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Abstract patch machines individually or in small groups, at
a huge disadvantage.

System security as it is practiced today is a losirgome techniques have been developed to block
battle. In this paper, we outline a possible comprevhole classes of attacks: for example, StackGuard
hensive solution for binary-based attacks, using vi5] effectively prevents a certain type of buffer-
tual machines, machine descriptions, and randoiased attack; the more recent PointGuard [4] protects
ization to achieve broad heterogeneity at the magainst a wider range of such attacks. Recent work
chine level. This heterogeneity increases the “cositi shepherded execution [10] has the potential to stop
of broad-based binary attacks to a sufficiently higtode-injection attacks and many flow-of-control at-
level that they cease to become feasible. The contacks. However, most of these tools are quite spe-
gence of several recent technologies appears to mak& in nature, and in many cases they amount to an
our approach achievable at a reasonable cost, witlrms race between exploit writers and security tool
only moderate run-time overhead. developers, with both sides becoming increasingly
creative and clever. This means that while they help,
they don't really offer a lasting solution to the under-
] lying problem of security bugs.
1 Insecurity

Today, security is a losing battle. There is always o2 Monoculture

more bug, and generally that means there is also al-

ways one more exploitable bug. To close these holes,

administrators must keep up with a constant stre@bserve that most exploit scripts that circulate

of patches and fixes; these are not always themselwadely target only the most commonly deployed

entirely benign relative to the functioning of the syplatforms. In the early 1990s this meant that

tems they protect. most circulating exploits were for Sparcs running
SunOS. Today it means that most exploits target

Worse, numbers are on the side of the hackefigtel-architecture computers running either Windows

Sooner or later after an exploitable bug is discoyr Linux. Exploits for the same bugs that target other

ered, canned exploit scripts for the bug begin to Ci:ﬁfatforms circulate much less readily.
culate. Only one person need write such a script;

once the script exists, any passing vandal (or authy is this? The short answer is that most exploits,
mated worm) can use it to break into thousands édrticularly those for remotely-exploitable vulnera-
computers. This puts administrators, who have lidities, are not portable because they #&ieary.



They rely on specific machine-level characteristicsust patch machines individually, but hackers must
of the target platform in order to work: word sizetarget machines individually as well. Furthermore, it
byte order, calling conventions, compiler peculiarputs the so-called “script kiddies” out of business en-
ties, program load addresses, even the instructiontiety: with no canned exploit scripts, breaking into
itself. Different machine architectures, and, oftesystems by rote is no longer possible.

different operating systems on the same architecture,

are slightly different in these respects, so that whilde possible advantages for the security and integrity
all p|atf0rms may be Vu|nerab|e’ any particu|ar e%)_f the Internet are enormous. So the question arises:
ploit must be customized for one specific platfornfow can this level of architectural diversity be de-
There are thus d|m|n|sh|ng returns for targeting anpl.oyed? Itis ObViOUSIy infeasible to invent millions
thing but the most common platforms. For exampl@f new machine architectures and fabricate them in
the Morris worm attacked only two platforms, evefardware.

in the relatively heterogeneous world of 1988 [12]. o .
The answer, we argue, lies in combining two re-

As the OS market continues to consolidate, the m&&§intly popular ideas: virtual machine monitors and
common p|atf0rms become re|ative|y more CommdjﬁaChine deSCfiptionS. We envision a virtual machine
still, and this problem worsens. Much has been wri?onitor that runs standalone on commodity hard-
ten recently about the risks nfonoculturd8]. Asin Wware and presents an appearance indistinguishable
biology, a certain degree of heterogeneity is healtfigm a (perhaps slower) exotic machine implemented
[6]: it provides protection for both the individual, bedirectly in hardware.

cause the individual may be resistant to any particu-

lar problem, and for the population as a whole, pd.seems to be generally accepted at present that a

cause any particular problem is unlikely to be able good V'rtllial m?jcrr:mi monlt_orr]_ls r?uffl'men'i to Cﬁ'n-
affect everything at once. tain attacks (and hackers) within the virtual machine

and prevent direct attacks on the host. For example,

Individual sites can leverage this principle to a cearfinkel etal. [7] recently proposed a system whose
tain degree by running exposed services on less Cd—}ﬁtire SeCUI'ity basis rests on using a virtual machine
mon platforms, a practice the authors have persdéponitor this way. Similarly, honeypots are routinely
ally found to be useful. However, doing so is an ifuilt using virtual machines [13].

