Choosing a Data Model and Query Language for
Provenance

David A. Holland, Uri Braun, Diana Maclean,
Kiran-Kumar Muniswamy-Reddy, Margo I. Seltzer

Harvard University, Cambridge, Massachusetts
pass@eecs.harvard.edu

Abstract. The ancestry relationships found in provenance form a di-
rected graph. Many provenance queries require traversal of this graph.
The data and query models for provenance should directly and naturally
address this graph-centric nature of provenance. To that end, we set out
the requirements for a provenance data and query model and discuss why
the common solutions (relational, XML, RDF) fall short. A semistruc-
tured data model is more suited for handling provenance. We propose
a query model based on the Lorel query language, and briefly describe
how our query language PQL extends Lorel.

1 Introduction

Our provenance aware storage system (PASS), which transparently and auto-
matically collects file-level provenance from unmodified Linux applications [14],
tackled the problem of automatic collection, but did not consider querying. We
participated in a community effort to compare and contrast different approaches
to provenance collection (the First Provenance Challenge [15,13]), and quickly
discovered that query capabilities were integral to the system.

Provenance differs from other forms of meta-data because it is based on
relationships among objects. This includes both ancestry relationships (which
must be acyclic) and relationships of object identity, which might form cycles.
In practice, provenance forms a directed graph, and paths through this graph
form the basis of many queries. Seven of the nine Provenance Challenge queries
involve paths. Unfortunately, most existing data management and query models
are ill suited to handle graphs and paths through graphs.

Most existing provenance systems use relational, XML, or RDF storage, and
the corresponding languages for querying [13]. These models are not well suited
for querying provenance data. The relational model does not provide native
support for graphs, which must be treated as lists of nodes and edges. XML has
a different problem; it is hierarchical and does not naturally represent objects
with multiple parents. Finally, while the RDF query language SPARQL supports
graphs, paths are not first class objects and it lacks various necessary features.

This paper discusses the difficulties with the prevalent query models and
describes the PASS choice of an alternative, a semistructured data model. We
adopted a variant of the Lore database manager’s query language Lorel [1].



In Section 2, we review the essential characteristics of provenance. Sections 3,
4, and 5 describe the shortcomings of relational, XML, and RDF-based query
processing respectively. We then turn to query languages for semistructured
data in Section 6 and briefly introduce our query language PQL in Section 7.
We conclude in Section 8.

2 The Nature of Provenance Data

Provenance data is based on object relationships and is inherently graph-oriented.
When an object O is found to have been derived from some other object P, we
say that P is an ancestor of O, or O is a descendent of P. This is an ancestry
relationship. Because objects may be derived from multiple sources, and objects
may have multiple new objects derived from them, ancestry exhibits “diamonds”
and is a graph, not a tree. Because these relationships are not symmetric, the
graph is directed. Because cyclic ancestry would violate causality, ancestry must
be acyclic. Other relationships specifying object identity may appear as well,
however, and these relationships need not be acyclic. Two objects O; and Os
that together form a single data set might each point to the other. So in general,
provenance forms a directed graph but not necessarily a directed acyclic graph.
Because there are multiple kinds of ancestry relationships, it must be possible
to label the edges of the graph.

While objects may have assorted other provenance-related attributes and
annotations, it is the relationships and specifically the ancestry relationships
that form the heart of provenance data. These relationships usually lie at the
core of provenance queries. Moreover, these relationships are most valuable when
considered not one at a time, but in aggregate: the structure of the ancestry
in a provenance system is the most interesting and most valuable information
it provides. We shadowed several computational science users and found that
they were often interested in identifying friends — groups of files processed the
same way. Such processing, a sequence of transformations, appears as a path
through the ancestry graph. Handling friends requires not just following paths
but comparing and manipulating them. Conversely, given a group of objects one
might wish to inspect the processing steps that generated them.

The importance of such queries makes good support for paths necessary for
querying provenance. This requires making paths first class objects; it must be
possible to treat found paths as language-level objects and operate on them. It
is also necessary to be able to follow paths whose exact structure is not known
in advance. This requires pattern matching over sequences of graph edges as
well as pattern matching against the labels on graph edges (that is, the names
of relationship attributes) themselves. We believe that support for full regular
expressions over graph edges is important, particularly if combining provenance
data from multiple sources whose attribute names may not be fully consistent.

Provenance queries also need aggregation operators. For example, consider
the queries that find all objects with at least ten immediate ancestors, or that



find results derived from data sets whose average calibration quality exceeds
some threshold. Counting and averaging are aggregation operations.

