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ABSTRACT

Since the invention of the movable head disk, people have improved I/O performance by
intelligent scheduling of disk accesses. We have applied these techniques to systems with large
memories and potentially long disk queues. By viewing the entire buffer cache as a write buffer,
we can improve disk bandwidth utilization by applying some traditional disk scheduling tech-
niques. We have analyzed these techniques, which attempt to optimize head movement and
guarantee fairness in response time, in the presence of long disk queues. We then propose two
algorithms which take rotational latency into account, achieving disk bandwidth utilizations of
nearly four times a simple first come first serve algorithm. One of these two algorithms, a
weighted shortest total time first, is particularly applicable to a file server environment because it
guarantees that all requests get to disk within a specified time window.

1. Introduction

Present day magnetic disks are capable of providing I/O bandwidth on the order of two to
three megabytes per second, yet a great deal of this bandwidth is lost during the time required to
position the head over the requested sector. This study focuses on improving the effective
throughput by using rotation and seek optimizing algorithms to schedule disk writes.

Since the introduction of the movable head disk, many people have undertaken similar
efforts. However, most of these studies have assumed short queue lengths, and the performance
improvement obtained under the various techniques is not substantial. Our approach was to con-
sider a system, such as a file server, with a large main memory dedicated to disk buffering. We
assumed that newly written data need not be transmitted to disk immediately; instead, it may be
retained for a short period of time in a main memory buffer and transmitted to disk at a time that
maximizes disk throughput. Given the ever increasing sizes of main memory (up to one hundred
megabytes or more on some file servers), hundreds or thousands of blocks could be queued for
writing at any given time. By careful ordering of these requests, it should be possible to reduce
average head positioning time substantially. On the other hand, the potential for starvation of a
request becomes more important and fairness becomes a requirement. To this end, we have
developed two algorithms that attempt to avoid starvation yet provide very good disk utilization.

2. Previous Work

Most previous work has dealt with scheduling a small number (fewer than 50) of I/O
requests. With small numbers of requests, research concentrated on first come first serve (FCFS),
shortest seek time first (SSF), and the scanning algorithms which service requests in cylinder
order scanning from one edge of the disk to the other.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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Hofri shows that under nearly all loading conditions, SSF results in shorter mean waiting
times than FCFS [HOFR80]. The main drawback he finds to SSF is the larger variance in I/O
response time. He also alludes to more optimal scheduling which takes into account the number
of requests in a given cylinder, but does not pursue this further. Hofri’s results are a combination
of theoretical analysis and simulation.

Coffman, Klimko, and Ryan also discuss FCFS and SSF [COFF72]. They add to their
analysis two scheduling policies which are intended to control the high variance of SSF. These
are called SCAN and FSCAN. SCAN restricts its search for the minimum seek time request to
one direction (inward or outward). However, SCAN still causes long waiting times for requests
on the extremes of the disk. FSCAN addresses this by "freezing" the queue once the scan starts--
requests that arrive after the scan starts are serviced in the next scan. By pure theoretical analysis,
Coffman et al. concludes that SCAN uniformly results in lower average response times than
either FCFS or FSCAN, but higher average response times than SSF. Geist describes a contin-
uum of algorithms from SSF to SCAN differing only in the importance attached to maintaining
the current scanning direction [GEIS87].

In [TEOR72], FCFS, SSF, and SCAN are again analyzed. Similar conclusions are made
that SSF yields shorter response times than SCAN, which yields shorter response times than
FCFS. The Eschenbach scheme, which is similar to SCAN, schedules according to rotational
position in addition to seek position. As a result, the Eschenbach scheme generates lower aver-
age response than any previous scheme as the queue length increases.

In all of these papers, no queue lengths averaging more than 50 are studied. This limitation
is due in large part to the smaller memory sizes of the time and slower CPU’s. Now, with
exponentially growing memory sizes [MOOR65] and faster CPU’s, more data may accumulate
more quickly, and disk queues are no longer constrained to small lengths. With large queues, we
are able to investigate previously impractical or unnecessary schemes. In particular, we continue
the study of rotationally optimal scheduling algorithms.

