
Accelerating MCMC via Parallel Predictive Prefetching

Elaine Angelino, Eddie Kohler, Amos Waterland, Margo Seltzer and Ryan P. Adams
School of Engineering and Applied Sciences

Harvard University
{elaine,margo}@eecs.harvard.edu {kohler,apw,rpa}@seas.harvard.edu

Abstract

Parallel predictive prefetching is a new frame-
work for accelerating a large class of widely-
used Markov chain Monte Carlo (MCMC) algo-
rithms. It speculatively evaluates many potential
steps of an MCMC chain in parallel while ex-
ploiting fast, iterative approximations to the tar-
get density. This can accelerate sampling from
target distributions in Bayesian inference prob-
lems. Our approach takes advantage of whatever
parallel resources are available, but produces re-
sults exactly equivalent to standard serial execu-
tion. In the initial burn-in phase of chain evalu-
ation, we achieve speedup close to linear in the
number of available cores.

1 INTRODUCTION

Probabilistic modeling is one of the mainstays of mod-
ern machine learning, and Bayesian methods are partic-
ularly appealing due to their ability to represent uncer-
tainty in parameter estimates and latent variables. Unfor-
tunately, Bayesian inference can be difficult in the real
world. Many problems are not amenable to exact inference,
and so require approximate inference in the form of Monte
Carlo estimates or variational approximations. These pro-
cedures require many evaluations of a target posterior den-
sity, and each evaluation can be expensive, especially on
large data sets. Our work accelerates Markov chain Monte
Carlo (MCMC) but, in contrast to other recent proposals,
we arrive at a method in which the stationary distribution is
exactly the target posterior. This method exploits approxi-
mations to the target density to speculatively evaluate many
potential future steps of the chain in parallel.

The increasing availability of multi-core machines, and
many-core cluster deployments, led to our focus on paral-
lelism. Unfortunately, the execution of MCMC algorithms
such as Metropolis-Hastings (MH) is inherently serial. One

can run many independent chains at once, but this does not
change the mixing time for any single chain. Since mixing
time can be prohibitively large, especially when the target
function is high-dimensional and multi-modal, this embar-
rassingly parallel approach tends not to reduce the time to
achieve a useful estimator. Sometimes the target function
evaluation can be parallelized, or multiple chains in an en-
semble method can be run in parallel, but these strategies
are not available in general.

We instead use speculative execution to parallelize a large
class of MCMC methods. This approach, sometimes called
prefetching, has received some attention in the past decade,
but does not seem to be widely recognized. Speculative ex-
ecution is the general technique of optimistically perform-
ing computational work that might be eventually useful. To
understand speculative execution in the context of MCMC,
consider the MH algorithm in Algorithm 1, in which each
iteration consists of a proposal that is stochastically ac-
cepted or rejected (Metropolis et al., 1953). MH uses ran-
domness in two ways: to generate uniform random vari-
ables and to generate proposals. Given a random stream
and an initial state, all possible future states of the chain
can be thought of as the nodes of a binary tree (Figure 1).
Serial execution of MH yields a sequence of states that
maps to a single path of nodes through the tree. Starting
at the root, each transition stochastically chooses between
the current state (left child) and the proposal (right child).
This requires evaluating the target density at the root and
each subsequent proposal. The main goal of prefetching is
to perform these evaluations in parallel. However, only the
immediate transition that compares the root of the tree to
the first proposal is known a priori to be on the true com-
putational path. Prefetching schemes use parallel cores to
evaluate these two nodes and also speculatively evaluate
additional nodes further down the tree.

An effective prefetching implementation must overcome
several challenges. Some involve correctness; for example,
care is required in the treatment of pseudo-randomness lest
bias be introduced (i.e., each node’s source of randomness
must produce exactly the same results as it would in a serial

Algorithm 1 Metropolis-Hastings

Input: initial state θ0, number of iterations T , tar-
get π(θ), proposal q(θ ′ |θ)
Output: samples θ1, . . . ,θT
for t = 0, . . . ,T −1 do

θ ′ ∼ q(θ ′ |θt)
u∼ Unif(0,1)
if π(θ ′)q(θt |θ ′)

π(θt)q(θ ′ |θt)
> u then

θt+1 = θ ′

else
θt+1 = θt

end if
end for

execution). But the key challenge is performance. A naı̈ve
scheduling scheme always requires ≈ 2s parallel cores to
achieve a speedup of s. Less naı̈ve schemes improve on
this speedup using the average proposal acceptance rate: if
most proposals are rejected, a prefetching implementation
should prefetch more heavily among the right children of
the left-most branch, i.e., the path representing a sequence
of rejected proposals. Although in practice the optimal ac-
ceptance rate is less than 0.5 (Gelman et al., 1996), tiny
acceptance rates, which lead to good speedup, cause less
effective mixing. If the acceptance rate is set near the 0.234
value of Gelman et al., speedup is still at most logarithmic.

We evaluate a new scheduling approach that uses local in-
formation to improve speedup relative to other prefetch-
ing schemes. We adaptively adjust speculation based not
only on the local average proposal acceptance rate (which
changes as evaluation progresses), but also on the actual
random deviate used at each state. Even better, we make use
of any available fast approximations to the transition oper-
ator. Though these approximations are not required, when
they are available or learnable, we leverage them to make
better scheduling decisions.