Any query involving two or more disjoint collections of objects makes sub-
query support desirable. The question “Are there more objects derived from
my data set than from my competitor’s data set?” requires issuing two queries
and comparing the results. While one can run these queries separately, for large
provenance stores or more complex queries than this example it can be important
for performance to allow the query planner to see both at once.

Any data model used for provenance should have a natural representation
for directed graphs; and any query language should have direct, simple, and
straightforward support for reasoning about graphs and paths through them.

Note that this is a matter of language expressivity (and, importantly, usabil-
ity) at the front end. The choice of back-end storage in any particular provenance
system should be driven by implementation considerations.

3 Shortcomings of Relational Provenance

The relational data model is, roughly speaking, the complete antithesis of a
graph-oriented model. The only way to represent a graph as relations is as a
list of nodes and edges, and the only way to create paths is to join the list
to itself repeatedly. This does not mean that queries based on paths cannot
be expressed, but it means that such queries must be mentally translated into
relational algebra before being written down.

Moreover, queries involving arbitrary repetitions of edges in a path require
mental translation to SQL transitive queries. These are now supported in SQL-
99 [6] (SQL Server, DB2) and also (using a different syntax) in Oracle Server, but
they are complex and awkward. The SQL-99 form requires constructing a view
and two sub-queries. Writing complex path queries this way quickly becomes
unwieldy; stored procedures are recommended as an alternative method. Oracle’s
custom syntax suffers from similar problems.

The SQL-99 transitive queries also cannot provide regular expressions over
path edges, only paths consisting of simple repetition. It also does not support
applying arbitrary predicates to the objects along a path, so path queries cannot
readily be combined with additional conditions. For example, a query requesting
all documents derived from processes running programs whose names include the
string “Microsoft” (e.g., “Microsoft Word”, “Microsoft Excel”) requires both a
transitive closure and a matching operation on object names.

And finally, because paths are not first class objects, there is no way to
determine if two paths lead to the same object, cross the same objects, or if two
objects are friends as defined above.

Two of the teams participating in the First Provenance Challenge used the
relational data and query model, and both were hampered by it. ZOOM, using
Oracle transitive queries, was unable to answer query seven, which asks for a
comparison of two sets of paths. The REDUX team needed to build a special-
purpose query tool to handle recursive queries. Two further groups used SQL



for some queries and other methods for other queries, which suggests that they
found none of their methods truly satisfactory.

Provenance is fundamentally not relational, and the relational model is at
best awkward. It is used regardless only because robust production-grade rela-
tional database systems are easily available and readily deployed.

4 Shortcomings of Provenance-as-XML

Unlike the relational data model, XML supports paths. XPath and XQuery [18]
allow writing down paths as first-class objects and support placing conditions on
path elements. XML thus appears to be a good choice for provenance queries.
We in fact pursued this alternative for some time.

However, XML is tree-structured. An XPath path (or an XQuery path query)
starts at the root of an XML document and selects some subsection of it, by pass-
ing through the various increasingly specific entities that contain that subsection.
Because of the containment property, there can be no “diamonds” in XML data.
There is no natural support for graphs; because ancestry forms a directed graph
rather than a tree, XML and XQuery are a poor fit for provenance.

It is tempting to try to reuse the XML path model and XML query languages
and extend them to allow reasoning about paths through a graph. We took this
route at first. We spent several months pursuing an XQuery-related query system
before ultimately abandoning it. It works, but is unpleasant to use. Furthermore,
it turns out that the XML path model is more strongly dependent on the tree
structure of XML than it appears at casual inspection. As a result, our query
language needed to diverge substantially from XQuery, and its relationship to
XQuery became a liability rather than an asset.

For example, in XQuery, a path always has the value of the object at the
right end. While one can insert predicates into the path to restrict intermediate
objects, it is impossible to extract those objects themselves for further inspection
or comparison against elements of other paths. Intermediate objects can also
sometimes be the desired query result, such as in “find me all programs that
appear in the derivation chains leading from a common ancestor to the following
files.” These problems can sometimes be worked around by splitting paths into
multiple parts; however, doing so sacrifices the expressive power of the path
notation.

XQuery lacks general regular expressions on path elements. This allows sim-
ple queries like “find all objects”, but falls down on more complex conditions
that require alternatives or repeated subsequences. XQuery also fails on Query
2 from the Challenge, which asks for an ancestry list stopping at a particular
point. The natural way to express this is a path that does not cross any ob-
ject matching the stopping point. But this requires writing a path where this
criterion is applied to a repeating entity, which XQuery does not support.