3. The Test Environment

We chose to analyze the algorithms in three ways: theoretical model, simulation, and
hardware tests. The theoretical model served as a first approximation of the potential perfor-
mance gain. The simulation provided the most flexible testing platform, and the hardware tests
verified the correctness of the simulator. After the validation of the simulator on some of the
simpler algorithms, the remaining results were all derived from simulation.

3.1. The Simulator

The simulator modeled a Fujitsu M2361A Eagle described in Figure 1 and Table 1. In all
the simulations, the CPU time required to calculate the next request was ignored on the basis that
this computation could be overlapped with the actual I/O operation. Furthermore, we wished to
focus on the potential of the algorithms themselves rather than optimizing their implementation.

Since we were most interested in viewing the behavior of the algorithms in the presence of
many requests, we introduced an artificial model of request arrival. In order to examine behavior
for a queue length of Q, we initialized the queue to contain Q events, each with a request time of
0. Whenever a request was serviced, it was replaced with a new request whose request time was
equal to the completion time of the completed request. In this manner, we guaranteed that we
always had a queue of length Q from which to select a request and our simulations were insensi-
tive to the real arrival rate. In order to avoid skewing the response time results (by leaving unser-
viced requests in the queue at simulation completion), we completed the simulation by emptying
the entire queue. That is, for the last Q requests, we did not generate any new requests, but ser-
viced those remaining in the queue.
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cylinders/disk 840
tracks/cylinder 20
sectors/track 67
bytes/sector 512 B
average seek 18 ms
average rotational latency 8.3 ms
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Table 1: Specifications of Fujitsu
disk drives.

Figure 1: Seek Time Calculation Graphed
above is seek time in ms as a function of seek
distance in cylinders [FUJI84]. We model
this as

seektime (x ) =

I
J
K
J
L
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if x >239
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In order to guarantee that the averages obtained were statistically significant, we needed to
determine an acceptable length for the simulation runs. Let Q be the length of the queue and B
be the total number of blocks on the disk. At each point in time, there are Q objects selected
from a set of B, in the queue. Therefore the probability of any particular set of Q objects being

present is
I
LQ
B M
O

1hhhhh . For the drives we tested, there were 140,280 blocks on the disk. So, for a queue

length of 10, there are on the order of 1044 combinations and for a queue of length 1000, there are
more than 10100 combinations. Clearly, it is infeasible to actually examine a large portion of this
space. Furthermore, in our simulations, each sample of size Q is not independent since the
entries in the queue at time t differ from the Q entries in the queue at time t-1 by precisely one
event.



We define a test run as one simulation which generated a full queue of random I/O requests
and serviced them. We analyzed the variance across N runs where N ranged from 2 to 200. After
100 runs of size Q, the variance had decreased to a small fraction (1-2%) of the mean response
time and had stabilized. Therefore, we felt that tests with 100 times the number of queued items
was a representative sample.

Our model of the I/O time was based on the information provided by the disk vendor as
well as the results obtained in the disk tests described below. All requests to the disk subsystem
were for 4K blocks1 uniformly distributed over the entire disk. The seek time was computed as a
function of the number of cylinders across which the head needed to move (see Figure 1). The
rotational latency was calculated based on the time required to bring the data under the head once
the seek was completed and then to read the data.

3.2. The Hardware Tests

To verify our theoretical models and our simulations, we ran tests on the disks that we were
modeling, Fujitsu M2361A Eagles, described in Table 1 and Figure 1. We verified the simula-
tion for the two basic scheduling algorithms: FCFS and SSF. Because of the difficulty in deter-
mining rotational position, we did not use hardware to verify the simulation for other algorithms.
As in the simulation, we assume zero CPU time spent to process the I/O. In order to factor out
the cpu time, we subtracted a constant 3 ms from each individual disk access2.

