
Future Work
• Different Cleaners.

• Assess disk utilization vs. performance
for LFS in TP1-like benchmarks.

• Try to make FFS recover quickly (do
inode and block allocation in batches).

• Figure out if LFS is really viable.

• Papers available via anonymous ftp:
toe.cs.berkeley.edu:pub/personal/margo/

thesis.ps.Z

usenix.1.93.Z

CONCLUSIONS

4.4 BSD-LFS

Conclusions
• Garbage Collection: Consider it

harmful!

• Asynchronous directory operations are
good.

• Clustering is good.

• Clustering writes of different files, not
obviously such a win.

• FFS is remarkably flexible and robust.

CONCLUSIONS

4.4 BSD-LFS

TP1 Performance
T

ra
n

s
a

c
ti
o

n
s
 p

e
r

s
e

c
o

n
d

0

5

10

15

20

FFS EFS LFS

PERFORMANCE

4.4 BSD-LFS

TP1 Performance
T

ra
n

s
a

c
ti
o

n
s
 p

e
r

s
e

c
o

n
d

0

5

10

15

20

FFS EFS LFS LFS-1M LFS-256K

PERFORMANCE

4.4 BSD-LFS

OO1 Performance

FFS EFS LFS

Lookup Insert Forward Backward

E
la

p
s
e

d
 T

im
e

 i
n

 s
e

c
o

n
d

s

0

10

20

30

PERFORMANCE

4.4 BSD-LFS

Multi-User Andrew
Performance

0 2 4 6

E
la

ps
ed

 T
im

e
in

 s
ec

on
ds

0

25

50

75

FFS

EFS

LFS

PERFORMANCE

4.4 BSD-LFS

Single-User Andrew
Performance

FFS EFS LFS LFSC

Create Copy Stat Grep Compile Total

E
la

ps
ed

 T
im

e
(in

 s
ec

on
ds

)

0

20

40

60

80

PERFORMANCE

4.4 BSD-LFS

Small File Performance

FFS EFS LFS

Create Read Delete

F
ile

s
pe

r
se

co
nd

0

100

200

300

PERFORMANCE

4.4 BSD-LFS

Raw Performance

Transfer Size (in MB)

0 2 4

T
h

ro
u

g
h

p
u

t
(i
n

 M
B

/s
e

c
)

0.0

0.5

1.0

1.5

2.0

Raw Read Performance

RAW FFS EFS LFS

Transfer Size (in MB)

0 2 4

T
h

ro
u

g
h

p
u

t
(i
n

 M
B

/s
e

c
)

0.0

0.5

1.0

1.5

2.0

Raw Write Performance

PERFORMANCE

4.4 BSD-LFS

Performance
• Compare three systems:

LFS: BSD Log-Structured File System

FFS: Standard BSD Fast File System

EFS: FFS with clustering turned on
and maxcontig set so that cluster is
64K (maximum allowed by our
controller).

• HP9000/380 (25 Mhz 68040)

• SCSI SD97560 (13 ms average seek, 15.0
ms rotation, 1.6 MB/sec maximum bus
bandwidth).

PERFORMANCE

4.4 BSD-LFS

Read-Ahead: Pleasures and
Pitfalls

• Sequential case easy: get nearly 100%
of I/O bandwidth.

• Problem: How much do you read-
ahead?

• Consider reading 8K logical pages on a
4K file system.

• Placing read-ahead blocks on regular
queue can cause cache thrashing

CLUSTERED FFS

4.4 BSD-LFS

Clustering in the Fast File
System

Extent-like Performance from a UNIX
File System

Larry McVoy, Steve Kleiman
Proceedings 1991 Usenix Technical Conference
January 1991

• Set maxcontig high (a track or maximal
unit to controller).

• Read/Write clusters of contiguous
blocks.

• 350 additional lines to FFS.

CLUSTERED FFS

4.4 BSD-LFS

Comparison to FFS

FFS LFS

Replicated Superblock Replicated Superblock

Cylinder Groups Segments

Inode Bitmaps Inode Map

Block Bitmaps Segment Summaries
Segment Usage Table

DATA STRUCTURES

4.4 BSD-LFS

The Ifile

clean segments

dirty segments

SEGUSE 0

...

SEGUSE N

IFILE 0

IFILE 1

...

IFILE N

Cleaner Information

bytes
last modification time
summaries
inode blocks
flags

version
inode address
free inode ptr

DATA STRUCTURES

4.4 BSD-LFS

Segment Summary

summary checksum
data checksum
next segment ptr
creation time
FINFO structures
Inode addresses
flags

FINFO-0
...
FINFO-N

Inode Address-M
...
Inode Address-0

blocks
version
inode number
block-0
...
block-N

DATA STRUCTURES

4.4 BSD-LFS

Segments

...

Partial Segments

Superblock (optional)

Segment
Summary Data blocks, inodes, indirect blocks

DATA STRUCTURES

4.4 BSD-LFS

New Data Structures
• Inodes no longer in fixed locations.