We present results using a series of increasingly expensive
but more accurate approximations. These decisions are fur-
ther improved by modeling the error of these approxima-
tions, and thus the uncertainty of the scheduling decisions.
Performance depends critically on how we model the ap-
proximations, and a key insight is in our error model for
this setting; much smaller error, and therefore more pre-
cise prediction, is obtained by modeling the error of the
difference between two proposal evaluations, rather than
evaluating the errors of the proposals separately. Our cur-
rent implementation uses approximations that correspond
to incremental evaluation of the target distribution, but our
framework does not require this. We could use other exam-
ples of target density approximation, including exploiting
closed form approximations such as Taylor series (Chris-
ten and Fox, 2005) and fitting linear or Gaussian Process
regressions (Conrad et al., 2014).

Motivated by large-scale Bayesian inference, we present
results using incremental approximations that arise from
evaluating a subset of factors in a larger product. As we
show on inference problems using both real and synthetic
data, our system takes advantage of parallelism to speed up
the wall-clock time of serial Markov chain evaluation. Un-
like prior systems, we achieve near-linear speedup during
burn-in on up to 64 cores spread across two or more ma-
chines. As evaluation progresses, speedup eventually de-
creases to logarithmic in the number of cores; we show why
this is hard to avoid.

2 RELATED WORK

In this section, we summarize existing parallel strate-
gies for accelerating MCMC, motivated by the computa-
tional cost of MCMC. This cost is most often determined
by evaluation of the target density relative to mixing. In
Metropolis–Hastings, it is incurred when the target is evalu-
ated to determine the acceptance ratio of a proposed move;
in slice sampling (Neal, 2003) an expensive target slows
both bracket expansion and contraction. We focus on the
increasingly common case where the target is expensive
and the dominant computational cost. This evaluation can
sometimes be parallelized directly, e.g., when the target
function is a product of many individually expensive terms.
This can arise in Bayesian inference if the target easily de-
composes into one likelihood term for each data item. Prac-
tically achievable speedup in this setting is limited by the
communication and computational costs associated with
aggregating the partial evaluations. In general, the target
function cannot be parallelized; we divide methods that ac-
celerate MCMC via other sources of parallelism into two
classes: ensemble sampling and prefetching.

Other work speeds up MCMC evaluation using approxi-
mation. Stochastic variational inference techniques achieve
scalable approximate inference via randomized approxima-
tions of gradients (Hoffman et al., 2013), while recent de-
velopments in MCMC have implemented efficient transi-
tion operators that lead to approximate stationary distribu-
tions (Welling and Teh, 2011; Korattikara et al., 2014; Bar-
denet et al., 2014). Recent other work uses a lower bound
on the local likelihood factor to simulate from the exact
posterior distribution while evaluating only a subset of the
data at each iteration (Maclaurin and Adams, 2014). Un-
like such prior work, we speed up exact evaluation of many
existing MCMC algorithms.

2.1 ENSEMBLE SAMPLERS

Ensemble (or population) methods for sampling run multi-
ple chains and accelerate mixing by sharing information
between the chains. The individual chains can be simu-

θ t

θ
t+1
0

θ
t+2
00

θ
t+3
000 θ

t+3
001

θ
t+2
01

θ
t+3
010 θ

t+3
011

θ
t+1
1

θ
t+2
10

θ
t+3
100 θ

t+3
101

θ
t+2
11

θ
t+3
110 θ

t+3
111

ut

ut+1

ut+2

ut+3

Figure 1: Schematic of a MH simulation superimposed on
the binary tree of all possible chains. Each level of the tree
represents an iteration, where branching to the right/left in-
dicates accepting/rejecting a proposal. Random variates (on
right) are shared across each layer. Thick red arrows high-
light one simulated chain starting at the root θ t ; the first
proposal is accepted and the next two are rejected, yield-
ing as output: θ

t+1
1 ,θ t+2

10 ,θ t+3
100 . Dark filled circles indicate

states where the target density is evaluated during simula-
tion. Those not on the chain’s path correspond to rejected
proposals. Their siblings are pale filled circles on this path;
since each is a copy of its parent, the target density does not
need to be reevaluated to compute the next transition.

lated in parallel; any information sharing between chains
requires communication. Examples include parallel tem-
pering (Swendsen and Wang, 1986), the emcee implemen-
tation (Foreman-Mackey et al., 2012) of affine-invariant
ensemble sampling (Goodman and Weare, 2010), and a
parallel implementation of generalized elliptical slice sam-
pling (Nishihara et al., 2014).

2.2 PREFETCHING

The second class of parallel MCMC algorithms uses paral-
lelism through speculative execution to accelerate individ-
ual chains. This idea is called prefetching in some of the lit-
erature. To the best of our knowledge, prefetching has only
been studied in the context of MH-style algorithms where,
at each iteration, a single new proposal is drawn from a pro-
posal distribution and stochastically accepted or rejected.
The typical body of an MH implementation is a loop con-
taining a single conditional statement and two associated
branches. One can then view the possible execution paths
as a binary tree, as illustrated in Figure 1. The vanilla ver-
sion of prefetching speculatively evaluates all paths in this
binary tree (Brockwell, 2006). The correct path will be ex-
actly one of these, so with J cores, this approach achieves
a speedup of log2 J with respect to single core execution,
ignoring communication and bookkeeping overheads.

Naı̈ve prefetching can be improved by observing that the
two branches are not taken with equal probability. On av-
erage, the left-most branch, corresponding to a sequence of
rejected proposals, tends to be more probable; the classic

result for the optimal MH acceptance rate is 0.234 (Roberts
et al., 1997), so most prefetching scheduling policies have
been built around the expectation of rejection. Let α ≤ 0.5
be the expected probability of accepting a proposal. Byrd
et al. (2008) introduced a procedure, called “speculative
moves,” that speculatively evaluates only along the “reject”
branch of the binary tree; in Figure 1, this corresponds to
the left-most branch. In each round of their algorithm, only
the first k out of J−1 extra cores perform useful work,
where k is the number of rejected proposals before the first
accepted proposal, starting from the root of the tree. The
expected speedup is then:

1+E(k)< 1+
∞

∑
k=0

k(1−α)k
α < 1+

1−α

α
=

1
α
.