4. Seek Optimizing Algorithms

We started with algorithms that optimize solely on seek distances: first come first serve,
shortest seek first, and the scanning algorithms. For each algorithm we evaluated, we provide a
brief description of the algorithm, an intuitive theoretical estimate of its performance (where
feasible), the actual results, and a graph comparing the simulated versus theoretical results. Our
metric for evaluating the algorithms was disk utilization, which we define as the fraction of time
that the disk spends transferring data.

4.1. First Come First Serve

The simplest scheduling algorithm imaginable is first come first serve (FCFS). As one
would expect, this model is independent of the queue length and we obtain an average I/O time
equal to the predicted average seek plus the predicted average rotation. We also used these
numbers to verify the other algorithms since any of the algorithms with queue length of 1 should
equal FCFS.

The disks were spinning at 3600 RPM yielding a revolution time of 16.67 ms for 67 sectors
of 512 bytes each, providing a transfer rate of 4K / 2.0 ms. A back-of-the-envelope calculation
will show that for simple first come first serve scheduling policies, we can expect the average I/O
time to be one half a rotation (8.3 ms) plus the time for an average seek (18 ms). This yields a

disk utilization (the fraction of time the disks are actually transferring data) of
2+8.3+18

2hhhhhhhhh=7% As

Figure 2 shows, this is very close to the hardware-derived and simulated utilizations.

4.2. Shortest Seek First

For this algorithm, we ignore the rotational latency and select requests based on the seek
time required. On the average, we expect to see a half rotation (8.3 ms) and a seek to the closest
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1We chose a 4 KB block size as a common file system block size.
2We estimated the CPU time used in issuing an I/O from a user process by issuing two consecutive I/O’s for two sectors on the

same track. We found that after reading sector 0, the next sector we could read without missing an entire revolution was sector 12, 1/6
of a revolution later. This implied a 3 ms CPU turnaround time.
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Figure 2: Comparing FCFS utilization derived from theoretical analysis (FCFS-theor), hardware
measurements (FCFS-hw), and simulation (FCFS-sim).
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cylinder with a request on it. This is a function of the total number of cylinders on the disk and
the length of the queue. For example, the Eagles have 840 cylinders. With a queue length of
100, we expect the average seek to be 8.3 cylinders. Thus, for a queue length of 100, we expect
average I/O time to be approximately 8.3 + 4.6 + .87 * sqrt(8.3) or 15.4 ms.3 Figure 3 depicts
these predicted values against the results actually obtained in simulation. The maximum queue
length we used, 1000, corresponds to about 4 MB of dirty blocks. For example, consider a file
server with 64 MB of main memory. It is reasonable to assume that 50% may be dedicated to a
file cache, and of that, approximately 10-15% (3-5 MB) might be dirty.

4.3. SCAN and CSCAN

The SCAN scheduling algorithm is oriented towards producing fairer response time. It ord-
ers the requests by cylinder number and services all the requests for a given cylinder before mov-
ing the head to the next cylinder. When the head reaches one end of the disk, it merely reverses
direction and begins scanning towards the other end of the disk. It is important to notice that this
is actually very similar to the shortest seek first algorithm and we expect similar results.

One shortcoming of the SCAN algorithm is that requests on either end of the disks experi-
ence worse response time than those in the middle of the disk since those in the middle experi-
ence two passes of the head evenly spaced in time whereas the outermost cylinders delay for two
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

3This is not quite accurate, as we have used the time of an average seek, which is not the same as the average time. It is a close
approximation because of the almost linear seek profile (Figure 1).
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Figure 3: Comparing SSF utilization derived from theoretical analysis (SSF-theor) and our simu-
lator (SSF-sim).
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full sweeps of all the cylinders before being revisited. Cyclical scan (CSCAN) alleviates this by
paying one large seek at the end of the disk to move the head all the way to the other end. That
is, the head always moves in one direction and we pay one very long seek at the end of each pass.
This long seek is amortized over the requests, and the utilization is nearly the same as SCAN.
The major difference is in the maximum observed response times and the variance of the
response times. Figure 4 shows the utilizations for CSCAN which are essentially identical to
SSF. However, as shown in Figure 5, CSCAN substantially improves the maximum observed
response time.