Introduce inode map to locate inodes.

• Segments must be self-identifying.

Use segment summary blocks to
identify blocks.

• Must know which segments are in use.

Maintain segment usage table.

DATA STRUCTURES

4.4 BSD-LFS

Data Structures
• Segments

• Partial Segments

• Segment Summary Blocks

• FINFO Structures

• IFILE

• Cleaner Info

• Segment Usage Structure

• Inode Map

BSD-LFS

4.4 BSD-LFS

Inode Allocation
• Sprite: Inode map is a sparse array.

Directories allocated randomly.

Files allocated by searching
sequentially after directory.

+ Clustering in IFILE

- Linear searching.

• BSD: Maintain free inodes in linked list.

+ Fast allocation.

- No clustering in IFILE.

BSD-LFS

4.4 BSD-LFS

Directory Operations
• Sprite: Maintains additional on-disk data

structure to perform write-ahead
logging.

• BSD: Uses “segment-batching” to
guarantee ordering of directory
operations.

Sprite writes less data.

BSD avoids extra on-disk structure.

Roll forward simpler in BSD.

Does anyone really care???

BSD-LFS

4.4 BSD-LFS

The Inode Map and Segment
Usage Table

• Sprite: Special kernel memory
structures

• BSD: Stored in regular IFILE (read-only
to applications; written by the kernel).

Simplifies kernel.

Provides information to cleaner.

BSD-LFS

4.4 BSD-LFS

Free Block Management
• Sprite: does not check disk utilization

until block is written to disk.

Can accept writes for which there is
no disk space!

• BSD does two forms of accounting:

Free blocks: blocks on disk that do
not contain valid data.

Writable blocks: clean segments
available for writing.

BSD-LFS

4.4 BSD-LFS

Memory Usage
• Sprite reserves large portions of

memory

2 staging buffers

one segment system-wide for
cleaning

1/3 of buffer cache reserved read-only

• BSD uses normal buffer pool buffers,
allocates space dynamically when
necessary

• Cleaner competes for virtual space.

BSD-LFS

4.4 BSD-LFS

The Cleaner
• Sprite: Kernel process

Single process cleans all file systems

Kernel memory reserved for cleaner

• BSD: Cleaner runs as user process

Reads IFILE

Uses system calls to get block
addresses and write out cleaned
blocks

Competes for VM with other
processes

BSD-LFS

4.4 BSD-LFS

Design Changes
• The Cleaner

• Memory Usage

• Free Block Management

• The Inode Map and Segment Usage
Table

• Directory Operations

• Inode Allocation

BSD-LFS

4.4 BSD-LFS

4.4BSD-LFS
An Implementation of a Log-Structured
File System for UNIX

Margo Seltzer, Keith Bostic, Kirk McKusick, Carl
Staelin
Proceedings Usenix Technical Conference
January 1993

• New design and implementation

• Merged into vfs/vnode framework.

• 60% code shared with FFS.

• Data structures similar to FFS.

OVERVIEW

4.4 BSD-LFS

Sprite-LFS
The Design and Implementation of a
Log-structured File System

Mendel Rosenblum
Operating Systems Review
October 1991

• Runs on the Sprite experimental
operating system.

• LFS Running since 1990.

• 10 Active file systems including home
directories, source tree, executables,
and swap.

OVERVIEW

4.4 BSD-LFS

Extending or Modifying Files
• Update block 0 in file 2

• Append a block to file 1

FFS

LFS

overwrite block 0append new block

new copy of block 0 and inode
new block and new copy of inode

OVERVIEW

4.4 BSD-LFS

Allocation (LFS)

create file 2 (2 blocks)

create file 1 (3 blocks)

...
segments

OVERVIEW

4.4 BSD-LFS

Allocation (FFS)

cylinder groups

inodes data blocks

create file 1 (3 blocks)

create file 2 (2 blocks)

...

OVERVIEW

4.4 BSD-LFS

Log-Structured File Systems
Beating the I/O Bottleneck: A Case for
Log-Structured File Systems

John Ousterhout, Fred Douglis
Operating Systems Review
January 1989

• Make all writes sequential.

• Avoid synchronous operations.

• Use garbage collection to reclaim
space.

• Use database recovery techniques.

OVERVIEW

4.4 BSD-LFS

Outline
• An Overview of Log-Structured File

Systems

• BSD-LFS Design

• Data Structures

• Clustering in the Fast File System

• Performance

• Conclusions

OVERVIEW

4.4 BSD-LFS

Project
• This is work done at Berkeley with the

Computer Systems Research Group.

• Collaborators:

Keith Bostic

Kirk McKusick

Carl Staelin

4.4BSD-LFS
Design, Implementation & Performance

Margo Seltzer

Harvard University

Division of Applied Sciences

EV IR

T A S

