ASC: Automatically Scalable Computation

Amos Waterland
Elaine Angelino
Ryan P. Adams

Harvard University
apw@seas.harvard.edu
elaine@eecs.harvard.edu
rpa@seas.harvard.edu

Abstract

We present an architecture designed to transparently and
automatically scale the performance of sequential programs
as a function of the hardware resources available. The archi-
tecture is predicated on a model of computation that views
program execution as a walk through the enormous state
space composed of the memory and registers of a single-
threaded processor. Each instruction execution in this model
moves the system from its current point in state space to a
deterministic subsequent point. We can parallelize such ex-
ecution by predictively partitioning the complete path and
speculatively executing each partition in parallel. Accurately
partitioning the path is a challenging prediction problem. We
have implemented our system using a functional simulator
that emulates the x86 instruction set, including a collection of
state predictors and a mechanism for speculatively executing
threads that explore potential states along the execution path.
While the overhead of our simulation makes it impractical
to measure speedup relative to native x86 execution, experi-
ments on three benchmarks show scalability of up to a factor
of 256 on a 1024 core machine when executing unmodified
sequential programs.

Categories and Subject Descriptors 1.2.6 [Artificial Intel-
ligence]: Learning—Connectionism and neural nets; C.5.1
[Large and Medium (“Mainframe”) Computers]: Super (very
large) computers

Keywords Machine learning, Automatic parallelization

1. Introduction

The Automatically Scalable Computation (ASC) architec-
ture is designed to meet two goals: it is straightforward to
program and it automatically scales up execution according
to available physical resources. For the first goal, we define
“straightforward to program” as requiring only that the pro-
grammer write sequential code that compiles into a single-
threaded binary program. The second goal requires that per-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ASPLOS ’14, March 01 - 05 2014, Salt Lake City, UT, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2305-5/14/03. .. $15.00.
http://dx.doi.org/10.1145/2541940.2541985

Jonathan Appavoo

Boston University
jappavoo@bu.edu

Margo Seltzer

Harvard University
margo@eecs.harvard.edu

formance improves as a function of the number of cores and
amount of memory available.

We begin with a computational model that views the data
and hardware available to a program as comprising an expo-
nentially large state space. This space is composed of all pos-
sible states of the registers and memory of a single-threaded
processor. In this model, execution of a single instruction cor-
responds to a transition between two states in this space, and
an entire program execution corresponds to a path or trajec-
tory through this space. Given this model and a system with
N processors we would ideally be able to automatically re-
duce the time to execute a trajectory by a factor of N. In
theory, this could be achieved by dividing the trajectory into
N equal partitions and executing each of them in parallel.
Of course, we do not know the precise trajectory a program
will follow, so we do not know, a priori, the precise points
on the trajectory that will equally partition it. Nevertheless,
if we attempt to predict N — 1 points on the trajectory and
speculatively execute the trajectory segments starting at those
points, we will produce a speedup if even a small subset of
our predictions are accurate. From this vantage point, accu-
rately predicting points on the future trajectory of the system
suggests a methodology for automatically scaling sequential
execution.

The primary design challenge in realizing this architecture
is accurately predicting points that partition a trajectory. We
break this challenge into two parts: (1) recognizing states
from which accurate prediction is possible and will result in
useful speedup, and (2) predicting future states of the system
when the current state of execution is recognized as one from
which prediction is possible.

Given solutions for these two challenges, a basic ASC ar-
chitecture works as follows. While sequentially executing on
one core, ASC allocates additional cores for predictive exe-
cution. Each predictive execution core begins executing at a
different predicted state and continues executing for a given
length of time. We then store the results of predictive execu-
tion in a state cache: for example, as compressed pairs of start
and end states. At appropriate times, the sequential execu-
tion core consults the state cache. If its current state matches
a cached start state on all relevant coordinates, it achieves
speedup by “fast-forwarding” to the associated cached end
state and then resumes execution. If the predicted states cor-
rectly and evenly partition the execution trajectory and the
ASC components operate efficiently, we will achieve per-

fect and automatic linear speedup of the sequential execution.
Thus, our architecture has the potential to produce arbitrary
scalability, but its true efficacy will be a function of an imple-
mentation’s ability to (1) recognize good points from which
to make predictions, (2) make accurate predictions, (3) effi-
ciently query the cache, (4) efficiently allocate cores to the
various parts of the architecture, and (5) execute trajectory-
based computation efficiently.

The primary challenges to efficiently implementing ASC
are (1) manipulating the potentially enormous state space and
(2) managing the cache of state pairs. Although the entire
state space of a program is sufficiently large (e.g., 107 bits
for one of our benchmark programs) that efficient manipu-
lation seems intractable, we exploit the fact that predictable
units of computation (think “functions or loops”) often touch
only a tiny fraction of that space (e.g., 10® bits). Thus, we en-
code cache entries using a sparse representation that is itself
compressible. In addition, a single cache entry can be used at
multiple points in a program’s execution, effecting a general-
ized form of memoization.

We present an implementation of ASC, the Learning-based
Automatically Scalable Computation (LASC) system. It is a
trajectory-based functional simulator (TBFS) that emulates
the x86 instruction set with a fast, adaptive algorithm for
recognizing predictable states, a set of on-line learning al-
gorithms that use observed states to learn predictors for fu-
ture states, a resource allocator that selects optimal combina-
tions of predictors in an on-line setting, and a cache that stores
compressed representations of speculative executions.

We evaluate the performance of our system on a set of
sequential benchmark programs with surprisingly good re-
sults. LASC achieves near-linear scaling up to a few hun-
dred cores and continues non-negative scaling up to a few
thousand cores. Our benchmark programs are purely compu-
tational (i.e., they do not perform I/O after loading their ini-
tial input), and they have obvious parallel structure that makes
them amenable to manual parallelization. However, they dif-
fer in the kinds of parallelism they exhibit and how amenable
they are to traditional automatic parallelization approaches.
Our goal is to demonstrate the potential of the ASC architec-
ture to automatically identify and exploit statistical patterns
that arise during program execution.

The contributions of this paper are: (1) a system archi-
tecture that automatically scales performance as a function
of the number of cores or size of memory available, (2) a
fast and adaptive method for automatically identifying states
from which predictions are tractable, (3) a set of general-
purpose predictors that learn from observed states, (4) a the-
oretically sound method to adaptively combine predictions,
and (5) a prototype that demonstrates significant scaling on
certain classes of unmodified x86 sequential binary programs
on systems of up to 4096 cores.

The rest of this paper is organized as follows. We begin
with a discussion of prior work, showing how conventional
techniques can be cast into the ASC architecture in §2. We
then present the ASC architecture in §3 and our learning-
based implementation of the ASC architecture (LASC) in

84. In §5, we present both theoretical and analytical results
that demonstrate the potential of the architecture and the
strengths and weaknesses of our prototype. In §6, we discuss
the implications of this work and avenues for future research.

2. Related work

There are three broad categories of work that share our
goal of automatically scaling program execution: paralleliz-
ing compilers, software systems that parallelize binary pro-
grams, and hardware parallelization. Although each category
of work arises from conceptual models rather different from
ours, notions of statistical prediction and speculative execu-
tion have independently arisen in all three.

2.1 Compiler parallelization

Traditional compiler parallelization based on static analy-
sis [1] has produced sophisticated research compilers [3, 9].
Although these compilers can automatically parallelize most
loops that have regular, well-defined data access patterns [32],
the limitations of static analysis have become apparent [27].
When dealing with less regular loops, parallelizing compilers
either give up or generate both sequential and parallel code
that must use runtime failsafe checking [55]. The ASC ar-
chitecture is able to speed up irregular loops by using on-
line probabilistic inference to predict likely future states, as
we show in §5. However, it can also import the sophisti-
cated static analyses of traditional parallelizing compilers in
the form of probability priors on loops that the compiler was
almost but not quite able to prove independent.

Thread-Level Speculation (TLS) [14, 60, 61] arose in re-
sponse to the limits of compile-time static analysis. TLS
hardware applies speculative execution to code that was not
fully parallelized by the compiler. This hardware backstop
allows automatic speculative parallelization by TLS compil-
ers [31, 40, 41, 48, 51, 62, 70] without fully proving the ab-
sence of dependences across the threaded code they gener-
ate. However, TLS performance sensitively depends upon the
compiler making good choices for speculative thread code
generation and spawning. The ASC architecture can exploit
TLS hardware or transactional memory [26, 34] if it is avail-
able and makes it easy to experiment with decompositions of
execution flow. Compiler choices that yield good decompo-
sitions for TLS are also likely to produce recognizable and
predictable patterns for ASC, and vice versa.

Clusters of computers have been targets of recent specu-
lative parallelizing compilers demonstrating scaling on up to
hundreds of nodes for loops without loop-carried dependen-
cies [33]. Our LASC prototype implementation currently runs
on clusters and would benefit from importing hints produced
by these compilers in the form of probability distributions.
2.2 Binary parallelization

Software systems that automatically parallelize binary
programs also have a long research history. They share with
ASC the properties of not requiring the program source code,
of having perfect visibility into patterns that arise at runtime,
and of inducing some runtime overhead.

Binary rewriter parallelization systems [35, 64, 68] take as
input a sequential binary executable program and produce as
output a parallel binary executable. Dynamic code generating

binary parallelization systems [13, 27] assume the existence
of TLS hardware and apply the same control flow graph anal-
yses used by conventional TLS compilers to sequential bi-
nary programs not originally compiled for TLS. Dynamic bi-
nary parallelization systems [67], inspired by dynamic binary
optimization systems [6], transparently parallelize sequential
binary programs by identifying hot traces of instructions that
can sometimes be replaced with a shorter, speculatively exe-
cuted instruction sequence whose semantics are equivalent on
the current input dependencies.

