
perform some work for their method to function.

These storage-oriented load balancing techniques are or-
thogonal and complementary to the methods examined in this
paper, includingk-Choices. For example,k-Choicesreduces
an overburdened node’s namespace, preventing it from being
contacted in the first place, and Roussopoulos’ technique
prevents it from being contacted frequently after the replica
set is known.

Namespace balancing.While the simplelog(N) VSs per
node achievesO(1/N) namespace balance per node, more
recent algorithms have achieved tighter bounds with fewer
virtual servers. These algorithms are based on the assumptions
that the capacity of nodes and workloads are uniform; they do
not include any workload scaling parameter. Because of these
factors, they would approximate the behavior and results of the
log(N) VS algorithm. If they did achieve perfect namespace
balancing at zero cost, they could be expected to perform as
Balanced does in Table I.

Four algorithms fall into this category. First, Karger and
Ruhl propose that each node haslog(N) potential IDs, only
one of which is activated at once [26]. Nodes activate and de-
activate their VSs to balance the distance between themselves
and their successor. Because this algorithm allocates nodes
a limited number of IDs, it has stronger security properties
than the remainder of this group. Second, Manku’s algorithm
reduces the ratio of the largest to the smallest partition to at
most 4 w.h.p. and has low arrival and departure cost [30].

Third and fourth, Adler [1] and Naor [32] also have low
cost algorithms to achieve namespace balancing based on
unlimited virtual server movement. Both algorithms depend
on the history of node IDs that each node has used and their
analyses are given only for the insertions, not deletions, cases.

Range queries. While we have examined uniform and
Zipf query distributions in our simulations, we have not
examined load balancing algorithms targeted at p2p systems
when performing range queries are common. However, if one
considers using a p2p system more like a typical database
where each node is analagous to a disk, it is clear that
ordering data by key might be warranted. We are aware of
two load balancing algorithms that are targeted for this new
domain [20], [26]. We evaluated Ganesan’sThresholdin this
paper. Both require unlimited ID selection and, therefore,
suffer from Sybil attack liabilities, making them unsuitable for
non-cooperative environments. However, it is unlikely that a
load balancing technique for range queries exists that supports
scalable secure IDs.

VIII. C ONCLUSIONS

We introduced a novel anticipatory load matching algorithm
for balancing load in peer-to-peer networks. This algorithm
makes explicit the workload assignment problem that previous
work attempted to solve implicitly. The algorithm works
preemptively as the node is joining to shift the “right” amount
of work to the joining node. Optionally, it can continue to
readjust workload mismatch over time.

After examining thek-Choicesalgorithm independently, we
benchmarked its performance and that of other load balancing
algorithms for structured overlays under conditions of node
heterogeneity, skew, churn, and workload shift using trace-
based simulations.

Prior work on load balancing for p2p systems has either
focused on namespace balancing or on systems with more
heterogeneous characteristics. We showed that even perfect
namespace balancing results in poor performance under real-
istic conditions. Prior algorithms that do work well under these
conditions,TransferandThreshold, both allow the selection of
arbitrary IDs, severely circumscribing their utility on insecure
networks. We have shown thatk-Choicescan provide good
load balancing under realistic conditions while retaining strong
security properties necessary for wide-area applications.

ACKNOWLEDGMENT

The authors would like to thank Miguel Castro, Antony
Rowstron, and Michael Mitzenmacher for helpful discussions.

REFERENCES

[1] M. Adler, E. Halperin, R. Karp, and V. Vazirani. A Stochastic Process
on the Hypercube with Applications to Peer-to-Peer Networks. InSTOC
2003, San Diego, CA, June 2003.

[2] C. Blake and R. Rodrigues. High Availability, Scalable Storage,
Dynamic Peer Networks: Pick Two. InProceedings of HotOS IX, Lihue,
HI, May 2003.

[3] F. Bustamante and Y. Qiao. Friendships that last: Peer lifespan and its
role in P2P protocols. InEighth International Workshop on Web Content
Caching and Distribution, Hawthorne, NY, October 2003.