Note that the first term on the left is due to the core at
the root of the tree, which always performs useful com-
putation in the prefetching scheme. When α = 0.23, this
scheme yields a maximum expected speedup of about 4.3;
it achieves an expected speedup of about 4 with 16 cores.
If only a few cores are available, this may be a reason-
able policy, but if many cores are available, their work is
essentially wasted. In contrast, the naı̈ve prefetching pol-
icy achieves speedup that grows as the log of the num-
ber of cores. Byrd et al. (2010) later considered the special
case where the evaluation of the likelihood function occurs
on two timescales, slow and fast. They call this method
“speculative chains”; it modifies “speculative moves” so
that whenever the evaluation of the likelihood function is
slow, any available cores are used to speculatively evaluate
the subsequent chain, assuming the slow step resulted in an
accept.

In work closely related to ours, Strid (2010) extend the
naı̈ve prefetching scheme to allocate cores according to
the optimal “tree shape” with respect to various assump-
tions about the probability of rejecting a proposal, i.e., by
greedily allocating cores to nodes that maximize the depth
of speculative computation expected to be correct (Strid,
2010). Their static prefetching scheme assumes a fixed ac-
ceptance rate; versions of this were proposed earlier in the
context of simulated annealing (Witte et al., 1991). Their
dynamic scheme estimates acceptance probabilities, e.g., at
each level of the tree by drawing empirical MH samples
(100,000 in the evaluation), or at each branch in the tree
by computing min{β ,r} where β is a constant (β = 1 in
the evaluation) and r is an estimate of the MH ratio based
on a fast approximation to the target function. Alterna-
tively, Strid proposes using the approximate target function
to identify the single most likely path on which to perform
speculative computation. Strid also combines prefetching
with other sources of parallelism to obtain a multiplicative
effect. To the best of our knowledge, these methods have
been developed for MH algorithms and evaluated on up to
64 cores, although usually many fewer.

3 PREDICTIVE PREFETCHING

We propose predictive prefetching, an improved scheduling
approach that accelerates exact MCMC. Like Strid’s dy-
namic prefetching procedure, we also exploit inexpensive
but approximate target evaluations. However, there are sev-
eral fundamental differences between our approach and ex-
isting prefetching methods. We combine approximate tar-
get evaluation with the fact that the random stream used by
a MCMC algorithm can be generated in advance and thus
incorporated into the estimates of the acceptance probabil-
ities at each branch in the binary tree. Critically, we also
model the error of the target density approximation, and
thus the uncertainty of whether a proposal will be accepted.
In addition, we identify a broad class of MCMC algorithms
that could benefit from prefetching, not just MH, and we
show how prefetching can exploit a series of approxima-
tions, not just a single one.

3.1 MATHEMATICAL SETUP

Consider a transition operator T (θ → θ ′) which has π(θ)
as its stationary distribution on state space Θ. Simulation
of such an operator typically proceeds using an “external”
source of pseudo-random numbers that can, without loss
of generality, be assumed to be drawn uniformly on the
unit hypercube U . The transition operator is then a de-
terministic function T : Θ×U →Θ. Most practical transi-
tion operators – Metropolis–Hastings, slice sampling, etc.
– are actually compositions of two such functions, how-
ever. The first function produces a countable set of can-
didate points in Θ, here denoted Q : Θ×UQ→P(Θ),
where P(Θ) is the power set of Θ. The second func-
tion R : P(Θ)×UR→Θ then chooses one of the can-
didates for the next state in the Markov chain. Here we
have used UQ and UR to indicate the orthogonal parts
of U relevant to each part of the operator. In this setup,
the basic Metropolis–Hastings algorithm uses Q(·) to pro-
duce a tuple of the current point and a proposed point,
while multiple-try MH (Liu et al., 2000) and delayed-
rejection MH (Tierney and Mira, 1999; Green and Mira,
2001) create a larger set that includes the current point. In
the exponential-shrinkage variant of slice sampling (Neal,
2003), Q(·) produces an infinite sequence of candidates that
converges to, but does not include, the current point.

This setup is a somewhat more elaborate treatment than
usual, but this is intended to serve two purposes: 1) make
it clear that there is a separation between generating a set
of possible candidates via Q(·) and selecting among them
with R(·), and 2) highlight that both of these functions
are deterministic functions, given the pseudo-random vari-
ates. Others have pointed out this “deterministic given the
randomness” view, and used it to construct alternative ap-
proaches to MCMC (Propp and Wilson, 1996; Neal, 2012).

θ t

θ
t+1
1

θ
t+2
01

θ
t+3
001 θ

t+3
011

θ
t+2
11

θ
t+3
101 θ

t+3
111

ut

ut+1

ut+2

ut+3

Figure 2: Schematic of the same MH simulation as in Fig-
ure 1, this time superimposed on the jobtree. This tree in-
cludes only those nodes in the original MH tree where a
new state is introduced and thus the target density must
be evaluated when comparing such a state to another. The
filled circles, corresponding to states where the target den-
sity is evaluated in a serial MH execution, are now directly
connected by a single path.