The ASC architecture contrasts with these systems in that
it does not itself attempt any analysis of instruction control
flow semantics or basic block optimizations. It simply mod-
els execution as the time evolution of a stochastic process
through a state space. This means that it will exploit any
method that can produce probabilistic predictions of future
state vectors. Most instruction control flow analysis and op-
timization techniques can be transformed into probabilistic
predictors by using appropriately rich feature representations.
While engineering such representations may be challenging,
“kernelized” machine learning algorithms can efficiently per-
form predictive computation in potentially large or infinite
feature spaces with minimal overhead. Such savings is pos-
sible because many important machine learning tools interact
with the data via the inner products of feature vectors. By re-
placing these inner products with positive definite Mercer ker-
nels (the so-called “kernel trick” [7, 19]), we can give the al-
gorithm implicit access to large and rich feature spaces. This
means that ASC can import existing work in binary paral-
lelization as “run ahead” approximators [71] that take a com-
pletely consistent probabilistic form.

2.3 Hardware parallelization

Hardware that transparently speeds up sequential binary
programs as a function of transistor count is the subject of
intense research and has resulted in many successful com-
mercial implementations. Superscalar processors [49] exe-
cute individual instructions in parallel, speculatively exe-
cuting around dependencies using powerful branch predic-
tion [30, 57, 58] and load value prediction [38] strategies and
can use trace caches [54] to implicitly enable multiple simul-
taneous branch predictions. Other approaches make multiple
cores appear as one fast out-of-order core [10, 28], shorten ex-
ecution time by speculatively removing nonessential instruc-
tions in parallel [47], and speculatively parallelize programs
at the thread [2, 14, 18, 24, 60, 69] or SIMD [16] level, many
of which rely on some degree of compiler or runtime [17]
assistance.

ASC makes the same contract to the programmer as a su-
perscalar or dynamic multithreading processor: transparent,
automatic scaling of sequential binary programs as a func-
tion of transistor count. ASC prediction is more general than
branch, load value, and return value prediction because it
models the time evolution of the complete state vector and
exploits the fact that correlations between bits can give rise to
a low-entropy joint distribution over points in state space.

Although LASC presently exists only as a software im-
plementation of the ASC architecture, our goal is that every

component be amenable to an efficient hardware implementa-
tion. For example, probabilistic computing hardware [22, 63]
can greatly accelerate our learning algorithms, trace caches
could be extended to store our results from executing a trace
of instructions, and circuitry similar to transactional memory
implementations can expedite dependency tracking.

3. The ASC architecture

We begin our description of the ASC architecture by dis-
cussing the trajectory-based model of computation. We then
discuss each main component of our architecture.

3.1 Trajectory-based computation

We base our model of computation on the trajectory-based
computation framework of Waterland et al. [65, 66]. Consider
the memory and registers of a single-threaded processor as
comprising an exponentially large state space. Program exe-
cution then traces out a trajectory through this state space. If
all input data is loaded up front, this execution is memoryless
in that it produces a deterministic sequence of states, where
each state depends only on the previous state.

In order to parallelize a program using N cores, we can
in principle achieve a speedup of IV by partitioning its trajec-
tory into N equal segments that we execute in parallel. Un-
fortunately, such partitioning requires that we are able to ac-
curately predict N — 1 specific future states of the machine.
If we were able to perfectly predict states, we would sim-
ply predict the end state and ignore the computation entirely.
If trajectories were random sequences of states through this
state space then prediction would be intractable. However,
trajectories are not random, and many programs have regu-
larly structured trajectories. Our experience is that many real-
world programs exhibit regular structure, suggesting that pre-
diction may often be feasible.

Three features of real-world program execution make the
prediction problem significantly easier in practice: (1) each
transition depends on and modifies only a small part of the
state, (2) large portions of the state are constant, such as the
program’s machine instructions, or nearly constant, such as
data that is written once, and (3) real programs tend to be
built from modular and repeating structures, such as functions
and loops. Many aspects of execution have been empirically
shown to have repetitive or predictable patterns [56]. These
include branch directions [30, 58], branch targets [37], mem-
ory data addresses [5], memory data values [21], and depen-
dencies [43], while values produced by instructions tend to
repeat from a small set [38], and instructions often have the
same input and output values [59].

These repetitive or predictable aspects of execution are
particularly amenable to the modeling approach of trajectory-
based computation [65], which illuminates unexpected geo-
metric and probabilistic structure in computer systems by fo-
cusing attention on their state vectors, each of which contain
all information necessary to deterministically transition to the
next state vector. The ASC architecture is designed to amplify
predictable patterns in execution into automatic scaling.

3.2 Architecture components

We present our architecture by walking through Figure 1,
along the way illustrating some possible design decisions that
map existing work into this architecture.

(F) Trajectory Cache

/@)
(10)

(E) Speculator

(D) Allocator

(11) ©)

(C) Predictor

(A) Trajectory-based Execution
(1)

Figure 1. ASC Architecture. The trajectory-based execution
engine sends its current state to the recognizers (1) and to
the allocator (2). The collection of recognizers selects partic-
ular states that appear to be good input to the predictors and
sends them to the predictors (3), the allocator (4), and back to
the trajectory-based execution engine (5). Using the filtered
stream of states obtained from the recognizers, the predictors
build models of execution from which they will predict future
states. The allocator’s job is to assign predictors, recognizers
and speculative threads to cores. Based on the states obtained
from the recognizer, the allocator sends the current state to
the predictors (6), requesting that they use that state to gen-
erate a predicted future state (7). Given those predictions, the
allocator dispatches speculative threads, each with a differ-
ent predicted state and number of instructions to execute (8).
Each speculative thread executes its specified number of in-
structions and inserts its start-state/end-state pair into the tra-
jectory cache (9). Finally, at intervals suggested by the recog-
nizer (5), the trajectory-based execution engine consults the
state cache to determine if its current state matches any start-
states in the cache (10). If there are any matches, the cache
returns the end-state farthest in the future (11).

A single thread, called the main thread, begins program ex-
ecution (A). While the program runs, recognizers (B) strate-
gically identify states along a program’s trajectory that are
amenable to prediction. Intuitively, states are easier to predict
when they follow a recognizable pattern or are drawn from
a recognizable distribution. For example, a recognizer could
use static analysis to determine a condition that, when satis-
fied by a state, indicates that the program is at the top of a loop
or is entering a function that is called repeatedly. A different
recognizer could use metric learning to dynamically identify
states that are similar to previously seen states. As we will ex-
plain in §4.3, the default recognizer in our prototype identifies
regular, widely-spaced points that form a sequence of ‘super-
steps’ for which our predictors make accurate predictions.

A set of on-line learning algorithms train predictors (C),
which build models for strategic points along the trajectory.
Individual models may predict the whole state, single bits
or larger features such as bytes, words, or combinations of
words. Different predictors may produce competing mod-
els of any flavor: deterministic, stochastic, probabilistic or

heuristic. Regardless of the type of model, each predictor
must accept an input state and generate a prediction for a fu-
ture state. It is reasonable, but optional, for the recognizer to
use feedback from the predictors to identify characteristics of
‘predictable’ states.

The allocator (D) is responsible for allocating and schedul-
ing hardware resources for the predictors, recognizers and
speculative execution threads (E). It determines how many
threads to schedule for each component and how long to
spend on each task. Using information from the recognizer,
the allocator decides when to ask the predictors for their es-
timates for future states along with their uncertainty. The al-
locator then attempts to maximize its expected utility as it
decides which predicted states to dispatch to speculative ex-
ecution threads and how long each thread should execute for
each prediction.

The speculative execution threads then enter their re-
sults into the trajectory cache (F), which maintains pairs of
start/end states that correspond to execution of a specific num-
ber of instructions. The main thread can query the cache, and
if it ever matches a start state in the cache, it fast-forwards to
the farthest corresponding end state, thus speeding up execu-
tion by jumping forward in state space and execution time.
Like the allocator, the main thread uses information from the
recognizer to decide when to query the cache.

Any implementation of the ASC architecture must main-
tain correctness of program execution. Speeding up execution
only when there is a strict match on the entire state would
lead to a conceptually straightforward but suboptimal cache
design in which cached trajectories are simply represented as
key-value pairs that map complete start states to complete end
states. A much better cache design is possible, as we explain
in §4.2, by keeping track of the bits read from and written to
each state vector during execution, which allows for speeding
up execution any time there is a match on the subset of the
state upon which that execution depends.

3.3 Discussion

There are several different ways to think about the ASC
architecture. For example, when the strategic points picked
by the recognizer correspond to function boundaries and the
speculative execution threads cache the results of function
call execution, ASC is “speculatively memoizing” function
calls. ASC memoization is more general than conventional
memoization [42], because it can memoize any repeated sec-
tion of computation, not just function calls.

ASC exploits the same patterns as a parallelizing compiler
when it identifies states corresponding to the top of a loop,
speculatively executes many iterations of the loop in paral-
lel, then stores the resulting state pairs in its cache. ASC par-
allelization of loop execution is more general than conven-
tional compiler loop parallelization, because it can specula-
tively execute in parallel the iterations of any loop whose de-
pendencies have a learnable pattern, including loops with sig-
nificant data and control dependencies, rather than just loops
that static analysis can prove to have no dependencies.

The ASC architecture is a general model that scales
unmodified sequential programs compiled with a standard

toolchain. It can scale in two ways: (1) by adding more mem-
ory so that more cache entries can be stored, and (2) by adding
more cores for prediction, speculation and cache lookup. In
84, we present details of our prototype implementation of the
ASC architecture.