[4] J. Byers, J. Considine, and M. Mitzenmacher. Simple Load Balancing
for Distributed Hash Tables. InProceedings of the Second International
Workshop on Peer-to-Peer Systems (IPTPS ’03), Berkeley, CA, February
2003.

[5] J. Byers, J. Considine, and M. Mitzenmacher. Geometric Generalizations
of the Power of Two Choices. InSPAA 2004, Barcelona, Spain, June
2004.

[6] M. Castro, M. Costa, A. Kermarrec, and A. Rowstron. SimPastry.
http://www.research.microsoft.com/˜antr .

[7] M. Castro, M. Costa, and A. Rowstron. Performance and Dependability
of Structured Peer-to-Peer Overlays. InDependable Systems and
Networks, Florence, Italy, June 2004.

[8] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh. SplitStream: High-Bandwidth Multicast in Cooperative
Environments. InProceedings of the 19th ACM SOSP, Bolton Landing,
NY, October 2003.

[9] M. Castro, P. Drushel, A. Ganesh, A. Rowstron, and D. Wallach. Secure
Routing for Structured Peer-to-Peer Overlay Networks. InOSDI ’02,
Boston, MA, 2002.

[10] L. Cox and B. Noble. Samsara: Honor Among Thieves in Peer-to-Peer
Storage. InProceedings of the 19th ACM SOSP, Bolton Landing, NY,
October 2003.

[11] M. E. Crovella and L. Lipsky. Long-lasting transient conditions in
simulations with heavy-tailed workloads. InProceedings of the 1997
Winter Simulation Conference, December 1997.

[12] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-
area cooperative storage with CFS. InProceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP ’01), October 2001.

[13] R. Dingledine, N. Mathewson, and P. Syverson. Reputation in P2P
Anonymity Systems. InWorkshop on Economics of Peer-to-Peer
Systems, Berkeley, CA, June 2003.

[14] J. Douceur. The Sybil Attack. InProceedings of the First International
Workshop on Peer-to-Peer Systems (IPTPS ’02), Cambridge, MA, March
2002.

[15] P. Druschel, R. Gil, Y. Hu, S. Iyer, A. Ladd, A. Mislove, A. Nandi,
A. Post, C. Reis, A. Singh, and R. Zhang. Rice FreePastry imple-
mentation.http://www.cs.rice.edu/CS/Systems/Pastry/
FreePastry .

[16] P. Druschel and A. Rowstron. PAST: A large-scale, persistent peer-to-
peer storage utility. InProceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP ’01), October 2001.

[17] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive NFS tracing of
Email Workloads. InProceedings of the 2003 USENIX Conference on
File and Storage Technology, San Francisco, CA, March 2003.

[18] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a
scalable wide-area web cache sharing protocol.IEEE/ACM Transactions
on Networking, 2000.

[19] J. Feigenbaum and S. Shenker. Distributed Algorithmic Mechanism
Design: Recent Results and Future Directions. InSixth International
Workshop on Discrete Algorithms and Methods for Mobile Computing
and Communications, September 2002.

[20] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online Balancing of
Range-Partitioned Data with Applications to Peer-to-Peer Systems. In
VLDB 2004, Toronto, September 2004.

[21] T. Gil, F. Kaashoek, J. Li, R. Morris, and J. Stribling. p2psim.http:
//www.pdos.lcs.mit.edu/p2psim/ .

[22] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica.
Load Balancing in Dynamic Structured P2P Systems. InINFOCOM
2004, Hong Kong, March 2004.

[23] B. Gross and A. Acquisti. Balances of Power on eBay: Peers or Un-
equals? InWorkshop on Economics of Peer-to-Peer Systems, Berkeley,
CA, June 2003.

[24] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and J. Zahorjan.
Measurement, Modeling, and Analysis of a Peer-to-Peer File-Sharing
Workload. In Proceedings of the 19th ACM SOSP, Bolton Landing,
NY, October 2003.