We separately consider Q(·) and R(·) because it is gen-
erally the case that Q(·) is inexpensive to evaluate and
does not require computation of the target density π(θ),
while R(·) must compare the target density at the can-
didate locations and so represents the bulk of the com-
putational burden. Parallel predictive prefetching observes
that, since Q(·) is cheap and the pseudo-random variates
can be produced in any order, the tree of possible future
states of the Markov chain can be constructed before any
of the R(·) functions are evaluated, as in Figure 1. The se-
quence of R(·) evaluations simply chooses a path down this
tree. Parallelism can be achieved by speculatively choos-
ing to evaluate R({θi},u) for some part of the tree that has
not yet been reached. If this node in the tree is eventually
reached, then we achieve a speedup.

For clarity, we henceforth focus on the straightforward
random-walk Metropolis–Hastings operator. In this special
case, Q(·) produces a tuple of the current point and a pro-
posal, and the function R : Θ×Θ× (0,1)→Θ takes these
two points, along with a uniform random variate u in (0,1),
and selects one of the two inputs via:

R(θ ,θ ′,u) =

{
θ ′ if u q(θ ′ |θ)

q(θ |θ ′) <
π(θ ′)
π(θ)

θ otherwise
, (1)

where q(· | ·) is the proposal density corresponding to Q(·).
We write the acceptance ratio in this somewhat unusual
fashion to highlight the fact that the left-hand side of the
inequality does not require evaluation of the target density
and is easy to precompute.

3.2 THE JOBTREE

While the MH state tree in Figure 1 effectively repre-
sents a simulated chain as a path, it yields an awkward

representation of the computation necessary to produce a
chain. Specifically, transitions to right children (when a
proposal is accepted) align with this path but transitions
to left children (when a proposal is rejected) branch off it.
For our prefetching framework, we wanted a better repre-
sentation of this computation. To this end, we introduced
the Metropolis–Hastings jobtree, depicted in Figure 2. It
contains the same information as the MH state tree but rep-
resents only those states where new computation occurs,
i.e., where the target density must be evaluated in order to
compare such a state to another. Like the original tree, the
jobtree is generally binary, except that the root has only
one child. It includes the root node and all right children
of the MH state tree, corresponding to the current state and
all possible subsequent proposals – together, these specify
the possible distinct states and at what iteration each would
first appear. Paths on the jobtree represent computation in
the sense that they map to sequences of states where the
target density is evaluated during serial MH simulation; we
call any such path a computation path.

3.3 EXPLOITING PREDICTIONS

Consider a prefetching framework with J cores that uses
one core to compute the immediate transition and the oth-
ers to precompute transitions for possible future iterations.
If each precomputation falls along the actual Markov chain,
the framework will achieve the ideal linear speedup propor-
tional to J. If some of them do not fall along the chain, the
framework will fail to scale perfectly with the available re-
sources. For instance, recall that the naı̈ve framework that
evaluates transitions based on breadth-first search of the
prefetching state tree (Figure 1) will achieve speedup pro-
portional to log2 J. Good speedup thus depends on making
good predictions of what path will be taken on the tree,
which is in turn determined by our prediction of whether
the threshold will be exceeded in Eq. 1.

Let ρ denote a node on the tree, θρ indicate the current state
at ρ , and θ ′ρ indicate the proposal. We define

rρ = uρ

q(θ ′ρ |θρ)

q(θρ |θ ′ρ)
(2)

where uρ is the MH threshold variate for node ρ . The
Markov chain’s steps are determined by iterations of com-
puting the indicator function ιρ = I(rρ < π(θ ′ρ)/π(θρ)),
where a proposal is accepted iff ιρ = 1. The quanti-
ties θρ , θ ′ρ , and rρ can be inexpensively computed at any
time from the stream of pseudo-random numbers, without
examining the expensive target π(·). The random variate uρ

depends only on the depth (iteration) of ρ .

The precomputation schedule should maximize expected
speedup, which corresponds to the expected number of pre-
computations along the true computation path in the job-

tree. To maximize this quantity, the framework needs to an-
ticipate which branches of the jobtree are likely to be taken.
The root node and its only child are always evaluated. We
associate with each remaining node ρ in the jobtree a pre-
dictor ψρ that models the probability that the proposal is
accepted, given approximate or partial information. For ex-
ample, suppose that π̃(·) is an approximation to the target
density π(·), and assume that in log space, the error of this
approximation relative to the target density is normally dis-
tributed with some variance σ2. Then, we could write the
predictor as:

ψρ = Pr
(

logrρ < logπ(θ ′ρ)− logπ(θρ)
∣∣∣ π̃(·),σ2

)
(3)

=
∫

∞

logrρ

N
(

z
∣∣∣ log π̃(θ ′ρ)− log π̃(θρ),σ

2
)

dz. (4)

As more information becomes available in the form
of better approximators, the predictor ψρ will change.
When π̃(·) = π(·), the predictor equals the indicator ιρ . We
label the edges in the jobtree with branch probabilities: the
edge from a node ρ to its right child has branch probability
equal to the predictor ψρ and the edge to its left child has
branch probability 1−ψρ . Assuming that the predictions
at each node are independent, the probability that a node’s
computation is used is the product of the branch probabil-
ities along the path connecting the root to ρ; we call this
quantity the node’s expected utility. Those nodes with max-
imum expected utility should be scheduled for precompu-
tation. (The immediate transition will always be chosen: it
has no ancestors and utility 1.)

A predictor is always available – for instance, one can use
the recent acceptance probability – but many problems can
improve predictions using computation. To model this, we
define a sequence of predictors

ψ
(m)
ρ ≈ ψρ , m = 0,1,2, . . . ,N, (5)

where increasing m implies increasing accuracy,
and ψ

(N)
ρ = ιρ . Workers move through this sequence

until they perform the exact computation. The predictor
sequence affects scheduling decisions: once it becomes
sufficiently certain that a worker’s branch will not be taken,
that worker and its descendants should be reallocated to
more promising branches. Ultimately, every true step
of the Markov chain is computed to completion. The
approach simulates from the true stationary distribution,
not an approximation thereof. The estimators are used only
in prefetching.