5. Seek and Rotation Optimizing Algorithms

5.1. Shortest Time First

In SSF, we chose the request which yielded the fastest seek. In shortest time first (STF), we
choose the request which yields the shortest I/O time, including both the seek time and the rota-
tional latency. Advances in disk technology have reduced seek time more than rotational latency.
As this trend continues, we expect rotational latency to account for a greater fraction of the total
I/O time, and rotation optimizing algorithms such as STF will become increasingly important.
For example, saving half a rotation (8 ms) may cause an access 100 cylinders away to have a
shorter total I/O time than an access 1 cylinder away.

STF is expected to yield the best throughput since we always select the fastest I/O. The
algorithm scans the entire queue calculating how much time each request will take. It then selects
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Figure 4: Disk Utilization from FCFS,
SSF, and CSCAN. We graph the disk util-
ization derived from theoretical modeling,
hardware verification, and simulation for
three simple scheduling policies. The
SCAN algorithm yields utilizations almost
identical to CSCAN and is not shown.

Figure 5: Maximum Observed Response
Time for FCFS, SSF, and CSCAN. SSF
has significantly worse maximum response
time than FCFS, but CSCAN has roughly
the same, or lower, maximum response
time than FCFS. In some instances,
CSCAN is able to have lower response
time than FCFS because its average
response time is lower.
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that request with the shortest expected service time. For very long queue lengths (Q much greater
than the number of cylinders), we expect to see the STF time approach 2.0 ms (the time to read a
single 4K block). For very short queue lengths, we expect STF to approximate SSF since it is
unlikely to have multiple requests on the same cylinder and adjacent requests are likely to be far
enough apart so that seek time dominates rotation. Figure 6 shows the simulated results for STF.
Note that, even at queue length of 1000, STF utilization is still rising. Preliminary runs at queue
lengths of 5000 have utilizations of 40%.

Unfortunately, the scheduling algorithm is a function of both cylinder and rotational posi-
tion, thus this algorithm is one of the most costly in terms of CPU utilization. In addition, STF
has the potential to starve requests, producing very bad response time (Figure 7). Note that,
because the maximum observed response times in Figure 7 were empirically determined, max-
imum response times in a real system could be even worse.



The next two algorithms attempt to provide the utilization benefits offered by the shortest
time first algorithm without paying a substantial penalty in response time.

5.1.1. Grouped Shortest Time First (GSTF)

In this algorithm, we combine scan techniques with shortest time first techniques. The disk
is divided into some number of cylinder groups. Within each cylinder group, we apply a shortest
time first algorithm, servicing requests within that group before advancing to the next group.
This algorithm introduces two parameters, the queue length and the size of the cylinder group.
Figure 8a shows the relationship between average I/O times as one holds the queue size at 1000
and changes the cylinder group size. Figure 8b shows the maximum response times.

As the cylinder group size increases, the utilization of GSTF increases. Eventually, when
the group size is 840 (the entire disk), GSTF is the same (by definition) as STF. Also, as the
group size increases, the maximum response time becomes longer and longer, approaching STF.
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Figure 6: Disk Utilization for FCFS,
CSCAN, STF, GSTF210, and WSTF.
We graph the disk utilization for seek and
rotation optimizing algorithms. FCFS and
CSCAN are shown for comparison.

