Future Work

 Finish building VINO.

* Networking.
e Naming.

 Build applications that use extensions to
optimize performance.

* Interface design.

* What types of extensions actually get used?
 Reuvisit flexibility vs. performance trade-off.

E-mail: {chris, keith, margo, yaz} @ecs. harvard. edu

Web site: http://ww. eecs. harvard. edu/ ~vi no/ vi no

Dealing with Disaster

Conclusions

e Possible to build extensible OS.
» Extensible OS is a good idea.
 Performance trade-off is critical.

» Applicable beyond field of operating
systems (e.g., to web browsers).

Dealing with Disaster

Performance Summary

« 100-450us total overhead.

* Not cheap.

» Negligible when savings is disk I/O.

« Untuned implementation.

* Not feasible for tiny performance improvement.

Dealing with Disaster

Performance Overhead

Overhead in ps

RA VM Sched | Encrypt
Begin 36 52 38 32
Commit 28 34 30 32
Abort 29 27 33 36
Lock 33 34 33 0
Graft 2 160 35 166
Indir 1 1 0
SFI 3 26 5 187
Total 103 307 142 417

Dealing with Disaster

Sample Grafts

 Measured costs on sample extensions.

* VM Page eviction.
« Keep important pages in memory.
* File read ahead.
« Support non-sequential, but known access.
* Process scheduling.
 Allows group scheduling.
» Data encryption.
« Adds new functionality.
 Filter between user and file system.

Dealing with Disaster

Jaisesiq yum Buieag

VINO kernel code

|

|

locks

locks

yred aseq

z <
- —Z |Z
Transaction Begin |5 | O
Qo
> |2
.4 v
Graft Null graft
2>
o
@)
Z =1
? S
2 2
AL o
© || Transaction
£ abort l
>
vy
Y v Default
Transaction End policy

|

|

Results checking

9JourwW.Iolad bunnses|y

Performance

 Allowing extensibility has costs.

» Extra levels of indirection.

» Transaction overhead.
 Validation of return value(s).
» Cost of graft code.

« Software fault isolation.

« Abort cost.

Dealing with Disaster

Transaction Implementation

« Extensions invoked through wrapper.

* Begin a transaction.
« Switch stacks.

« Calls extension.

« Commits transaction.

e State changes must be logged.

« State changes made by accessor methods.

» Accessor methods write log records.

* Log can be transient.

« Implemented as a call stack of undo functions.

e |f extension fails, abort transaction.

« Jump to abort call stack.
» Return through each “undo” function.

Dealing with Disaster

Transactions

e Why?
« Guarantee atomicity.
« Single mechanism to enforce consistency.

» Generally useful tool.
» Allows nested extension calls.

e How?

» Returns kernel to pre-extension state on failure.

* Ensures that other threads do not depend on interim
extension state.

Dealing with Disaster

Handling Failure

e Remove extension from kernel.

« Undo changes to kernel state made by
extension.

 Free memory.
* Release locks.

Dealing with Disaster

Interface Abuse

« Misusing legal interface functions.

» Fail to release locks.
 Fail to free resources (e.g., memory).
» Operating system must detect these
problems.
* Time-out contested locks.
» Resource limits.
» Trade-off between interface flexibility
and potential for abuse.

 Disallow locks; require lock-do-unlock interface.
 Allow locks; support lock, do, ..., do, unlock interface.

Dealing with Disaster

Protecting the Kernel

« Extension accesses forbidden memory.
« Software fault isolation (VINO).
« Safe language (e.g., Java, Modula-3 [SPIN]).

e Extension returns invalid data.
 Validate return values.
e Time-out long running extensions.

e Extension calls forbidden functions.
 Static check at download time.

« Software fault isolation checks indirect jumps.

» Check security—extensions have privileges of
application that installed them.

Dealing with Disaster

Extensibility Challenges

e Three Interfaces between extension and
kernel.

e All three interfaces can be abused.

Interface: Kernel and extension share memory.

Problem: Extension reads/writes private kernel
memory.

Interface: Kernel calls extension.

Problem: Extension returns invalid data (or doesn’t
return).

Interface: Extension can call other kernel functions.

Problem: Extension calls forbidden kernel
functions.

Dealing with Disaster

VINO Implementation

 New kernel design and implementation.
« Use NetBSD device drivers and locore.
e Object-oriented design (C++).

» Design for per-method extensibility.

« Highly (overly?) modularized.
e Encapsulate every policy decision in a method.
« Two extension techniques:

Replace or extend methods.

Specify event handler.

Dealing with Disaster

Extensibility in VINO

« Working assumptions

 The OS frequently does almost the correct thing.
« Often minor tweaks can fix major problems.
* Minimize effort to modify kernel behavior.

» Design principles
 Extensibility should be fine-grain (e.g., function call).

» Extensions should look just like kernel code.
e Extensions should be able to call kernel functions.

Dealing with Disaster

Why Extensibility?

e Systems optimize for the common case.
e Some important cases are uncommon.
« Phenomenon appears in many places.

» Database servers.
 Download queries.
 Download new data types.

* Web browsers.
* Download applets.

» Operating systems.
e Download drivers.
* Download entire subsystems.
e Download minor modifications.

Dealing with Disaster

Outline

« Why extensibility?
« Extensibility in VINO.

e Challenges in extensibility.

e Performance.

Dealing with Disaster

Dealing with Disaster:
Surviving Misbehaving
Kernel Extensions

UE

Margo Seltzer, Yasuhiro Endo, Chris Small,
and Keith Smith

Harvard University
Division of Engineering and Applied Sciences

October 31, 1996