There are several schemes for producing this estimator se-
quence, and predictive prefetching applies to any Markov
chain Monte Carlo problem for which approximations are
available. We focus on the important case where improved
estimators are obtained by including more and more of the
data in the posterior target distribution.

3.4 LARGE-SCALE BAYESIAN INFERENCE

In Bayesian inference with MCMC, the target density is
a (possibly unnormalized) posterior distribution. In most
modeling problems, such as those using graphical mod-
els, the target density can be decomposed into a product of
terms. If the data are conditionally independent given the
model parameters, there is a factor for each of the N data:

π(θ |x) ∝ π0(θ)π(x |θ) = π0(θ)
N

∏
n=1

π(xn |θ) . (6)

Here π0(θ) is a prior distribution and π(xn |θ) is the likeli-
hood term associated with the nth datum. The logarithm of
the target distribution is a sum of terms

L (θ) = logπ(θ |x) = logπ0(θ)+
N

∑
n=1

logπ(xn |θ)+ c ,

where c is an unknown constant that does not depend on θ

and can be ignored. Our predictive prefetching algorithm
uses this to form predictors ψρ as in Eq. 3; we again re-
frame ψρ using log probabilities as

ψρ ≈ Pr
(
logrρ < L (θ ′)−L (θ)

)
, (7)

where rρ is the precomputed random MH threshold of
Eq. 2. One approach to forming this predictor is to use
a normal model for each L (θ), as in Korattikara et al.
(2014). However, we can achieve a better estimator with
lower variance by modeling L (θ) and L (θ ′) together,
rather than separately. Expanding each log likelihood gives:

L (θ ′)−L (θ) = logπ0(θ
′)− logπ0(θ)+

N

∑
n=1

∆n (8)

∆n = logπ(xn |θ ′)− logπ(xn |θ) . (9)

In Bayesian posterior sampling, the proposal θ ′ is usually a
perturbation of θ and so we expect logπ(xn |θ ′) to be cor-
related with logπ(xn |θ). In this case, the differences ∆n
occur on a smaller scale and have a smaller variance com-
pared to the variance due to logπ(xn |θ) across data terms.

A concrete sequence of estimators is obtained by subsam-
pling the data. Let {∆n}m

n=1 be a subsample of size m < N,
without replacement, from {∆n}N

n=1. This subsample can be
used to construct an unbiased estimate of L (θ ′)−L (θ).
We model the terms of this subsample as i.i.d. from a nor-
mal distribution with bounded variance σ2, leading to:

L (θ ′)−L (θ)∼N (µ̂m, σ̂
2
m) . (10)

The mean estimate µ̂m is empirically computable:

µ̂m = logπ0(θ
′)− logπ0(θ)+

N
m

m

∑
n=1

∆n . (11)

The error estimate σ̂m may be derived from sm/
√

m,
where sm is the empirical standard deviation of the m sub-
sampled ∆n terms. To obtain a confidence interval for the
sum of N terms, we multiply this estimate by N and the
finite population correction

√
(N−m)/N, giving:

σ̂m = sm

√
N(N−m)

m
. (12)

We can now form the predictor ψ
(m)
ρ by considering the tail

probability for logrρ :

ψ
(m)
ρ =

∫
∞

logrρ

N (z | µ̂m, σ̂
2
m)dz (13)

=
1
2

[
1+ erf

(
log µ̂m− logrρ√

2σ̂m

)]
. (14)

3.5 SYSTEM

Our system is fully parallel and runs on network clusters
of computers, each of which may comprise multiple cores.
We do not perform any affinity scheduling, so all cores
are treated identically whether they co-reside on the same
machine or not. Our system does not use shared memory;
rather, cores communicate via message passing. Note that
we assign one thread to each core. To date, the largest in-
stallation on which we have run is a shared cluster of 5
machines with a total of 160 cores, on which we have used
in parallel at least 64 cores spanning a minimum of 2 ma-
chines.

Our system executes predictive prefetching as follows. A
master node manages the jobtree and distributes a different
node in the jobtree to each worker. When a worker receives
a message to compute on node ρ , it first computes the cor-
responding proposal θρ (which may consume values from
the random sequence). It asynchronously transmits the pro-
posal and the new point in the random sequence back to
the master. It then starts evaluating the target density, pro-
ducing progressively improved approximations to the tar-
get that it periodically reports back to the master. Mean-
while, the master uses estimates of L (θ ′ρ)−L (θρ) val-
ues, the appropriate rρ constants, and an adaptive estimate
of the current acceptance probability to calculate the pre-
dictor ψ

(m)
ρ for each node in the evaluation tree. To assign a

worker to a node, the master stochastically traverses down
the jobtree from the root, following branches according to
their branch probabilities, until it finds a node that is in-
active, i.e., no other worker is currently working on it. In
this way, the master stochastically assigns workers to those
nodes with highest expected utility. During computation,
expected utilities change. When the master notices that the
expected utility of a worker’s node falls below that of other
inactive nodes, the master tells the worker to abandon its
work. If the abandoned proposal becomes likely again, a
worker will pick it up where the earlier worker left off.

Burn-in
J i1 = 9575 i2 = 24000 i3 = 50000

1 16674 — 41978 — 87500 —
16 2730 6.1× 8678 4.3× 20318 4.3×
32 1731 9.6× 7539 5.6× 19046 4.6×
64 989 16.8× 5894 7.1× 15146 5.8×

Table 1: Cumulative time (in seconds) and speedup for
evaluating the Gaussian mixture model with different num-
bers of workers J.