[25] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Pan-
igrahy. Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web. InACM
Symposium on Theory of Computing, El Paso, TX, May 1997.

[26] D. Karger and M. Ruhl. Simple Efficient Load Balancing Algorithms
for Peer-to-Peer Systems. InSPAA 2004, Barcelona, Spain, June 2004.

[27] J. Ledlie and M. Seltzer. Distributed, secure load balancing with
skew, heterogeneity, and churn. Technical Report TR-31-04, Harvard
University, December 2004.

[28] J. Ledlie, J. Taylor, L. Serban, and M. Seltzer. Self-organization in
peer-to-peer systems. InTenth SIGOPS European Workshop, September
2002.

[29] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the
Evolution of Peer-to-Peer Networks. InPODC 2002, July 2002.

[30] G. S. Manku. Balanced Binary Trees for ID Management and Load
Balance in Distributed Hash Tables. InPODC 2004, St. John’s,
Newfoundland, Canada, July 2004.

[31] M. Mitzenmacher, A. Richa, and R. Sitaraman.The Power of Two
Choices: A Survey of Techniques and Results. Kluwer Academic
Publishers, Norwell, MA, 2001.

[32] M. Naor and U. Wieder. Novel Architectures for P2P Applications:
the Continuous-Discrete Approach. InFifteenth ACM Symposium on
Parallelism in Algorithms and Architectures, San Diego, CA, June 2003.

[33] G. Pandurangan, P. Raghavan, and E. Upfal. Building low-diameter p2p
networks. InIEEE Symposium on Foundations of Computer Science,
pages 492–499, 2001.

[34] P. Pietzuch and S. Bhola. Congestion Control in a Reliable Scalable
Message-Oriented Middleware. InMiddleware 2003, Rio de Janeiro,
Brazil, June 2003.

[35] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica. Load
Balancing in Structured P2P Systems. InProceedings of the Second
International Workshop on Peer-to-Peer Systems (IPTPS ’03), Berkeley,
CA, February 2003.

[36] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
Scalable Content-Addressable Network. InProceedings of the ACM
SIGCOMM ’01 Conference, August 2001.

[37] M. Roussopoulos and M. Baker. Practical Load Balancing for Content
Requests in Peer-to-Peer Networks. Research Report cs.NI/0209023,
Stanford University, January 2003.

[38] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object lo-
cation, and routing for large-scale peer-to-peer systems. InMiddleware,
November 2001.

[39] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, , and H. M. Levy.
An analysis of internet content delivery systems. InProceedings of 5th
Symposium on Operating Systems Design and Implementation (OSDI
’02), Boston, MA, December 2002.

[40] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study
of peer-to-peer file sharing systems. InProceedings of the Multimedia
Computing and Networking (MMCN), San Jose, CA, January 2002.

[41] J. Shneidman and D. Parkes. Specification Faithfulness in Networks
with Rational Nodes. InPODC 2004, July 2004.

[42] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet
Indirection Infrastructure. InSIGCOMM ’02, Pittsburg, PA, August
2002.

[43] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
In Proceedings of the ACM SIGCOMM ’01 Conference, August 2001.

[44] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, , and A. Joglekar. An integrated experimental
environment for distributed systems and networks. InProceedings of
5th Symposium on Operating Systems Design and Implementation (OSDI
’02), Boston, MA, December 2002.

[45] B. Wilcox-O’Hearn. Experiences deploying a large-scale emergent
network. InProceedings of the First International Workshop on Peer-
to-Peer Systems (IPTPS ’02), Cambridge, MA, March 2002.

[46] B. Yan and H. Garcia-Molina. PPay: Micropayments for Peer to
Peer Systems. InACM Conference on Computer and Communications
Security, Washington, D.C., October 2003.

[47] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure
for fault-tolerant wide-area location and routing. Research Report
UCB/CSD-01-1141, U.C. Berkeley, April 2001.