XQuery paths are composed of names of objects. This is wrong for provenance
data; instead, paths should be composed of names of edges between objects. (This
is the model used in Lorel.) In our experience objects in provenance queries are



not identified primarily by an object name; they are found by either attribute
matching or their position in the graph structure. In the Second Provenance
Challenge [16], most groups’ data either did not have object names as such or
had arbitrarily assigned (and not human-readable) ID codes as names. Typing
these into a query engine is not the right approach.

A different way to use XML for provenance is simply to use it as a container,
and use XML cross-references to establish a graph. XPath/XQuery paths cannot
then traverse the graph, however; one must write procedural code, either in
XQuery itself or in some other language, to do the traversals. All of the teams
in the First Provenance Challenge that used XML (in the back end or at the
query layer) took this approach and wrote code to handle the challenge queries.

Writing code to work around the query language is not desirable. While XML
might or might not be an adequate back-end representation, we conclude that
XPath and XQuery are not appropriate for provenance data.

5 Shortcomings of RDF and SPARQL

The Resource Description Framework (RDF) is a data format for directed labeled
graphs. SPARQL [17] is a query language for graphs stored as RDF. These two
points suggest that RDF might be a good data model for provenance data and
that SPARQL might be a good query language. However, even though SPARQL
is explicitly intended for graphs, it lacks fundamental features as well as other
useful query support.

SPARQL has well-known shortcomings. It lacks support for sub-queries,
many aggregation functions, and expressions in select clauses. There are ex-
tensions that address almost every one of these limitations [7,11], but no single
extension includes everything one wants and extensions are not readily combined.

For provenance, the most serious problem is that SPARQL does not support
path variables, constraints on path expressions, or path expressions of arbitrary
length [3,9]. There are extensions for these features also [2,12]. Of these, SPAR-
QLeR appears to have the most powerful path expressions, but it lacks the other
features previously mentioned.

Some of these limitations can be worked around. In the Challenge, teams
that used SPARQL (or its predecessor TriQL) worked around the lack of path
expressions using two techniques. One approach involved explicitly coding the
endpoint node in the query thus avoiding the necessity for a path search in the
first place. Another method was to explicitly build the full path as a sequence of
single steps. Finding all grandparents of x is thus a three-step process: 1. “let y
be the parents of z”7, 2. “let z be the parents of y”, and 3. “return all z’s.” This
sacrifices the power of path notation and does not generalize to arbitrary length
paths with repeating elements.

SPARQL is not presently suitable for provenance. It is possible that some
future combination of extensions could yield a sufficiently powerful dialect. Cur-
rently, however, there are competing designs for each extension feature and no
single dialect with all the necessary parts.



6 Semistructured Data

For a solution, we turn to semistructured data, a model providing a system of
objects with linkages interconnecting them and with no formal predetermined
structure. This model, from the object-oriented database community, provides
a clean representation of graph-oriented data, which naturally fits provenance.

Furthermore, provenance may include arbitrary application-specified or user-
specified annotations whose names and relationships are not known in advance
and may vary from site to site. A semistructured data model supports this
environment. Traditional object query languages like OQL [5] rely on a fixed
schema of possible relationships that is not suitable for storing and integrating
provenance collected from multiple sources.

A number of projects have tackled querying of semistructured data, resulting
in the query languages UnQL [4], StruQL [8], GOOD [10], and Lorel [1].

UnQL provides a procedural query language based on structural recursion
through tree-oriented data. The power of the language is carefully restricted to
allow a suitable level of query optimization. However, it only handles graphs by
recursively expanding them into trees; this is not good for provenance. It also
does not support any concept of paths.

StruQL’s primary concern is the ability to transform graphs; a StruQL query
is a set of path-based rules for traversing a graph and producing another graph
as the output. While this is a potentially useful ability for provenance, it does
not seem suitable as the only query modality. Furthermore, while StruQL does
support paths with full regular expressions over graph edges, the paths are not
first-class objects and there is no straightforward way to manipulate or relate
them. StruQL also does not appear to be able to address objects found along
sections of paths matched by repetition operators, which we believe necessary
for cleanly representing queries like Query 2 from the Challenge.

GOOD (Graph Oriented Object Database), like StruQL, is primarily con-
cerned with transforming graphs. It provides five transformation operations to
apply independently to a input graph to obtain the desired output graph. Beyond
simple forms, these transformations are applied procedurally rather than declar-
atively. It also does not support paths. These properties make it not suitable for
provenance.

Lorel, however, provides almost exactly what we want. The basic element of
a Lorel query is a path. Paths are specified as regular expressions rather than
mere sequences, and are formed from edge names rather than node names. Paths
are first-class objects and can be manipulated at the language level. Objects
found within a path (as well as edges and subpaths) can be bound to variables
for inspection or restriction. Paths can furthermore be joined to one another
in the relational sense. These features allow expressing more complex matching
structures, such as “friend” queries, and allow querying the structure of the data
in addition to the contents. The support for generating complex graphs as results
is, however, rather limited.