In our implementation, the target posteriors logπ(θ |x)
and logπ(θ ′ |x) are evaluated by separate workers. Our
normal model for the MH ratio based on a subsample of
size m depends on the empirical mean and standard devia-
tion of the differences ∆n, but we use an approximation to
avoid the extra communication required to keep track of all
these differences. The worker for θ calculates

Gm(θ) = logπ0(θ)+
N
m

m

∑
n=1

logπ(xn |θ) (15)

rather than the difference mean µ̂m from Eq. 11. The master
can then compute µ̂m = Gm(θ

′)−Gm(θ), but the empirical
standard deviation of differences, sm in Eq. 12, must be es-
timated. We set

sm =
√

Sm(θ)2 +Sm(θ ′)2−2c̃Sm(θ)Sm(θ ′) , (16)

where Sm(θ) denotes the empirical standard deviation of
the m logπ(xn |θ) terms, and c̃ approximates the correla-
tion between logπ(xn |θ) and logπ(xn |θ ′). We empirically
observe this correlation to be very high; in all experiments
we set c̃ = 0.9999. Note that this approximation only af-
fects the quality of our speculative predictions; it does not
affect the actual decision to accept or reject the proposal θ ′.

Our implementation requires at least two cores, one master
and one worker. Note that when there is only one worker, it
is always performing useful computation for the immediate
transition at the root, leaving the master with essentially
nothing to do besides some bookkeeping.

4 EXPERIMENTS

Our evaluation focuses on MH for large-scale Bayesian in-
ference using the approximations described above (though
our framework can use any approximation scheme for the
target distribution). Our implementation is written in C++
and Python, and uses MPI for communication between the
master and worker cores.1 We evaluate our implementa-
tion on up to 64 cores in a multicore cluster environment in
which machines are connected by 10GB ethernet and each

1https://github.com/elaine84/fetching

Figure 3: Cumulative speedup relative to our baseline, as
a function of the number of MH iterations, for the mixture
of Gaussians problem. The different curves correspond to
different numbers of workers.

machine has 32 cores (four 8-core Intel Xeon E7-8837 pro-
cessors). We report speedups relative to serial computation
with one worker.

We evaluate our system on both synthetic and real Bayesian
inference problems. First, we consider the posterior den-
sity of the eight-component mixture of eight-dimensional
Gaussians used by Nishihara et al. (2014), where the like-
lihood involves 106 samples drawn from this model. Next,
we consider the posterior density of a Bayesian Lasso re-
gression (Park and Casella, 2008) that models molecu-
lar photovoltaic activity. The likelihood involves a dataset
of 1.8×106 molecules described by 56-dimensional real-
valued cheminformatic features (Olivares-Amaya et al.,
2011; Amador-Bedolla et al., 2013); each response is real-
valued and corresponds to a lengthy density functional the-
ory calculation (Hachmann et al., 2011, 2014).

In our experiments, we use a spherical Gaussian for the pro-
posal distribution. A simple adaptive scheme sets the scale
of this distribution, improving convergence relative to stan-
dard MH. Our approach falls under the provably conver-
gent adaptive algorithms studied by Andrieu and Moulines
(2006); we easily incorporated them into our framework.

We expect predictive prefetching to perform best when the
densities at a proposal and corresponding current point are
significantly different, which is common in the initial burn-
in phase of chain evaluation. In this phase, early estimates
based on small subsamples effectively predict whether the
proposal is accepted or rejected. When the density at the
proposal is very close to that at the current point – for exam-
ple, as the proposal distribution approaches the target distri-
bution – the outcome is inherently difficult to predict; early
estimates will be uncertain or even wrong. Incorrect esti-
mates could destroy speedup (no precomputations would
be useful). We hope to do better than this worst case, and
to at least achieve logarithmic speedup.

standard
mean deviation min max

neff 3405 7253 50 26000
R̂ 1.005 0.006 1.000 1.020

Table 2: Convergence statistics after burn-in (over itera-
tions i2–i3) for the Gaussian mixture model, computed over
the 64 dimensions of the model.

Figure 4: Cumulative speedup relative to our baseline, as
a function of the number of MH iterations, for the mixture
of Gaussians problem. The different curves correspond to
different initial conditions; all curves are for 64 workers.

In our experiments, we divide the evaluation of the target
function into 100 batches. Thus, for the mixture problem,
each subsample contains 104 data items.

Table 1 shows the results for the Gaussian mixture model.
We run the model with the same initial conditions and
pseudorandom sequences with varying numbers of worker
threads. All experiments produce identical chains. We eval-
uate the cumulative time and speedup obtained at three
different iteration counts. The first, i1 = 9575 iterations,
are burn-in. After i1 iterations, all dimensions of samples
achieve the Gelman-Rubin statistic R̂ < 1.05, computed us-
ing two independent chains, where the first i1/2 samples
have been discarded (Gelman and Rubin, 1992). We then
run the model further to i3 iterations. Iterations i2 = 24000
through i3 = 50000 are used to compute an effective num-
ber of samples neff. (Table 2 shows convergence statistics
after i3 iterations.) The results are as we hoped. The ini-
tial burn-in phase obtains better-than-logarithmic speedup
(though not perfect linear speedup). With 64 workers, the
chain achieves burn-in 16.8× faster than with one worker.
After burn-in, efficiency drops as expected, but we still
achieve logarithmic speedup (rather than sub-logarithmic).
At 50000 iterations, speedup for each number of workers J
rounds to log2 J.