4. Implementation

LASC, the learning-based ASC, is an implementation of
our architecture that turns the problem of automatically scal-
ing sequential computation into a set of machine learning
problems. We begin with an overview of our implementation
and then discuss the details of each component.

In LASC, the cache, recognizer, predictors, and allocator
are all built into the trajectory-based functional simulator
(TBES) that we discuss in §4.1. At the heart of the TBFS is
a transition function that interprets its input as an x86 state
vector, simulates one instruction, and outputs a new state
vector. The main and speculative threads execute by repeated
calls to this transition function.

Each time the TBFS executes an instruction on the main
thread, it invokes the recognizer to rapidly decide whether the
resultant state matches a pattern that the recognizer has iden-
tified. If the current state matches the recognizer’s pattern, it
sends the current state to the predictors and queries the dis-
tributed cache — fast-forwarding on a cache hit. Meanwhile,
the predictors update their models and predict future states
based on the current state. The allocator then combines the
predictions and selects a set of predicted states on which to
launch speculative threads.

By factoring the problem of predicting a complete state
vector into the problems of predicting smaller, conditionally
independent portions of a state vector, we parallelize both
training, the task of learning a predictive model for future
states, and prediction itself, the task of using a learned model
to materialize a predicted state.

4.1 Trajectory-based functional simulator

Our simulator’s key data structure is the state vector,
which represents the complete state of computation. Our sys-
tem executes an instruction by calling the transition function:
transition(uint8_t *x, uint8_t *g, int n), where x is the
state vector of length n bits passed as a byte array of dimen-
sion g, and g is the dependency vector also of dimension 3.
The transition function has no hidden state and refers to no
global variables. The transition function simply fetches the 32
bits that contain the instruction pointer of the location in state
space represented by x, fetches the referenced instruction,
simulates the instruction according to the x86 architecture,
and writes the resultant state changes back to the appropriate
bits in the state vector. It may seem a poor choice to represent
state as a bit array, but this gives us the mathematical structure
of a vector space, and allows us to learn and make predictions
using massively bit-parallel binary classifiers.

The transition function accumulates dependency infor-
mation in g at the byte—rather than bit—granularity. For
each byte in the state vector x, the corresponding byte in g
maintains one of four statuses: read, written_after_read,
written or null, with the remaining 256 — 4 codes re-
served. When a speculative execution worker starts, it first

sets all bytes in g to null, then calls the transition function
in a loop. The transition function automatically uses a simple
finite state machine to update the dependency vector on every
call. When the transition function reads a byte whose status is
null, it updates the corresponding status to read. If it later
writes to that same byte, it updates the corresponding status
to written_after_read. If it writes to a byte that has never
been read, it updates the corresponding status to written.

Without this dependency tracking, we could exploit spec-
ulative trajectories only when the current state of execu-
tion matched a cached start state in its entirety. However,
the dependency state lets us match significantly more fre-
quently. When we stop a speculative thread, the set of bytes
with dependency state read or written_after_read (but
not written or null) identifies precisely those bytes on
which the speculative computation depends. Therefore, we
can match a cache entry when the current state matches the
start state of the cache entry merely on bytes having statuses
of read or written_after_read. Not only does this im-
prove the cache hit rate, but it makes the predictors’ jobs eas-
ier too: they need to correctly predict only those same bytes.
When we find a cache hit, the main thread fast-forwards to
the end state of the cache entry by updating only those bytes
with statuses written or written_after_read; this has an
interpretation as a translation symmetry in state space.

4.2 Cache

We exploit dependencies to efficiently represent cache en-
tries. Each cache entry is a representation of a start state and
an end state. The start state represents only those bytes with
read orwritten_after_read statuses and the end state rep-
resents only those bytes with write orwritten_after_read
statuses. We store a sparse representation of the relevant byte
indices and their corresponding values.

A portion of the cache exists on each core participating in a
computation, because we implement the cache directly in the
TBFS. Each core that generates a speculative execution stores
that execution in its portion of the cache. The main thread
queries this parallel distributed cache at intervals indicated
by the recognizer by broadcasting its current state vector,
either as a binary delta against its last query or as the full
state vector, depending on the computation/communication
tradeoff. Each node responds with an integer value indicating
the length of its longest matching trajectory — zero for a cache
miss. Finding the largest integer, and thus the most useful
matching trajectory in the whole cache, is a reduction, so we
use MPT’s parallel binary tree max operator to limit bandwidth
consumption. On our Blue Gene/P system, each pairwise max
comparison is implemented in an ASIC, further speeding up
the reduction. The main thread then does a point-to-point
communication with the node that sent the largest integer
to obtain the corresponding end state to which it will fast-
forward, while all other nodes go back to running learning
algorithms and doing speculative execution.

4.3 Recognizer

The recognizer’s job is to identify states in the trajectory
from which prediction is both tractable and useful. This re-
quires finding states for which the speculative execution from

predicted states will produce few non-null bytes in the de-
pendency vector and the values of the corresponding bytes
in the state vector are predictable. In other words, states for
which resultant speculative computation depends on a small
number of predictable values.

We find these states by exploiting the geometric and proba-
bilistic structure of our state space. In particular, we find a hy-
perplane that cuts the execution trajectory at regular, widely-
spaced intervals, as depicted in Figure 2. Our default recog-
nizer induces such a hyperplane by picking only states that
share a particular instruction pointer (IP) value. Thus, given
a sequence of state vectors corresponding to the same IP, the
predictors try to learn the relevant parts of the state vector that
will occur at future instances of this IP value. Fortunately,
long-running programs tend to be composed of loop struc-
tures and functions that correspond to repeated sequences of
instructions [45].

Initial Trajectory

Online Learning

True Trajectory

Figure 2. From the initial trajectory, we recognize a hyper-
plane that cuts the true trajectory at regular, widely-spaced
points {¥1, &, ... }, all sharing the same IP value. Our on-
line learning problem is then to learn an approximation P
to the true function P that maps Z; to xl+1 Once we have
learned P, we make predictions as &;4,1 = P(Z;).

We use the following parallel algorithm to find a good IP
value. The allocator dispatches all the available cores to par-
ticular IP values that have been observed but not yet rejected.
Each core initializes a private copy of our learning algorithms
and executes the program from its current state. When it en-
counters a state with its assigned IP value, it sends that state
vector to the predictors. The (local) allocator integrates all the
predictions to produce a predicted state, which it caches (lo-
cally). As the core continues execution, it checks for matches
against its growing local cache of predictions. When it finds a
match, it records the number of instructions between the state
from which a prediction was made and the predicted state,
which is a proxy for the utility of the speculative execution
that would result if the prediction had been used.

Some IP values are easily predicted but are so closely
spaced on the trajectory that speculative execution from them
is not worth the communication and lookup costs. Other IP
values are widely spaced on the trajectory but very hard to
predict. The recognizers select the set of IPs whose resulting
states were the best predicted relative to the other IP values
considered. We call these the set of recognized IPs (RIP) and
the lengths of the corresponding trajectories supersteps. After
selecting one or more RIPs, workers are allocated to the var-
ious RIPs, and their predictors begin making predictions for
future states with that same RIP. For the purposes of exposi-
tion, we will assume only a single RIP, but everything applies
when we have multiple RIPs on which we are speculating.

We investigated many heuristics for finding good IP values
before settling on this method. In retrospect, this method
should have been obvious as it is biased towards the precise
criterion of interest: how well the predictors can predict future
states. In our prototype, speculative executions need to be at
least 10* instructions for their benefit to outweigh their cost,
so we ignore predictions, regardless of accuracy, if they are
not sufficiently far in the future.

4.4 Predictors

Our default implementation invokes the predictors only
when the current state has the recognized IP. Thus, given an
example sequence of state vectors all having the same IP, our
predictors try to predict future state vectors that will also have
that IP. This is an on-line learning problem [8], in which we
wish to learn from the sequence of examples a probability
distribution p(X’ | x) that represents our belief that X" will be
the next state vector that will have the same IP as the current
state vector X.

By definition, each state vector contains all the information
necessary to compute future states. We decompose the predic-
tion problem into a set of conditionally independent predic-
tors, where each predictor conditions on the state vector x to
model a particular bit, a 32-bit quantity, or other feature of the
next observation x’. The case of bits is particularly interest-
ing, because it reduces to the binary classification problem,
one of the best developed areas of machine learning [52].

We exploit the bit-level conditional independence decom-
position to formulate our prediction problem probabilisti-
cally, in light of this viewpoint’s practical [7, 52] and theo-
retical [29] advantages. When the current state x has the RIP
value, p(X’ | x, 8) expresses our belief that X’ is the next state
with that IP Value according to our model with parameters 6.
Since each state is simply a binary vector of n bits, we factor
the joint predictive distribution for X’ | x into a product of
per-bit predictive distributions

p(X' [x,0) = ']x,0) (1)

Bernoulli(Z

5 105(x)) 2

Il
Il

where 7/, is the j-th bit of the predicted state X'. This factoring
is a convenient computational choice that means we learn
n separate binary classifiers ;(-), which is straightforward
to parallelize. The j-th term in Eq. 2 is the probability that
#; = 1, conditioned on a model 0 (-) that takes a state x as
input. Under this model, the probability of a predicted state
%’ is the product of these n terms.

We use Eq. 2 to make allocation decisions, as at any mo-
ment it encapsulates everything our learning algorithms have
currently discovered, even when the learners themselves are
not probabilistic. One of the allocator’s jobs is to generate
a pool of predictions and then decide which ones to send to
speculative threads. Given a state x and model 8, there are
two straightforward methods for generating predictions from
Eq. 2. The most probable prediction, X}, , is produced by

maximizing each term, i.e., setting each bit to its most prob-
able value. Alternate predictions for X’ can be generated, for
example, by strategically flipping the most uncertain bits of
X to give the second and third most likely predictions, and
so on. These predictions can be used as input to Eq. 2 to
recursively generate predictions farther along the trajectory.
Eq. 2 gives the probability of each of these predictions under
the model, providing a direct way to compare them. As we
describe in §4.5, this allows us to use expected utility maxi-
mization to decide which predictions to use for speculation.