stance of security by obscurity: it does not scale, and ) _
successful exploit scripts might always appear. Fifiher recent work [2], as well as experience with

thermore, the supply of suitable platforms is Iimite(f.VMS_' suggests that the overhead from the virtual
machine can be made tolerable — although probably

not negligible, particularly if the virtualized machine
has properties that do not map well onto commodity
3 My Own Private Architecture hardware.

At the same time, recent work on machine descrip-
Imagine instead that every site, or every host, weatens has shown that it is possible to generate not just
able to run on its own unique machine architecturecompiler backends, for which the technique is rou-

tine, but also virtual machine monitors, assemblers,
Provided that each unique architecture is sufficienflykers, debuggers, and other architecture-dependent
different from all others, no canned exploit scrighols, all from concise machine descriptions [11].
would work onanytarget: every exploit would have\we pelieve that it is also practical to generate the
to be written explicitly for the particular host it wagyrchitecture-dependent parts of a kernel and standard

attacking. This eliminates the economies of scaf€jibrary from machine descriptions. This claim is
that hackers currently leverage: administrators still



discussed in more detail below. To this end, we will divide the set of binary attacks
into two categories. The first of these is tbede

Pulling all these pieces together, it becomes possikigection attack This category includes any attack
in principle, to generate all the machine-dependefkt inserts machine code into a target program, then
parts of a complete operating system, as well as {h&rsuades that program to execute that code. (At-
virtual machine monitor for running it, all from atacks that insert standalone executables into the sys-
concise machine description. Thus, installing a mgam may fall into this category, if the executables are
chine that uses its own Unique machine arChitecthﬁharies; but since in general such executables may
given the description for that architecture, is as sifBe scripts, such attacks are not strictly binary and we
ple as recompiling the world. do not consider them.) Traditional buffer overflow

. _ attacks,printf  format string attacks, and so forth
Inan open source world this is clearly a viable propg.., i1 code injection attacks

sition: while installing by building the world takes

longer than installing by copying binaries from CDan examination of the possibilities associated with
it is equally automatable and incurs only a one-timgeaking the instruction set, and with varying the in-
cost. Note, however, that even in a closed-sourg@yction coding, will show that there are thousands
world, precisely the same principles can be madedppits of variation possible, far beyond the 27 we
apply: if software is shipped as Java byte code, Miquire. Thus we conclude that randomizing the ar-
crosoft .NET byte code, or any other similar abstraghjtecture easily blocks code injection attacks. How-
tion at a higher level than raw machine code, it can Ber, code injection can already be defeated by other
compiled to run natively on the unique architectureneans, such as applying an XOR pad to the instruc-
tion stream [9] or, in many cases, even the simple
technique of disallowing execution from writeable

4 Machine Description Space memory.

We thus turn to the second category of binary attack,

) . . the state corruption attack This category includes
A crucial part of this approach is that the space 9

ol hine d i be | hi tacks that modify the state of a program in order to
possible machine descriptions be large enough 10 8¢ 5 e it to perform actions it shouldn’t, but that
fer statistical protection against various kinds of at-

. . ) 0 not inject any code. This includes direct attacks
tacks. This means that, among other things, it sho ) y

be feasibl Kb h i L#Iq the flow of control, such as buffer overflow at-
not be feasible to mount an attack by exnaustively, o war work by provoking a jump directly into

trying exploits for all possible machine types againtcﬁe standard library, or more complex attacks on pro-
a single target. Furthermore, the number of dﬁ ’

loved ¢ haring th hine d ram data like many based on integer overflows and
ployed systems sharing the same machine desChge iwice bugs. State corruption attacks are a much
tion should be small.

more challenging and interesting problem.