Figure 3 explains these results by graphing cumulative
speedup over the whole range of iterations. The initial

(a) Burn-in

(b) Convergence

Figure 5: Example predictor trajectories for the mixture of
Gaussians. We show the predictor ψ

(m)
ρ as a function of

subsample size m. Different colors indicate different pro-
posals. Burn-in is much easier to predict than convergence.

speedup is close to linear – we briefly achieve more than
40× speedup at J = 64 workers. As burn-in proceeds, cu-
mulative speedup falls off to logarithmic in J. Figure 4
shows cumulative speedup for the Gaussian mixture model
with several different initial conditions. We see a range of
variation due to differences in the adaptive scheme dur-
ing burn-in. The overall pattern is stable, however: good
speedup during burn-in followed by logarithmic speedup
later. Also note that speedup does not necessarily decrease
steadily, or even monotonically. At some initial conditions,
the chain enters an easier-to-predict region before truly
burning in; while in such a region, speedup is maintained.
Our system takes advantage of these regions effectively.

Figure 5 shows how our predictors behave both during and
after burn-in. During burn-in, estimates are effective, and
the predictor converges quite quickly to the correct indica-
tor. After burn-in, the new proposal’s target density is close
to the old proposal’s, and the estimates are similarly hard
to distinguish. Sometimes the random variate rρ is small
enough for the predictor to converge quickly to 1; more
often, the predictor varies widely over time, and does not
converge to 0 or 1 until almost all data are evaluated. This
behavior makes logarithmic speedup a best case. Luckily,
the predictor is more typically uncertain (with an interme-
diate value) than wrong (with an extreme value that eventu-
ally flips to the opposite value): incorrect predictors could
lead to sublogarithmic speedup.

Figure 6 shows that good speedups are achievable for real
problems. The speedup distribution for the Bayesian Lasso
problem for molecular photovoltaic activity appears similar

Figure 6: Cumulative speedup relative to our baseline, as a function of the number of MH iterations, for the Bayesian Lasso
problem. Different curves indicate different numbers of workers. Each figure corresponds to a different initial condition.

to that of the mixture of Gaussians. There are differences,
however: Lasso evaluation did not converge by 50000 it-
erations according to standard convergence statistics. On
several initial conditions, the chain started taking small
steps, and therefore dropped to logarithmic speedup, be-
fore achieving convergence. Overall performance might be
improved by detecting this case and switching some specu-
lative resources over to other initial conditions, an idea we
leave for future work.

5 CONCLUSIONS

We presented parallel predictive prefetching, a general
framework for accelerating many widely used MCMC al-
gorithms that are inherently serial and often slow to con-
verge. Our approach applies to MCMC algorithms whose
transition operator can be decomposed into two functions,
one that produces a countable set of candidate proposal
states and a second that selects the best candidate. Predic-
tive prefetching uses speculative computation to exploit the
common setting in which (1) generating candidates is com-
putationally fast compared to the evaluation required to se-
lect the best candidate, and (2) this evaluation can be ap-
proximated quickly. Our first focus has been on the MH
algorithm, in which predictive prefetching exploits a se-
quence of increasingly accurate predictors for the decision
to accept or reject a proposed state. Our second focus has
been on large-scale Bayesian inference, for which we iden-
tified an effective predictive model that estimates the like-
lihood from a subset of data. The key insight is that we
model the uncertainty of these predictions with respect to
the difference between the likelihood of each datum eval-
uated at the proposal and current state. As these evalua-
tions are highly correlated, the variance of the differences
is much smaller than the variance of the states evaluated
separately, leading to significantly higher confidence in our
predictions. This allows us to justify more aggressive use of
parallel resources, leading to greater speedup with respect
to serial execution or more naı̈ve prefetching schemes.

The best speedup that is realistically achievable for this

problem is sublinear in the number of cores but better than
logarithmic, and our results achieve this. Our approach gen-
eralizes both to schemes that learn an approximation to the
target density and to other MCMC algorithms with more
complex structure, such as slice sampling and more sophis-
ticated adaptive techniques.

Acknowledgments

We thank M.P. Brenner, E.D. Cubuk, V. Kanade, Z. Liu, D.
Maclaurin, A.C. Miller and R. Nishihara for helpful discus-
sions, Aspuru-Guzik, J. Hachmann and R. Olivares-Amaya
for the use of the Clean Energy Project dataset and intro-
duction to the cheminformatic feature set, and M. Tingley
for the derived features used here. This work was partially
funded by DARPA Young Faculty Award N66001-12-1-
4219, the National Institutes of Health under Award Num-
ber 1R01LM010213-01, a Microsoft Research New Fac-
ulty Fellowship award, and Google.

REFERENCES

C. Amador-Bedolla, R. Olivares-Amaya, J. Hachmann, and
A. Aspuru-Guzik. Towards materials informatics for or-
ganic photovoltaics. In K. Rajan, editor, Informatics for
Materials Science and Engineering. Elsevier, Amster-
dam, 2013.

C. Andrieu and E. Moulines. On the ergodicity properties
of some adaptive MCMC algorithms. The Annals of Ap-
plied Probability, 16(3):1462–1505, 2006.

R. Bardenet, A. Doucet, and C. Holmes. Towards scaling
up Markov chain Monte Carlo: An adaptive subsampling
approach. In Proceedings of the 31st International Con-
ference on Machine Learning, 2014.

A. E. Brockwell. Parallel Markov chain Monte Carlo sim-
ulation by pre-fetching. Journal of Computational and
Graphical Statistics, 15(1):246–261, March 2006.