In practice, we learn binary classifiers only for the exci-
tations of program execution, defined as those bits that have
been observed to change more than some threshold number of
times (once, by default) from one instance of the RIP value to
the next. One of the recognizer’s key responsibilities is to find
RIP values that exploit our observation that many temporary
and even some global variables change but then reset to their
starting values during execution between state vectors sharing
certain RIP values. The program’s excitations induce a strong
form of sparsity, as we need learn only those bits that change
across states with the same IP value rather than all bits that
ever change. Some of the programs we evaluate in §5 have a
state space dimensionality of n > 107, of which > 107 bits
change over the lifetime of the program, but of which < 300
change between observations of a certain RIP value.

4.4.1 Interfaces

Each predictor must at minimum implement three inter-
faces: update(x, j), predict (x, j) and reset (). For each
bit j known to be non-constant between occurrences of the
RIP, the main thread calls update (x, j). Each predictor then
uses the difference between its previous prediction ; for the
j-th bit of x and the newly observed actual value x; of that
bit to update its internal model parameters [25].

After the predictors have updated their models, the main
thread asks for predictions by calling predict (x, j) for each
non-constant bit j. The predictors then issue predictions for
bit j at the next instance of the recognized IP value. These
per-bit predictions are mixed and matched, as will be de-
scribed in §4.5.1, weighted by each predictor’s past perfor-
mance on each bit, into the single distribution in Eq. 2. Pre-
dictors are free to extract whatever features from x they wish,
but must express predictions at the bit level. Predictors at the
feature level share state between related bits to make this ef-
ficient.

Our system invokes predictors in multiple contexts, so
each must supply a reset() routine that causes them to
discard their current models and start building new ones. For
example, the recognizer calls reset when searching for an
initial RIP or when a change in program behavior renders the
current RIP useless.

4.4.2 Prediction algorithms

LASC is extensible, so it can support any number of pre-
dictors that implement the interfaces described in §4.4.1. The
results in this paper use only four discrete learning algorithms
— two trivial ones, mean and weatherman, and two interesting
ones, logistic regression and linear regression. The mean pre-
dictor simply learns the mean value of each bit and issues

predictions by rounding. The weatherman predictor predicts
that the next value of each bit will be its current value.

Logistic regression is a widely-used learning algorithm for
binary classification [7], in which one is given a vector x that
one must classify as either 1 or 0. It assumes that one has a
stream of labeled examples {(x, y), (x",%'), ... }, where each
label y is a 1 or 0. The goal is to correctly predict a new
vector x” as 1 or O before seeing its true label y”. In our
setup, the labels y are the j-th bit of the next state vector x’
given the current state vector x. Logistic regression defines
a family of functions, each parameterized by a weight vector
w of dimension n + 1. We do on-line learning for logistic
regression via one fast stochastic gradient descent weight
vector update per new observation, where w is updated to w’
based on the difference between the true label x; and the label
predicted by w when evaluated as &, = (1+e~%>)~!, where
WX = Wy +wixy + - - - + Wy Zy. Although strictly speaking
logistic regression can be thought of as treating each input bit
as independent, it is not by any means naive or inappropriate,
as many seemingly difficult learning problems boil down to
linear separability in a high dimensional space [15], which is
precisely what its weight vector w models.

Linear regression is a widely-used learning algorithm used
to fit a curve to real-valued data [7]. The word “linear” refers
to the fact that the predicted curve is a linear combination of
the input data, and does not imply that the predicted curve
will be a straight line. It takes as input a stream of examples
{(x,9),(x',y'),...}, where each label y is a real number.
The goal is to correctly predict the y” associated with each
new vector x” before seeing the true answer. In our setup, the
labels y = ¢;(x’) are produced by interpreting the i-th 32-bit
word of the state vector x” as an integer. Like logistic regres-
sion, linear regression defines a family of functions, each pa-
rameterized by a weight vector w of dimension K + 1, and
on-line learning involves updating the current weights w to
w’ based on the difference between the true label ¢;(x’) and
the label predicted by w when evaluated as the polynomial
$i(x') = wo + Yy widi(x)F.

Linear regression is most useful when our system needs
to predict integer-valued features such as loop induction vari-
ables, while logistic regression is more general and attempts
to predict any bit whatsoever. We run multiple instances of
each predictor with different learning rates, and then unify
their predictions using the Randomized Weighted Majority
Algorithm discussed in the next section. Learning, like spec-
ulative execution, occurs in parallel and out of band with ex-
ecution on the main thread. We use the fast, on-line forms of
the gradient descent learning algorithms for both linear and
logistic regression.

4.5 Allocator

The allocator is responsible for unifying multiple predic-
tions into state vectors from which it schedules speculative
execution.

4.5.1 Combining multiple predictions

We use an approach known as “prediction from expert
advice” [8]. This approach makes no assumptions about the
quality or independence of individual predictors or ‘experts’.

Some predictors are better at predicting certain bits of our
state vectors than others, so we want to mix and match pre-
dictors at the bit level, even if some of the predictors internally
operate at a higher semantic level. Prediction from expert ad-
vice gives us a theoretically sound way to combine wildly-
different predictors. In this approach, the goal is to minimize
regret: the amount by which the predictive accuracy of an en-
semble of predictors falls below that of the single best predic-
tor in hindsight [8, 11, 12, 39].

The allocator uses the Randomized Weighted Majority Al-
gorithm (RWMA) [39] because it comes with strong theoret-
ical guarantees that bound regret. These regret bounds say,
intuitively, that for each bit of the current program, if there
exists in our ensemble a good predictor for that particular bit,
then after a short time the error incurred by the weighted ma-
jority votes for that bit will be nearly as low as if we had clair-
voyantly only used that best predictor from the start. We get
this guarantee at the cost of having to keep track of the per-bit
error rate of each learning algorithm, since the RWMA algo-
rithm uses these error rates to adjust the weights it assigns to
each predictor.

4.5.2 Scheduling speculative threads

The allocator is responsible for combining predictions and
then scheduling speculative executions. It picks the states
from which to speculate and for how long to run each specula-
tive computation by balancing the payoff of each state against
its uncertainty about that state. For each potential speculative
execution, the allocator uses Eq. 2 to calculate the expected
utility: the length of the cached trajectory times the probabil-
ity that it will be used by the main thread.

By combining per-bit predictions, the allocator produces a
single distribution with the form of Eq. 2. Thus, the allocator
combines the results of multiple on-line learning algorithms
using a regret minimization framework to form a single uni-
fied conditional probability distribution. This distribution is
general in the sense that it can take any state as input. This in-
cludes unobserved states, and in particular, predicted states. It
allows us to both generate predictions and assign them proba-
bilities that represent our belief that they will be correct. The
allocator then uses this equation to ‘roll out’ predictions for
k supersteps in the future by using predicted states as input
to recursively generate later predictions. Out of the total set
of generated predictions, the allocator selects the subset that
maximizes the expected utility of speculating from these pre-
dictions.

5. [Evaluation

ASC is a new architecture strongly motivated by current
trends in hardware and, in the case of LASC, demonstrates
a way to leverage machine learning techniques for transpar-
ent scaling of execution. As such, we have no expectation for
our implementation to immediately outperform decades of re-
search on parallelizing compilers and hardware-based specu-
lation. ASC is a promising long-term approach for which we
have two goals in our evaluation. First, we want to demon-
strate the potential of ASC by showing that we are able to
make accurate predictions and that it is possible to use these
predictions to produce significant scalability of sequential bi-

nary programs. Second, we want to demonstrate that our pro-
totype system achieves some of these benefits in practice, lim-
ited only by implementation details that require further engi-
neering and tuning.

We first introduce the three benchmark programs we use
and then present data that demonstrates the efficacy of our
predictors and method for combining their predictions. Next,
we describe the hardware platforms on which we evaluate
our software implementation of the ASC architecture and
present micro-benchmark results to quantify critical aspects
of its implementation. Then we present scaling results for
both idealized and actual realizations of our implementation.
5.1 Benchmarks

We evaluate three benchmark programs to illustrate differ-
ent weaknesses and strengths in our system. While each of the
three benchmarks is an unmodified x86 binary program, their
opcode use is fairly standard and simple. Our fine-grained
dependency-tracking simulator is undergoing active improve-
ment, but it does not yet fully support executing benchmark
programs with the complexity of SPECINT.

Each of our three benchmark programs can be manually
parallelized; this choice allows us to compare ASC’s per-
formance to manual parallelization and is also motivated by
the widespread existence of diverse programs that could be
manually parallelized but are not. In our collaborations with
computational scientists, we repeatedly encounter situations
where the scientific team either lacks the expertise to man-
ually parallelize their programs or have invested significant
time in parallelizing an application for one piece of hardware
only to discover that porting to a new machine requires es-
sentially rewriting their parallel implementation from scratch.
To escape this treadmill, our work demonstrates the exciting
possibility of simply running one sequential binary program
on a laptop, a commodity multicore system, and a massively
parallel supercomputer, obtaining attractive scalability on all
three.