For the sake of argument, suppose 100 attacks Carb%?ting enough bits of variation to block state cor-
made per second and we want, on average, to reﬁ'll
4

. . ) ) gtion attacks appears feasible, but not entirely triv-
a week of continuous attack. This requires slight

C . . o I. We suggest the following techniques as a begin-
under2?” distinct machines. This is also probabl}(ling; more can probably be invented by creatively
enough to cover the deployed population. Note th

ing the C standard.
this can be achieved with only 27 independent binaryUSI d S

decisions about the architecture.
1. The differing size of various operations with

If possible, we would like this mechanism to pro- different instruction sets and instruction encod-
tect against all reasonably foreseeable binary attacks. ings generates variability in the layout of pro-



gram code. We expect this effect to be relatively alignment, padding, registerization, stack ad-
small, because differences will tend to cancel justment, return value handling, and so forth.
out. Thus, somewhat arbitrarily, we assign it Calling conventions have been shown to be
two bits of space. quite complex [1], and even with a fairly sim-

_ _ ple model there are probably at least 8 bits of
. The number of registers. This affects the layout description space to be used.

of the stack and of code as different numbers of

registers need to be saved and restored. Ther® Likewise, various models can be used for align-
will probably be either 8, 16, 32, or 64 regis- ment padding in stack frames and data struc-
ters, as these are the powers of two in the useful tures, and possibly inserting small numbers of
range. This gives two bits of description space. NOPSs into code. This gives potentially another

_ _ 8 bits of description space.
. The machine byte and word sizes can be cho-

sen from a list of possible combinations. It

may prove necessary to use only 8-bit bytes aifitlis adds up to 31 bits to defend against state corrup-
32-bit or 64-bit words. However, in principletion attacks. This is more than the 27 bits we need.
it is possible to use 9-bit or 10-bit bytes withHHowever, it is notmuchmore; some of those bits
36-bit or 40-bit words, 40-bit words with 8-bitmay not apply to some attacks. However, because
bytes, 16-bit bytes, 24-bit bytes that will holdoth the figure of 27 bits and our analysis of the bits
Unicode natively, or other things. Doing s@vailable are fairly conservative, we feel the descrip-
would be advantageous because such platfortizs space is probably large enough to be useful, even
would exhibit totally different behavior in theagainst state corruption attacks.

face of integer overflow bugs. Supposing eight

viable possibilities, this gives another three bif¥ote that in addition to things that are, strictly speak-
of space. ing, part of the machine architecture, anything else

that can be parameterized can be tweaked using sim-
. There are normally only two endiannesses, hildr techniques. This is a subject for future work.
historically the VAX used a third. We can in fact
use any possible byte ordering for words. THene particularly radical possibility is to use a ran-
number of choices depends on the word sizé9m character setin place of ASCII or Unicode. This
but we shall suppose we get five bits of spaweould protect against exploits that carry well-known
on average. filenames (e.g/bin/sh ) and possibly against ex-
ploits that carry source code or scripts. However, this

- The representation of signed integers givesiikely to be excessively difficult to deploy.
us one bit of space, for the choice between

two’s complement and sign-magnitude. (The
C99 standard apparently no longer allows on

complement.) % Machine Descriptions for Kernels

. Stack direction (up or down) gives another bit, ) . .
(up )9 ! We claim that it should be possible to generate the

. Using one stack or two (splitting call and dat&@achine-dependent parts of a kernel, and C standard

stacks like a Forth machine) gives yet anothBlrary, from machine description files. (Recall that
bit. the remaining tools we will need have already been

addressed by other work [11].)
. Moving to less hardware-oriented properties,

there is a wide variety of possible functionAn examination of the machine-dependent directo-
calling conventions, with different orderingries of the NetBSD kernel reveals three categories



of machine dependencies. First, there are concegmisblem and we believe it is tractable even in the
that are equivalent to concepts that the compilgeneral case of wildly differing real MMUs. For the
and toolchain have to know. This category includgsirposes of this problem, there is little value to hav-
things such as the sizes of standard types and ithg more than one basic MMU design that can vary
linker relocation codes; these are solved problenstightly according to machine parameters. Param-
Second, there are features where heterogeneity merizing the machine-dependent VM machinery to
vides little benefit, like the way bus configuration isupport this should be quite straightforward.

done or the basic way the processor handles excep-

tions. These would be research issues if generat{ife are not aware of any existing work aiming to
kernels forreal machines, but for current purposegenerate kernel components from machine descrip-
they can be ignored. The third category consists s apart from our own work in progress.)

issues that we must address.