7 PQL

We have developed our own query language called PQL, which is based on Lorel
with extensions for handling provenance. A complete discussion of PQL is beyond
the scope of this paper; we describe only the key differences from Lorel.

The most visible difference is that we have extended graph edges to be bidi-
rectional. Lorel’s object-oriented worldview has, essentially, pointers: one-way
linkages. In provenance, however, every descendent relationship is also an an-
cestor relationship, and it makes sense to be able to traverse the corresponding
graph edge in either direction. This requires a corresponding extension to edge
naming. Since navigation is by edge name, and edges generally have directional
names (such as ancestor or input), using the same name to traverse an edge in
either direction would cause mass confusion. Maintaining and enforcing a master
list of arbitrary pairs of names for each direction of a relationship would defeat
one of the main purposes of using semistructured data. We also wanted to rule
out being left with half of a bidirectional linkage. We extended the grammar to
allow appending -of to edge names to specify the reverse direction. Thus in our
database you can follow input edges forward or input-of edges backward.

We also made two relatively minor extensions to edge naming. In Lorel, graph
edges and thus relationship names may only be identifiers. We allow integers as
well, because some of our data (argv arrays) most naturally uses integer indexes.
We also allow converting any primitive value (rather than just a previously
encountered path segment) to the name of a graph edge in a path. This adds
flexibility and also allows handling edges that contain non-identifier characters.
We expect to use file system path names (such as /bin/sh) as the names of
graph edges.

Other extensions include lifting Lorel’s restrictions on the complexity of reg-
ular expressions in paths, allowing boolean values to appear in the database or
be query results, and adding string matching by shell globs (*.gif) to Lorel’s
support for text regular expressions (~.*\.gif$). The last is important for our
environment, which contains many file system names. We hope to add more
powerful graph construction in the future.

8 Conclusions

Querying provenance introduces new and interesting questions about query mod-
els. The idea of a path, so central to provenance, is notably absent or seriously
limited in most existing models and languages. While one might build systems
to support provenance queries in those contexts, we have found no existing com-
plete solution. The Lorel query language and our extended form PQL appear to
address the shortcomings of existing systems. However, only further use and ex-
perimentation will reveal if we have overlooked some further fundamental prop-
erty of provenance.



References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel
query language for semistructured data. International Journal on Digital Libraries,
1(1):68-88, 1997.

F. Alkhateeb, J. Baget, and J. Euzenat. RDF with regular expressions. Research
report 6191, INRIA Rhéne-Alpes, Grenoble (FR), 2007.

K. Anyanwu, A. Maduko, and A. P. Sheth. SPARQ2L: towards support for sub-
graph extraction queries in RDF databases. In WWW, pages 797-806, 2007.

P. Buneman, M. F. Fernandez, and D. Suciu. UnQL: a query language and algebra
for semistructured data based on structural recursion. VLDB Journal, 9(1):76-110,
March 2000.

R. Cattell. The Object Database Standard: DBMG-93. Morgan Kaufman, 1994.
A. Eisenberg and J. Melton. Sql:1999, formerly known as sql3. SIGMOD Record,
1999.

SPARQL//Extensions. http://esw.w3.org/topic/SPARQL/Extensions.

M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Suciu. A query language for a
web-site management system. SIGMOD Record, 26(3):4-11, 1997.

GLEEN: Regular Paths for ARQ SparQL. http://sig.biostr.washington.edu/
projects/ontviews/gleen/index.html.

M. Gyssens, J. Paredaens, J. V. den Bussche, and D. van Gucht. A graph-oriented
object database model. IEEE Transactions on Knowledge and Data Engineering,
6(4):572-586, 1994.

SPARQL Extensions. http://jena.hpl.hp.com/wiki/SPARQL_Extensions.

K. Kochut and M. Janik. SPARQLeR: Extended Sparql for semantic association
discovery. In ESWC, pages 145-159, 2007.

L. Moreau et al. The First Provenance Challenge. Concurrency and Computation:
Practice and Ezperience. Published online. DOT 10.1002/cpe.1233, April 2008.
K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer. Provenance-
aware storage systems. In Proceedings of the 2006 USENIX Annual Technical

Conference, June 2006.

The First Provenance Challenge. http://twiki.ipaw.info/bin/view/
Challenge/FirstProvenanceChallenge.
The Second Provenance Challenge. http://twiki.ipaw.info/bin/view/

Challenge/SecondProvenanceChallenge.

E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF, January
2008.

XQuery 1.0: An XML query language.