Our first benchmark is the Ising kernel, a pointer-based
condensed matter physics program. It came to our attention
because our colleagues in applied physics found that exist-
ing parallelizing compilers were unable to parallelize it. The
program walks a linked list of spin configurations, looking
for the element in the list producing the lowest energy state.
Computing the energy for each configuration is computation-
ally intensive. Programs that use dynamic data structures are
notoriously difficult to automatically parallelize because of
the difficulties of alias analysis in pointer-based code [50].
We demonstrate that by predicting the addresses of linked list
elements, LASC parallelizes this kernel.

The second benchmark is the 2mm multiple matrix multiply
kernel in Polybench/C, the Polyhedral Benchmark suite [46].
It computes D = a« ABC + 5D, where A, B, C, D are square
integer matrices and «, 3 are integers. This benchmark is, in
principle, highly amenable to conventional parallelizing com-
piler techniques, at least on a shared memory multiprocessor
if not on a supercomputer. We tried every setting of loop par-
allelization that we could find for GCC 4.7.3, but in the best
case the resultant OPENMP parallel binary still ran slower

than the sequential binary. In any case, we use this bench-
mark to demonstrate that the on-line learning algorithms in
LASC automatically identify the same structure that a static
compiler identifies, but without requiring language-level se-
mantic analysis. By identifying the dependencies of repeating
patterns in execution—e.g., dot products between rows of A
and columns of B—neither LASC nor conventional compil-
ers do value prediction for the entries of D.

The third benchmark is the Collatz kernel. This program
iterates over the positive integers in its outer loop, and in its
inner loop performs a notoriously chaotic property test [36].
The property being tested is the conjecture that, starting from
a positive integer n, then repeatedly dividing by 2 if n is even
and multiplying by 3 and adding 1 if n is odd, this sequence
will eventually converge to 1. This program is easily paral-
lelized by spawning separate threads to test different values
of n. LASC identifies the latter parallelization opportunity in
the outer loop, but importantly also automatically memoizes
parts of the inner loop, since in practice the sequence does
converge for all integers being tested.

5.2 Predictor accuracy

As our prediction accuracy relies in part on the recog-
nizer’s ability to find IP values that induce a predictable se-
quence of hyperplane intersections, we first examine our su-
perstep statistics. Then, we examine the accuracy of our indi-
vidual predictors, the regret-minimized error rate of the pre-
dictor ensemble, and the resulting trajectory cache hit rates.

One of the recognizer’s responsibilities is to find a value
of the recognized instruction pointer (RIP) that occurs often
enough to be useful but not so often as to make the speculative
execution stored in each resultant cache entry too short to be
worth the lookup cost. In Table 1 we show the recognizer’s
performance on our three benchmarks in terms of the number
of instructions in the full program execution (total time), how
long it took to identify a useful RIP (converge time), and the
number of speculatively executed instructions encapsulated in
a typical cache entry (average Ijl}mp).

| sing |

2mm | Collatz
Total time (cycles) 2.3x 1010 | 7.5 x 109 | 2.0 x 101!
Converge time (cycles) | 2.3 x 107 | 2.5 x 107 1.0 x 10°
Average jump (cycles) 1.2 x 107 | 1.3 x 107 3.8 x 106
State vector size (bits) 2.0 x 10° 5% 107 3 x 103
Cache query size (bits) 640 808 160
Lines of € code 75 154 15
Unique IP values 206 162 40

Table 1. Recognizer statistics for each benchmark.

Since our cache is distributed over parallel machines,
queries to and responses from the cache are compressed using
the Meyers binary differencing algorithm [44]. Table 1 shows
that the average cache query message size for our three bench-
mark programs is 3200 parts per million (ppm), 16 ppm, and
53331 ppm, respectively, of the full state vector size (cache
response messages are even smaller).

Since the recognizer is effecting an optimization over the
set of IP values, Table 1 also shows the number of lines of C
code and the number of instruction addresses for each bench-
mark. Since speculative execution begins and ends at RIPs,
the average jump is identical to the average interval between

RIP occurrences. The ratio between total time and average
jump approximates the program’s available scalability (in our
system), while the converge time is a lower bound on its se-
quential portion (in our system). As Table 1 shows, our sys-
tem converges to a useful RIP and begins speculative execu-
tion in less than 108 instructions, and fast-forwards execution
by about 107 instructions per jump, so we can in principle
automatically scale these benchmarks to thousands of cores.

In Table 2 we examine the error rates of our learning algo-
rithm ensemble in terms of the percentage of incorrect state
vector predictions. The data demonstrate that we derive bene-
fit from combining multiple predictors and that it is important
to weight the various predictors correctly. The first row of Ta-
ble 2 gives the default error rate that occurs when we weight
each predictor on each bit equally. The second row gives the
optimal achievable error rate for our set of predictors if we
were able to clairvoyantly use the best predictor for each bit.
The third row shows that our on-line regret minimization is
able to mix and match the best predictor per bit to achieve an
actual error rate within 0.3% of optimal.

| Ising | 2mm | Collatz
Equal-weight error rate (1 core) 99.1% | 92.6% 99.9%
Hindsight-optimal error rate (1 core) 1.1% | 10.2% 1.7%
Actual error rate (1 core) 1.2% 3.2% 1.9%
Total predictions (1 core) 2003 599 25000
Incorrect predictions (1 core) 25 19 475
Cache miss rate (32 cores) 0.5% 2.9% 0.3%

Table 2. Prediction error rates and cache miss rates.

The error rates reported in Table 2 are lower than one
might expect for high-dimensional spaces. Since state vectors
need only match cache entries on the latter’s dependencies,
our predictor ensemble need only correctly predict a subset of
all bits in order to get credit for a correct overall prediction.
The cache miss rates on 32 cores reported in Table 2 are
even lower than the error rates in Table 2, since with more
available parallelism a wider variety of learning algorithm
hyperparameters are explored, resulting in more than one
prediction per future state of interest. For example, although
Ising shows an ensemble error rate of 1.2%, we observe that

with 32 cores its cache miss rate is just 0.5%.

Ising Polybench 2mm Collatz
(m = 302) (m = 22) (m = 25)

1.0
isti 0.9
logistic ‘ ‘ 09
0.7
0.6
05
0.4
0.3
0.2
0.
0.

Figure 3. Weight matrices for the benchmarks; rows are the
four predictors; columns are the m excited bits (bits that have
changed from one instance of the RIP to the next).

mean

weather
man

inear II | Ry

/| HH \||

o

To evaluate our system’s regret minimization, Figure 3
shows the final weight matrices for each benchmark. The
columns are the program excitations; i.e., bits that changed at
least once between occurrences of the RIP. The rows are the
four learning algorithms we described in §4.4.2, and the cells
of the matrix are shaded by the magnitude of the weight as-
signed to each predictor for each bit. Both Collatz and 2mm

show a strong preference for the linear regressor, although
there are several bits in the flags register for which the logistic
regressor is absolutely crucial. We almost removed the mean
and weatherman predictors, assuming they would be too sim-
ple to provide additional value, but the Ising weight matrix
clearly shows that all four algorithms contribute significantly.
5.3 Software implementation of the ASC architecture

The instruction execution component of TBFS implements
79 opcodes of the 32-bit x86 instruction set. It executes free-
standing static binary programs compiled with GCC. This pro-
duces a simple implementation about which we can easily
reason and manually verify, while permitting us to run C pro-
grams. The restricted functionality is due to the simplified na-
ture of our prototype and is not fundamental to LASC.

We used three experimental testbeds: an x86 server with
32 cores clocked at 1.4 GHz with 6.4 GB of RAM total, an
IBM Blue Gene/P supercomputer of which we used up to
16384 cores clocked at 850 MHz each with 512 MB of RAM,
and a single-core laptop clocked at 2.4 GHz. The 32-core
server runs Linux, while the Blue Gene/P runs the lightweight
CNK operating system, and the laptop runs MacOS. All three
systems provide an MPI communication infrastructure, but
the Blue Gene/P has ASIC hardware acceleration for reduces.

Our software implementation of the ASC architecture has
a baseline instruction simulation rate of 2.6 million instruc-
tions per second (MIPS) and a dependency tracking instruc-
tion simulation rate of 2.3 MIPS. The baseline instruction rate
is the number of instructions per second executed when de-
pendency tracking and cache lookups are disabled. The de-
pendency instruction rate shows that dependency tracking has
an overhead of approximately 13% above pure architecture
simulation. At 2.3 MIPS, our execution overhead is less than
that of cycle-accurate simulators, which are usually at around
100 KIPS [20], but more than that of conventional functional
simulators, which are usually at around 500 MIPS [20]. There
is nothing inherent in either ASC or LASC that necessitates
our current execution overhead. Rather, the goal of this paper
is to demonstrate the potential of ASC, so we use a testbed
that prioritizes ease of experimentation over performance.

Our simple implementation of speculative threads also in-
curs a significant overhead. Workers make predictions for
some k-th future instance of the RIP by making recursive
predictions. Currently, each worker does this independently
to avoid communication costs. The worker with rank k pre-
dicts k supersteps in the future, which means that prediction
time is currently a linear function of rank, with a prediction
wall-clock time of about 103 - £ us on Blue Gene/P.

5.4 Scaling results

In this section we show scaling results, measured by divid-
ing the single-threaded wall clock time of each benchmark by
its parallel execution wall clock time. This ratio normalizes
for fixed cost overheads in our system, almost all of which
arise from our relatively slow functional simulator, but we do
not subtract the cost of learning, lookup or any other cost from
the wall clock times.

Figure 4 shows scaling results on the Ising benchmark for
both the 32-core server and the Blue Gene/P supercomputer.