Figure 7: Maximum Response Time for
CSCAN, STF, GSTF210, and WSTF. We
graph the maximum response time for seek
and rotation optimizing algorithms. Max-
imum response time for STF is much
worse than other algorithms, but GSTF210
and WSTF bring maximum response time
back down. Recall from Figure 5 that the
maximum response time of FCFS is very
close to that of CSCAN.
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Figure 8: Utilization and Maximum Response Time of Shortest Seek First and Grouped
Shortest Time First. Graphed above are the utilization and maximum response times as a func-
tion of the cylinder group size. The above results are for queue lengths of 1000.
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The early dip in the maximum response time curve is due to the interaction of utilization (average
disk I/O time) and fairness. Although GSTF is more fair (less variation between response times)
at small group sizes, the disk is being used less efficiently, and the average response time is
larger. As utilization flattens out, the decreasing fairness causes increasing maximum response
times. In Figures 6 and 7, we show the utilization and maximum response time for group size of
210 (4 cylinder groups per disk). We see that GSTF has utilization close to STF, but also
succeeds in lowering the response time to close to the maximum response time of CSCAN.

GSTF services all requests for the current cylinder group before moving to the next cylinder
group. If requests for the current cylinder group saturate the I/O system, it is possible to starve
requests on other parts of the disk. A slight variation of GSTF freezes the queue of a cylinder
group as soon as any requests to that cylinder group are serviced, guaranteeing that all the
requests within that cylinder group are serviced before the head moves to the next cylinder group.
Runs using this variation have 3%-4% lower disk utilizations and 15%-25% lower maximum
response times than the GSTF depicted in Figure 6.



5.1.2. Weighted Shortest Time First

This algorithm applies the standard shortest time first technique, but applies an aging func-
tion to the times computed. First, we assume a maximum acceptable delay between the time a
write to the buffer cache is issued and when that data is written to disk (for these simulations, the
time chosen was 30 seconds based on how frequently the UNIX kernel flushes its buffer cache)
[MCKU84]4. For each STF calculation, the actual I/O time is multiplied by a weighting value W.
W is computed by calculating how much time is left before this request will exceed the maximum
allowed response time. Thus, the weighted time is:

Let TW be the Weighted Time
Treal be the actual I/O Time
M be the Max response time allowed
E be the elapsed time since this request arrived

TW =Treal M
M −Ehhhhh

As the elapsed time increases, the weighting factor becomes smaller, the weighted time
decreases, and the request is more likely to be serviced.

This algorithm displays remarkable performance. In most cases, the average I/O time is
within 1-2% of the STF I/O, yet the maximum response time drops dramatically. Since WSTF
has an enforced maximum response time, no I/O response time is allowed to take more than 30
seconds. In contrast, the STF ‘‘maximum’’ response time was empirically determined, and it did
not guarantee that every request got serviced.

In trying to understand why WSTF performs so well, it is useful to observe that STF is a
greedy algorithm. Always selecting the shortest time first means that regions of the disk get ser-
viced first. However, as regions get cleaned off, there are fewer close requests to service. With
WSTF, periodically, the arm is forced to do a ‘‘bad’’ seek, that is, one more costly than another.
As a result, the head is in a new region providing the algorithm a better choice of requests from
which to select. ‘‘Bad’’ seeks may also occur when a read or a forced write ( i.e. a write that
must go immediately to disk ) is issued. Our results imply that these long seeks are unlikely to
harm overall utilization.

6. Conclusion

There are two main conclusions from our work. First, substantial performance improve-
ments (on the order of 3 to 4 times) can be gained by these scheduling mechanisms. As the queue
from which one selects requests becomes larger, even more improvement can be realized.
Second, there are algorithms which achieve this improved performance and still ensure fairness.
However, note that at queue lengths of up to 1000, the best algorithms yield less than 40% disk
utilization. This still leaves much room for improvement.

The implication is that greater utilization of disk bandwidth is achievable by viewing most
of main memory as a large write buffer. In systems where the order of writes is unconstrained,
one can take advantage of this unordered nature of writes to minimize the disk seek overhead.
Therefore, larger file caches may be used not only to minimize I/O’s but to make the necessary
I/O’s individually cheaper.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
4One could also adjust the acceptable response time based on the number of requests in the queue (e.g. 150% * average I/O time

of FCFS * queue length). Runs with these response time limits yielded results within a few percent of runs with the 30 second limit.
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