This third category in turn breaks down into three ) )
subcategories: 6 Randomization

L. tCOEteXt ISW'tCheS’ Irt] their vanoug forrln(sj (;,Jsefine final question remains: how do you generate the
O-KETNEl, process-lo-process, signal deliVely,,in e machine descriptions? While it may be suf-

etc,) "?m.d their ramifications (trap frar_neﬁlcient to simply write them down, doing so is not
struct siginfo , etc.), because our Var'ou%ecessarily a trivial undertaking.

architectures will have different register sets;

2. small chunks of assembly code that will diffePur idea is to generate them randomly. Given the

across architectures, such as spinlock handlirﬂge of the space of possible machines, as discussed
above, random generation offers both unpredictabil-

3. and the virtual memory system, because ayf and a statistical approximation of global unique-
various architectures will have different WOf(ﬂ]ess; these are highly desirable properties. Us-
sizes and thus different address space sizes. ing randomization to promote heterogeneity is, of

course, not new; it was proposed by Forrest et al. in
Context switches are all, we believe, readily genet997 [6] and has been the basis of much work since.
ated given the list of registers in the architecture aiithe significant point in this paper is not the use of
various flags associated with them specifying theandomization; it is the breadth and scope of it.
properties (callee-save, which is the stack pointer,

etc.) — the code involves little more than reading afn€ obvious question is whether random genera-
writing these registers to memory. tion of machine descriptions is even possible. Apart

from the instruction set, the description space out-
The small chunks of assembly code are probably kied above is framed in terms of either-or choices or
ther enumerable (there are only so many ways to iohoices among a small number of alternatives. These
plement spinlocks, for example), or are code genehoices are, of course, easily randomized. Ramsey’s
ation problems more or less equivalent to compilerachine descriptions [11] are descriptive, not algo-
tion and can be handled along similar lines. (Foithmic, and thus in principle randomizable as well.
example, themcount code used in profiling is an
ordinary machine-independent function with speci&here is also always a temptation to make machine
register handling requirements.) descriptions Turing-complete. While we can avoid

this for any new tools we develop, it may be a prob-
The virtual memory system is a bigger issue; howem for existing tools. The machine descriptions
ever, our research group has been working on thised bygcc are essentially Lisp code, and in addi-



tion to the formal machine description a large quade this in an automated fashion. Ten milliseconds
tity of architecture-specific C preprocessor macrpsr attempt may be unrealistically slow in this case.
are required. Directly generating all this randomly
is a dubious proposition. Most likely, it will be neclt is not necessarily important to keep your machine
essary to determine how to generat@ca machine description secret: even if you pOSt it on your web
description from a simpler, non-Turing-complete dé&age, you are still more or less immune to attack by
scription of our own devising. This may be difficult Worms and “script kiddies”. To attack you, someone
would have to target you explicitly: first download
Other randomization not tied to the machine descriypeur machine description, then prepare a customized
tion, such as the link-time or run-time address raattack specifically against your machine. This as-
domization proposed by Bhatkar et al. [3] and Xu sumes, of course, that the major caveat above does
al. [14] can furthermore be used as a complementagt become a problem. If it does, then not only do
approach to provide even more heterogeneity.  you need to keep your machine description secret,
but there is another interesting catch: it may be pos-
sible to infer portions of your machine description,
even remotely, by issuing partial attacks and observ-
ing the results. This could conceivably narrow the at-
tack space, even against a completely unknown ma-
This entire scheme depends omdit being possib|e Chine, enough to allow an attack to succeed in a short
to generate binary exploits from machine descriperiod of time.

tions. If that turns out not to be true, this tech-

nigue becomes merely another round in the anp\g]ayturn_outto be poss!bleto _attackthe_wrtual ma-
ine monitor. Our technique will do nothing to pre-

race. Some benefits may still accrue if it is possib‘fé1 L s "
to keep your machine description secret vent code injection or other attacks against the virtual
' machine monitor itself, if it should turn out to have
It is not clear how practical it is or will be to generatégUitable bugs. By making the virtual machine moni-
exploits from machine descriptions. tor relatively simple and small, it should be possible

to keep the risk of such bugs low.