LASC scaling for Ising on 32-core server LASC scaling for Ising on Blue Gene/P

4096

Ideal scaling o
—o— Hand-parallelized scaling &
LASC cycle count scaling 0
LASCoracle scaling e
| © LASCscaling I

Ideal scaling
-+ LASC cycle count scaling
o LASC scaling

R
506 °

5760
el

Scaling
5 10 15 20 25 30
32 128 512

Scaling in log; scale

&P

8

80

T T T T T T T T T T 1T
2 4 8 32 128 512 2048

0
2

Number of cores Number of cores in log, scale

Figure 4. Scaling results for Ising benchmark.

We show several parallelization results to tease apart the in-
herent scalability of the program, the limits of our predictors,
and the bottlenecks in our implementation. On the 32-core
server, the hand-parallelized results show that it is possible to
achieve perfect scaling by first iterating over the list, partition-
ing it into up to 32 separate lists and then computing on each
list in parallel. In LASC, potential scaling is limited by the
cache hit rate. With infinitely fast cache lookups, we would
obtain the performance illustrated by the “cycle count scal-
ing” line. However, our cache lookup is not infinitely fast and
produces the results shown in the LASC lines. The “oracle
scaling” illustrates the performance our system could achieve
with perfect predictions; this measurement holds everything
else constant—including the recognizer and allocator policies
as well as the times to compute predictions, speculative trajec-
tories and cache queries—while ensuring that the prediction
for any particular state is correct. The fact that the actual and
oracle scaling lines overlap demonstrates that we are limited
only by inefficiencies in our prototype, rather than by predic-
tion accuracy.

There are two different forces at work in the scaling curves
of Figure 4. The first arises from the inherent parallelism of
the Ising benchmark, and the second arises from the artifacts
of our prototype. Although the potential energy calculation
of Ising involves many deeply nested loops, the outermost
pattern is just a linked list walk, which enables the recognizer
to quickly find a good IP value for speculation; namely, one a
few instructions into the prologue of the energy function.

As shown in Table 1, Ising’s superstep accounts for ap-
proximately 0.05% of its total instruction count, so the best
scaling we can expect is approximately 2000. Unsurprisingly,
code inspection reveals that its internal linked list has ex-
actly 2000 nodes, which explains the drop-off we see on Blue
Gene/P at 2000 cores. However, our scaling peaks at roughly
1024 cores, due to the cost of our current implementation of
recursive prediction. When LASC has many cores at its dis-
posal, cores are dispatched to make predictions at increas-
ingly distant instances of the RIP. As explained in §5.3, work-
ers make predictions from predictions for future instances of
the RIP, but do not currently share this ‘rollout” computation
across cores, so prediction time grows linearly in the number
of cores. Our next release will use a parallel transitive closure
to greatly improve this.

Figure 5 shows scaling results for Polybench/C 2mm on
the 32-core server. Although 2mm (matrix multiply) also has

LASC scaling for Polybench on 32-core server

o | Ideal scaling
© - LASC cycle count scaling
LASC+oracle scaling
Q& - © LASCscaling
o |
o N
£
§ o
12]
e : oo
. 090 go mo 100 °
oo
0 — e
L
oF
o 4
T T T T T T T
0 5 10 15 20 25 30

Number of cores

Figure 5. Scaling results for Polybench 2mm.

somewhat regular structure arising from its dot product loops,
its scaling is less impressive than that of Ising in that it
asymptotes at about 10x, which makes it not worth bench-
marking on Blue Gene/P. Again, there are two different forces
at work. For 2mm, the superstep accounts for slightly less than
0.2% of the total execution, which limits its potential scalabil-
ity to 600. The cycle count line for 2mm in Figure 5 shows en-
couraging potential scaling possible with our predictors. The
oracle line in Figure 5 indicates that LASC is not limited by
prediction accuracy for 2mm, but, as with Ising, it is lim-
ited by the fact that it does not currently parallelize recursive
prediction. The effect is more pronounced here, because we
have more bits to predict. As discussed in §5.2, we track two
orders of magnitude more bits for 2mm than for Ising, so pre-
dictions take two orders of magnitude longer. Given the rel-
atively small message sizes our prototype achieved for trans-
mitting predicted state vectors, we are optimistic that once
we parallelize recursive prediction, our prototype will demon-
strate greatly improved overall scalability.

Figure 6 shows scaling results for the Collatz benchmark
on all three of our platforms. Tables 1 and 2 indicate that our
system finds Collatz to be easily predicted (98.1% accu-
racy) with an available parallelism of about 25000 x. How-
ever, the relatively small number of instructions between each
of the 10% iterations of the outer loop forces our recognizer
to adapt and consider only every 4000 instances of the RIP,
which limits the overall parallelism. Our scaling results for
Collatz on the 32-core and Blue Gene/P platforms are en-
couraging but somewhat expected, given that the outer loop
of the benchmark is effecting an exhaustive search. What is
more interesting is the structure that LASC automatically dis-
covered in the inner loop of the benchmark. Recall that test-
ing the Collatz conjecture is an iterative process of comput-
ing n/2 or 3n + 1. As the conjecture is never disproven, ulti-
mately, every integer tested eventually converges to 1 through
shared final subsequences that end in 1. For example, for all
but very small integers, the final five elements must be 16, 8,
4,2, 1. As the inner loop tests the conjecture, even though the
process is chaotic, it produces patterns exploited by LASC.
We demonstrate this by running Collatz on our single-core
laptop, on which parallel speculation is not possible, but on

which the recognizer still detects frequently occurring IP val-
ues and uses the intervening computation to effect generalized
memoization. LASC scales up execution on a single core by
using cache entries from the program’s own past, which re-
sults in the scaling shown in the rightmost graph of Figure 6.
As the outer loop tests increasingly large integers, memoized
subsequences comprise smaller relative fractions of execu-
tion, so scaling eventually asymptotes. Note that we disabled
this pure memoization capability for the 32-core server and
Blue Gene/P experiments to highlight the scaling available
exclusively from prediction and speculation.

5.5 Limitations

While we find these early results exciting, there are obvi-
ous limitations to our current implementation as well as lim-
itations inherent in ASC. The results in §5.4 all showed rela-
tive scaling, rather than absolute speedup, because our proto-
type is several orders of magnitude slower than a native core
at sequential execution. We are exploring the following direc-
tions for improving its performance. There are four compo-
nents required to implement our architecture: (1) an execution
engine used for both ground truth and speculative execution,
(2) a mechanism for dependency tracking during execution,
(3) a lookup mechanism for large, sparse bit vectors, and (4)
a recursive prediction mechanism. For the first component,
we are exploring dynamic compilation and process tracing.
For the second component, we are exploring compiler static
analysis that proves or probabilistically bounds which regions
of state space are immutable, as well as transactional memory
hardware that tracks dependencies and modifications in state
space, reporting them in a representation efficient for trans-
mitting state vector differences between processors. Current
measurements of Intel’s Haswell transactional memory report
less than a factor of two slowdown for large read transactions
and almost no slowdown for writes [53]. For the third compo-
nent, we are exploring a binary decision trie that maximizes
the expected utility of our cache by balancing the payoff of
each cache entry against the probability of its use. For the
fourth component, we are implementing a parallel transitive
closure for recursive prediction.

A second limitation is that we have chosen benchmarks
that programmers find trivial to parallelize. This was by de-
sign. While humans are capable of manually parallelizing
programs, ensuring that the resultant parallel program runs
well on a machine of any size remains challenging. Further,
most computation is invoked by people whose interests lie in
the results of the computation and not in the creation of the
program. For such users with whom we’ve interacted, manual
parallelization feels like wasted work that gets redone every
time they change to a new machine. Our goal is to provide a
mechanism that relieves programmers of this burden.

The class of programs for which our architecture is ap-
propriate is, in principle, any program that has “information
bottlenecks” in its state space; i.e., segments of execution
whose results, when transmitted forward in time as depen-
dencies of later segments of execution, can be significantly
compressed. In practice, the limitations of our architecture
arise from our system’s ability to automatically identify and

LASC scaling for collatz on 32-core server

LASC scaling for collatz on Blue Gene/P

LASC scaling for collatz on 1-core laptop

~
S Ideal scaling Ideal scaling
- LASC cycle count scaling = =] === LASC cycle count scaling « _|
2 o © LASCscaling o § 1 o LASC scaling Baseline
R ~ | —— LASC scaling
Q 4) . .. -
o S o .= o
£ 00° g o , £
. o - .
o % g i '6'0 o
.) - o >]
- #7250 o & © | 6 -
o - "boo N o
5° ~ S
)
o .
o
o 4 ~ -0 ©
T T T T T T T rT1rr1rr 177171 171711177171 =} T T T T T
0 5 10 15 20 25 30 1 4 16 64 256 2048 16384 2e+07 4e+07 6e+07 8e+07 1e+08

Number of cores

Number of cores in log, scale

Instructions

Figure 6. Scaling results for Collatz benchmark. The left and center plots are the same measurements as in Figure 4,
illustrating scaling resulting from prediction and speculative trajectory evaluation. In contrast, the rightmost plot illustrates
scaling by simply caching the program’s past trajectory — a form of generalized memoization with no predictions involved.

approximate these information-flow structures in state space.
Like other architectures that have tried to exploit parallelism
over large windows of execution, we are also limited by our
ability to store and look up large speculative state vectors.
While these identification, prediction, and lookup problems
are difficult in general, taken together they are a promising
reduction from the overall automatic parallelization problem,
as they are themselves inherently highly scalable. Since it is
relatively straightforward for our architecture to incorporate
the results of static analysis, the class of programs for which
our architecture is appropriate has a large overlap with the set
of programs targeted by conventional parallelizing compilers.