J. M. R. Byrd, S. A. Jarvis, and A. H. Bhalerao. Reduc-
ing the run-time of MCMC programs by multithreading

on SMP architectures. In International Symposium on
Parallel and Distributed Processing, pages 1–8, 2008.

J. M. R. Byrd, S. A. Jarvis, and A. H. Bhalerao. On the
parallelisation of MCMC by speculative chain execution.
In IPDPS Workshops, pages 1–8, 2010.

J. A. Christen and C. Fox. Markov chain Monte Carlo us-
ing an approximation. Journal of Computational and
Graphical Statistics, 14(4):795–810, 2005.

P. R. Conrad, Y. M. Marzouk, N. S. Pillai, and A. Smith.
Asymptotically exact MCMC algorithms via local
approximations of computationally intensive models.
ArXiv e-prints, Feb. 2014.

D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Good-
man. emcee: The MCMC Hammer. Publications of the
Astronomical Society of the Pacific, 125(306), 2012.

A. Gelman and D. B. Rubin. Inference from iterative sim-
ulation using multiple sequences. Statistical Science,
pages 457–472, 1992.

A. Gelman, G. O. Roberts, and W. R. Gilks. Effi-
cient Metropolis jumping rules in Bayesian statistics.
Bayesian Statistics 5, pages 599–607, 1996.

J. Goodman and J. Weare. Ensemble samplers with affine
invariance. Communications in Applied Mathematics
and Computational Science, 5(1):65–80, 2010.

P. J. Green and A. Mira. Delayed rejection in reversible
jump Metropolis-Hastings. Biometrika, 88(4):pp. 1035–
1053, 2001.

J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk,
C. Amador-Bedolla, R. S. Sánchez-Carrera, A. Gold-
Parker, L. Vogt, A. M. Brockway, and A. Aspuru-Guzik.
The Harvard Clean Energy Project: Large-scale compu-
tational screening and design of organic photovoltaics
on the world community grid. The Journal of Physical
Chemistry Letters, 2(17):2241–2251, 2011.

J. Hachmann, R. Olivares-Amaya, A. Jinich, A. L. Ap-
pleton, M. A. Blood-Forsythe, L. R. Seress, C. Román-
Salgado, K. Trepte, S. Atahan-Evrenk, S. Er, S. Shrestha,
R. Mondal, A. Sokolov, Z. Bao, and A. Aspuru-Guzik.
Lead candidates for high-performance organic photo-
voltaics from high-throughput quantum chemistry - the
Harvard Clean Energy Project. Energy Environ. Sci., 7:
698–704, 2014.

M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley.
Stochastic variational inference. Journal of Machine
Learning Research, 14(1):1303–1347, 2013.

A. Korattikara, Y. Chen, and M. Welling. Austerity in
MCMC Land: Cutting the Metropolis-Hastings Budget.
In Proceedings of the 31st International Conference on
Machine Learning, 2014.

J. S. Liu, F. Liang, and W. H. Wong. The multiple-try
method and local optimization in Metropolis sampling.

Journal of the American Statistical Association, 95(449):
pp. 121–134, 2000.

D. Maclaurin and R. P. Adams. Firefly Monte Carlo: Ex-
act MCMC with subsets of data. In 30th Conference on
Uncertainty in Artificial Intelligence (UAI), 2014.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller. Equation of state calculations by
fast computing machines. The Journal of Chemical
Physics, 21(6):1087–1092, 1953.

R. M. Neal. Slice sampling. The Annals of Statistics, 31
(3):705–767, 06 2003.

R. M. Neal. How to view an MCMC simulation as a permu-
tation, with applications to parallel simulation and im-
proved importance sampling. Technical Report 1201,
Dept. of Statistics, University of Toronto, 2012.

R. Nishihara, I. Murray, and R. P. Adams. Parallel MCMC
with generalized elliptical slice sampling. Journal of
Machine Learning Research, Oct. 2014.

R. Olivares-Amaya, C. Amador-Bedolla, J. Hachmann,
S. Atahan-Evrenk, R. S. Sánchez-Carrera, L. Vogt, and
A. Aspuru-Guzik. Accelerated computational discovery
of high-performance materials for organic photovoltaics
by means of cheminformatics. Energy Environ. Sci., 4:
4849–4861, 2011.

T. Park and G. Casella. The Bayesian Lasso. Journal of
the American Statistical Association, 103(482):681–686,
2008.

J. G. Propp and D. B. Wilson. Exact sampling with cou-
pled Markov chains and applications to statistical me-
chanics. Random Structures and Algorithms, 9(1&2):
223–252, 1996.

G. O. Roberts, A. Gelman, and W. R. Gilks. Weak conver-
gence and optimal scaling of random walk Metropolis
algorithms. Annals of Applied Probability, 7:110–120,
1997.

I. Strid. Efficient parallelisation of Metropolis-Hastings
algorithms using a prefetching approach. Computa-
tional Statistics & Data Analysis, 54(11):2814–2835,
Nov. 2010.

R. H. Swendsen and J. S. Wang. Replica Monte Carlo sim-
ulation of spin-glasses. Physical Review Letters, 57(21):
2607–2609, Nov. 1986.

L. Tierney and A. Mira. Some adaptive Monte Carlo meth-
ods for Bayesian inference. Statistics in Medicine, 18:
2507–2515, 1999.

M. Welling and Y. W. Teh. Bayesian learning via stochastic
gradient Langevin dynamics. In Proceedings of the 28th
International Conference on Machine Learning, 2011.

E. Witte, R. Chamberlain, and M. Franklin. Parallel sim-
ulated annealing using speculative computation. IEEE
Transactions on Parallel and Distributed Systems, 2(4):
483–494, 1991.