7 Major Caveat

And, of course, this technique only protects against
8 Other Caveats binary exploits. It does nothing to stop semantically-
based attacks (such @np symlink race condi-

. . . ) tions) or logic errors, and it will not prevent denial
Despite the reassuring analysis above, it may IR o vice

out that in some cases it is possible to write an ex-

ploit that works for any target machine with a certain

description property, or a certain set of them small

enough to allow attacking a considerable number of

machines at once. Note that even if this should be e  Other Comments
case, it is still unlikely thaall machines would be

vulnerable: even if half the machines running ran-

dom architectures are vulnerable, we still come olitiS not necessarily required, or even desirable, for
ahead. absolutely every deployed machine to be unique. A

site with a large server farm could choose, at the
Likewise, if the machine description space turns ousk of having a targeted attacker take over that en-
not to be large enough, it may be possible to try dite server farm, to use only one architecture across
possible forms of an attack, or even write worms thtte farm; this could help contain deployment costs.



On the other hand, it is also possible to aim forapriori which effect will dominate in the long run.
certain degree of uniqueness in time: a truly par8ince each architecture is completely deterministic
noid site might rebuild with a fresh machine descripnce generated, deterministic bugs will stay deter-
tion every week, or, indeed, every day, just to rukainistic; this is to be distinguished from compile-
out the possibility that someone might be preparitigne or run-time randomization, which makes debug-
a targeted attack. ging and testing a guessing game.

We will want our compilers to be more aggressive
about identifying machine-dependent or undefined

10 Challenges behavior; however, as optimizers grow smarter this
is becoming increasingly important anyway.

There will be numerous challenges in attempting to

build and deploy this system. Some have alrea a0
been noted: working witlgcc 's machine descrip- ﬁ}i Is It Worthwhile*
tions, for example. Others are not so obvious.

Given all the challenges, the question arises whether

First, the toolchains and debuggers based on mact}mg idea is really worth pursuing, given that many

descript_ions Wi.” need to move out of the lab and inté)xisting techniques offer a large measure of protec-
production. This is potentially a large step. tion without being anywhere near so intrusive.

Though we believe it perfectly feasible, genera{.—he answer to this question comes in two parts. The

:.T(g Ikermta;l comrf)o”nent§ from macrr]une Qescrlptlonsf|§st is technical: randomizing the entire architecture
Ikely to be a challenging research project. offers a markedly higher level of protection (over

Virtual machine technology as it stands achiev8¥re limited techniques) against clever, unantici-

good performance for sane architectures. Howev%‘?‘,ted stgte corruption attacks. It is also, as a com-
hensive approach, more robust from a systemic

we are deliberately pursuing insane architectur&® _ _ :
Efficiency will take work. perspective than a patchwork of partial techniques.

Vast amounts of both system and application cod8€ Second, and perhaps more important, answer

are bound to turn out not to be as portable , social and environmental: in the long run,
everyone thought. Even though mainstream 6\Qlﬂdespread adoption of architectual heterogeneity

bit machines have been in the field for morjéas the potential to change the security landscape.

than ten years, code still appears that assuré(ggile_ one ca.mnot_ re'alistically hope for all canned
sizeof(long) == 4. Much more will break on the exploits, “script kiddies”, and worms to go away,

architectures proposed in this paper. Addressing thi§a7y-Pased ones would. It is not clear that attacks

may turn out to be an extremely large project. (Ap_ased on logic errors, injecting portable script code,

guably, however, it is worthwhile on its own meritsj‘nOI so forth wouldn't take up the slack; however, it
is not clear that such attacks can or would, either.

Relatedly, testing and debugging will become more

interesting in this environment. One might argue that

expecting code to work correctly on abrand newand  Conclusion

entirely untested architecture is unreasonable. On

the other hand, in practice, portable code is more

robust, precisely because it has been tested undém this paper, we have proposed a technique that has
range of varying circumstances. It is not obviouke potential to radically alter the security landscape.



It has a number of possible drawbacks and limitaf7] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum,
tions, but also has a considerable potential benefit.
We believe it to be a viable idea worth pursuing, de-
spite the amount of work involved.

[8]
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