Lastly, the theory of P-completeness tells us that there
are fundamental limits to parallelism [4, 23]. Some problems
simply do not admit any parallel solution that runs signifi-
cantly faster than their sequential solution, e.g., it is extremely
unlikely that any system, human or automatic, will ever sig-
nificantly parallelize an iterated cryptographic hash. Our goal
is to design an architecture capable of pushing up against
these information-theoretic limits of parallelism; our regret
minimization framework (§4.5.1) is explicitly designed with
this in mind, as it allows us to coherently incorporate predic-
tive hints from a wide breadth of tools.

6. Conclusion

We have presented an architecture and implementation
that extracts parallelism automatically from structured pro-
grams. Although Collatz and 2mm have easily parallelized
structure, Ising uses dynamically allocated structures, which
are frequently not amenable to automatic parallelization. Our
learning-based implementation is currently limited by its re-
cursive prediction time, but is still able to scale to hundreds
of cores. It is particularly encouraging that we are able to
achieve high predictive accuracy, and that we obtain cache
hit rates even higher than our predictive accuracy by tracking
dependencies during speculative execution. There are a num-
ber of avenues for extending this work. A few straightforward
improvements to our implementation will bring actual perfor-
mance much closer to possible performance. Developing and

evaluating different predictors and recognizers is an obvious
next step. Hybrid approaches that use the compiler to identify
structure have the potential to alleviate the bottleneck due to
training time — we could begin speculative execution imme-
diately based upon compiler input and simultaneously begin
training models to identify additional opportunities for spec-
ulation. We have only just begun exploring reusing the trajec-
tory cache across different invocations of the same program
as well as slightly modified versions of the program. Incorpo-
rating persistent storage into this model is also a challenging
avenue of future work. On one hand, persistent storage sim-
ply makes the state bigger; on the other, it makes the state
sufficiently large that the approach could prove ineffective.
The ASC architecture can be extended naturally to encom-
pass I/O. Like the contents of memory and registers, output
data is computed from existing state. Input data will be han-
dled by naturally extending LASC’s prediction framework to
modeling the input distribution, e.g., learning a probabilis-
tic model consistent with the histogram of observed inputs.
There are obvious parallels between our dependency tracking
and transactional memory. It would be interesting to explore
hybrid hardware/software approaches to ASC. While we have
realized ASC in a learning-based framework, there are radi-
cally different approaches one might take. We hope to explore
such alternatives with other researchers.

Acknowledgments

The authors would like to thank Gerald Jay Sussman,
Miguel Aljacen, Jeremy McEntire, Ekin Dogus Cubuk, Liz
Bradley, Eddie Kohler, Benjamin Good and Scott Aaronson
for their contributions. This work was supported by the Na-
tional Science Foundation with a Graduate Research Fellow-
ship under Fellow ID 2012116808 and a CAREER award un-
der ID CNS-1254029 and CNS-1012798, and by the National
Institutes of Health under Award Number 1RO1LMO010213-
01. This research was awarded resources at the Argonne
Leadership Computing Facility under the INCITE program,
which is supported by the Office of Science of the U.S. De-
partment of Energy under contract DE-AC02-06CH11357.

References
[1] Vikram S. Adve, John Mellor-Crummey, Mark Anderson, Jhy-
Chun Wang, Daniel A. Reed, and Ken Kennedy. An integrated
compilation and performance analysis environment for data
parallel programs. In Proceedings of the 1995 ACM/IEEE
conference on Supercomputing (CDROM), Supercomputing
’95, New York, NY, USA, 1995. ACM.

[2] Haitham Akkary and Michael A. Driscoll. A dynamic
multithreading processor. In Proceedings of the 31st annual
ACM/IEEE international symposium on Microarchitecture,
MICRO 31, pages 226-236, Los Alamitos, CA, USA, 1998.
IEEE Computer Society Press.

[3] Saman P. Amarasinghe and Monica S. Lam. Communication
optimization and code generation for distributed memory ma-
chines. In Proceedings of the ACM SIGPLAN 1993 conference
on Programming language design and implementation, PLDI
’93, pages 126—138, New York, NY, USA, 1993. ACM.

[4] Sanjeev Arora and Boaz Barak. Computational complexity: a
modern approach. Cambridge University Press, 2009.

[5] Jean-Loup Baer and Tien-Fu Chen. An effective on-chip
preloading scheme to reduce data access penalty. In Proceed-
ings of the 1991 ACM/IEEE conference on Supercomputing,
Supercomputing 91, pages 176-186, New York, NY, USA,
1991. ACM.

[6] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia.
Dynamo: a transparent dynamic optimization system. ACM
SIGPLAN Notices, 35(5):1-12, 2000.

[7] Christopher M. Bishop. Pattern Recognition and Machine
Learning (Information Science and Statistics). Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2006.

[8] Avrim Blum. On-line algorithms in machine learning. In Amos
Fiat and Gerhard J. Woeginger, editors, Online Algorithms,
volume 1442 of Lecture Notes in Computer Science, pages
306-325. Springer, 1996.

[9] Bill Blume, Rudolf Eigenmann, Keith Faigin, John Grout,
Jay Hoeflinger, David Padua, Paul Petersen, Bill Pottenger,
Lawrence Rauchwerger, Peng Tu, and Stephen Weatherford.
Polaris: The next generation in parallelizing compilers. In
Proceedings Of The Workshop On Languages And Compil-
ers For Parallel Computing, pages 10-1. Springer-Verlag,
Berlin/Heidelberg, 1994.

[10] Michael Boyer, David Tarjan, and Kevin Skadron. Federation:
Boosting per-thread performance of throughput-oriented
manycore architectures. ACM Trans. Archit. Code Optim.,
7(4):19:1-19:38, December 2010.

[11] Nicolo Cesa-Bianchi, Yoav Freund, David Haussler, David P.
Helmbold, Robert E. Schapire, and Manfred K. Warmuth. How
to use expert advice. J. ACM, 44(3):427-485, May 1997.

[12] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning,
and Games. Cambridge University Press, New York, NY, USA,
2006.

[13] Michael K. Chen and Kunle Olukotun. The jrpm system
for dynamically parallelizing java programs. In Proceedings
of the 30th annual international symposium on Computer
architecture, ISCA ’03, pages 434446, New York, NY, USA,
2003. ACM.

[14] Marcelo Cintra, José F. Martinez, and Josep Torrellas. Ar-

chitectural support for scalable speculative parallelization in
shared-memory multiprocessors. In Proceedings of the 27th

annual international symposium on Computer architecture,
ISCA 00, pages 13-24, New York, NY, USA, 2000. ACM.

[15] Adam Coates, Andrew Y Ng, and Honglak Lee. An analysis
of single-layer networks in unsupervised feature learning.
In International Conference on Artificial Intelligence and
Statistics, pages 215-223, 2011.

[16] A Dasgupta. Vizer: A framework to analyze and vectorize intel
x86 binaries. Master’s thesis, Rice University, 2002.

[17] James C. Dehnert, Brian K. Grant, John P. Banning, Richard
Johnson, Thomas Kistler, Alexander Klaiber, and Jim Mattson.
The transmeta code morphing software: using speculation,
recovery, and adaptive retranslation to address real-life chal-
lenges. In Proceedings of the international symposium on
Code generation and optimization: feedback-directed and run-
time optimization, CGO *03, pages 15-24, Washington, DC,
USA, 2003. IEEE Computer Society.

[18] Pradeep K. Dubey, Kevin O’Brien, Kathryn M. O’Brien, and
Charles Barton. Single-program speculative multithread-
ing (spsm) architecture: compiler-assisted fine-grained mul-
tithreading. In Proceedings of the IFIP WG10.3 working con-
ference on Parallel architectures and compilation techniques,
PACT 95, pages 109-121, Manchester, UK, UK, 1995. IFIP
Working Group on Algol.

[19] Maria florina Balcan, Manuel Blum, Yishay Mansour, Tom
Mitchell, and Santosh Vempala. New theoretical frameworks
for machine learning, 2008.

[20] Bjorn Franke. Fast cycle-approximate instruction set simula-
tion. In Proceedings of the 11th international workshop on
Software & compilers for embedded systems, pages 69-78.
ACM, 2008.

[21] Freddy Gabbay and Freddy Gabbay. Speculative execution
based on value prediction. Technical report, EE Department
TR 1080, Technion - Israel Institue of Technology, 1996.

[22] Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy,
Keith Bonawitz, and Daniel Tarlow. Church: a language for
generative models. CoRR, abs/1206.3255, 2012.

[23] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo.
Limits to parallel computation: P-completeness theory. Oxford
University Press, Inc., New York, NY, USA, 1995.

[24] Lance Hammond, Mark Willey, and Kunle Olukotun. Data
speculation support for a chip multiprocessor. In Proceedings
of the eighth international conference on Architectural support
for programming languages and operating systems, ASPLOS
VIII, pages 58-69, New York, NY, USA, 1998. ACM.

[25] Milos Hauskrecht. Linear and logistic regression. Class lecture,
2005.

[26] Maurice Herlihy and J. Eliot B. Moss. Transactional memory:
architectural support for lock-free data structures. In Proceed-
ings of the 20th annual international symposium on computer
architecture, ISCA *93, pages 289-300, New York, NY, USA,
1993. ACM.

[27] Ben Hertzberg. Runtime Automatic Speculative Parallelization
of Sequential Programs. PhD thesis, Stanford University, 2009.

[28] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F.
Martinez. Core fusion: accommodating software diversity
in chip multiprocessors. In Proceedings of the 34th annual
international symposium on Computer architecture, ISCA *07,
pages 186-197, New York, NY, USA, 2007. ACM.

[29] E.T. Jaynes. Probability Theory: The Logic of Science.
Cambridge University Press, 2003.

[30] Daniel A. Jiménez and Calvin Lin. Dynamic branch prediction
with perceptrons. In Proceedings of the 7th International
Symposium on High-Performance Computer Architecture,
HPCA °01, pages 197—, Washington, DC, USA, 2001. IEEE
Computer Society.

[31] Troy A. Johnson, Rudolf Eigenmann, and T. N. Vijaykumar.
Speculative thread decomposition through empirical optimiza-
tion. In Proceedings of the 12th ACM SIGPLAN symposium on
Principles and practice of parallel programming, PPoPP ’07,
pages 205-214, New York, NY, USA, 2007. ACM.

[32] Ken Kennedy and John R. Allen. Optimizing compilers for
modern architectures: a dependence-based approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[33] Hanjun Kim, Nick P. Johnson, Jae W. Lee, Scott A. Mahlke,
and David I. August. Automatic speculative DOALL for
clusters. In Proceedings of the Tenth International Symposium
on Code Generation and Optimization, CGO *12, pages 94—
103, New York, NY, USA, 2012. ACM.

[34] Tom Knight. An architecture for mostly functional languages.
In Proceedings of the 1986 ACM conference on LISP and
functional programming, LFP *86, pages 105-112, New York,
NY, USA, 1986. ACM.

[35] Aparna Kotha, Kapil Anand, Matthew Smithson, Greeshma
Yellareddy, and Rajeev Barua. Automatic parallelization in
a binary rewriter. In Proceedings of the 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitecture,
MICRO 43, pages 547-557, Washington, DC, USA, 2010.
IEEE Computer Society.

[36] Jeftrey C. Lagarias. The 3x+1 Problem: An Annotated
Bibliography, II (2000-2009). Arxiv, August 2009.

[37] J. K. F. Lee and A. J. Smith. Branch prediction strategies and
branch target buffer design. Computer, 17(1):6-22, January
1984.

[38] Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul
Shen. Value locality and load value prediction. In ASPLOS,
pages 138-147, 1996.

[39] Nick Littlestone and Manfred K. Warmuth. The weighted
majority algorithm. Inf. Comput., 108(2):212-261, February
1994.

[40] Wei Liu, James Tuck, Luis Ceze, Wonsun Ahn, Karin Strauss,
Jose Renau, and Josep Torrellas. POSH: A TLS compiler that
exploits program structure. In Proceedings of the eleventh
ACM SIGPLAN symposium on Principles and practice of
parallel programming, PPoPP *06, pages 158-167, New York,
NY, USA, 2006. ACM.

[41] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott Mahlke.
Parallelizing sequential applications on commodity hardware
using a low-cost software transactional memory. In Proceed-
ings of the 2009 ACM SIGPLAN conference on Programming
language design and implementation, PLDI °09, pages 166—
176, New York, NY, USA, 2009. ACM.

[42] Donald Michie. "Memo” Functions and Machine Learning.
Nature, 218(5136):19-22, April 1968.

[43] Andreas Moshovos, Scott E. Breach, T. N. Vijaykumar, and
Gurindar S. Sohi. Dynamic speculation and synchronization
of data dependences. In Proceedings of the 24th annual

international symposium on Computer architecture, ISCA *97,
pages 181-193, New York, NY, USA, 1997. ACM.

[44] Eugene W. Myers. An o(nd) difference algorithm and its
variations. Algorithmica, 1:251-266, 1986.

[45] Todd Mytkowicz, Amer Diwan, and Elizabeth Bradley.
Computer systems are dynamical systems. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 19(3):033124,
20009.

[46] Louis-Noel Pouchet. Polybench/c: the polyhedral benchmark
suite.

[47] Zach Purser, Karthik Sundaramoorthy, and Eric Rotenberg. A
study of slipstream processors. In Proceedings of the 33rd
annual ACM/IEEE international symposium on Microarchitec-
ture, MICRO 33, pages 269-280, New York, NY, USA, 2000.
ACM.

[48] Carlos Garcia Quiniones, Carlos Madriles, Jesus Sanchez,
Pedro Marcuello, Antonio Gonzalez, and Dean M. Tullsen.
Mitosis compiler: an infrastructure for speculative threading
based on pre-computation slices. In Proceedings of the 2005
ACM SIGPLAN conference on Programming language design
and implementation, PLDI °05, pages 269-279, New York,
NY, USA, 2005. ACM.

[49] George Radin. The 801 minicomputer. In Proceedings of
the first international symposium on Architectural support for
programming languages and operating systems, ASPLOS 1,
pages 39-47, New York, NY, USA, 1982. ACM.

[50] Easwaran Raman, Neil Vachharajani, Ram Rangan, and
David 1. August. Spice: speculative parallel iteration chunk
execution. In Proceedings of the 6th annual IEEE/ACM
international symposium on Code generation and optimization,
CGO ’08, pages 175-184, New York, NY, USA, 2008. ACM.

[51] Ram Rangan, Neil Vachharajani, Manish Vachharajani, and
David I. August. Decoupled software pipelining with the syn-
chronization array. In Proceedings of the 13th International
Conference on Parallel Architectures and Compilation Tech-
niques, PACT °04, pages 177-188, Washington, DC, USA,
2004. IEEE Computer Society.

[52] David Stork Richard Duda, Peter Hart. Pattern Classification
(Second Edition). John Wiley & Sons, Inc., 2001.

[53] C. G. Ritson and F. R. M. Barnes. Evaluating intel rtm for cpas.
In P. H. Welch et al, editor, Proceedings of Communicating
Process Architectures 2013. Open Channel Publishing Limited,
2013.

[54] Eric Rotenberg, Steve Bennett, and James E. Smith. Trace
cache: a low latency approach to high bandwidth instruction
fetching. In Proceedings of the 29th annual ACM/IEEE
international symposium on Microarchitecture, MICRO 29,
pages 24-35, Washington, DC, USA, 1996. IEEE Computer
Society.

[55] Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger.
Hybrid analysis: static & dynamic memory reference analysis.
Int. J. Parallel Program., 31(4):251-283, August 2003.

[56] Yiannakis Sazeides. Instruction-isomorphism in program
execution. In In Proceedings of the Value Prediction Workshop,
pages 47-54, 2003.

[57] Jeremy Singer, Gavin Brown, and Ian Watson. Deriving limits
of branch prediction with the fano inequality, 2006.

[58] James E. Smith. A study of branch prediction strategies.
In Proceedings of the 8th annual symposium on Computer
Architecture, ISCA ’81, pages 135-148, Los Alamitos, CA,
USA, 1981. IEEE Computer Society Press.

[59] Avinash Sodani and Gurindar S. Sohi. An empirical analysis
of instruction repetition. In Proceedings of the eighth interna-
tional conference on Architectural support for programming
languages and operating systems, ASPLOS VIII, pages 3545,
New York, NY, USA, 1998. ACM.

[60] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar.
Multiscalar processors. In Proceedings of the 22nd annual
international symposium on Computer architecture, ISCA *95,
pages 414-425, New York, NY, USA, 1995. ACM.

[61] J. Greggory Steffan, Christopher B. Colohan, Antonia Zhai,
and Todd C. Mowry. A scalable approach to thread-level
speculation. In Proceedings of the 27th annual international
symposium on Computer architecture, ISCA °00, pages 1-12,
New York, NY, USA, 2000. ACM.

[62] J. Gregory Steffan, Christopher Colohan, Antonia Zhai, and
Todd C. Mowry. The stampede approach to thread-level
speculation. ACM Trans. Comput. Syst., 23(3):253-300,
August 2005.

[63] Benjamin Vigoda. Analog logic: Continuous-Time analog
circuits for statistical signal processing. PhD thesis, Mas-
sachusetts Institute of Technology, 2003.

[64] Cheng Wang, Youfeng Wu, Edson Borin, Shiliang Hu, Wei
Liu, Dave Sager, Tin-fook Ngai, and Jesse Fang. Dynamic
parallelization of single-threaded binary programs using
speculative slicing. In Proceedings of the 23rd international
conference on Supercomputing, ICS °09, pages 158-168, New
York, NY, USA, 2009. ACM.

[65] Amos Waterland, Jonathan Appavoo, and Margo Seltzer.
Parallelization by simulated tunneling. In Proceedings of
the 4th USENIX conference on Hot Topics in Parallelism,
HotPar’12, pages 9-14, Berkeley, CA, USA, 2012. USENIX
Association.

[66] Amos Waterland, Elaine Angelino, Ekin D. Cubuk, Efthimios
Kaxiras, Ryan P. Adams, Jonathan Appavoo, and Margo
Seltzer, Computational caches, Proceedings of the 6th In-
ternational Systems and Storage Conference (New York, NY,
USA), SYSTOR 13, ACM, 2013, pp. 8:1-8:7.

[67] J. Yang, K. Skadron, M. Soffa, and K. Whitehouse. Feasibility
of dynamic binary parallelization. In Proceedings of the 4th
USENIX conference on Hot Topics in Parallelism, 2011.

[68] Efe Yardimci and Michael Franz. Dynamic parallelization and
mapping of binary executables on hierarchical platforms. In
Proceedings of the 3rd conference on Computing frontiers, CF
’06, pages 127-138, New York, NY, USA, 2006. ACM.

[69] Jenn yuan Tsai and Pen-Chung Yew. The superthreaded ar-
chitecture: Thread pipelining with run-time data dependence
checking and control speculation. In Proceedings of the con-
ference on Parallel architectures and compilation techniques,
PACT ’96, pages 3546, 1996.

[70] Hongtao Zhong, M. Mehrara, S. Lieberman, and S. Mahlke.
Uncovering hidden loop level parallelism in sequential appli-
cations. In High Performance Computer Architecture, 2008.
HPCA 2008. IEEE 14th International Symposium on, pages
290-301, Feb.

[71] Craig Zilles and Gurindar Sohi. Master/slave speculative
parallelization. In Proceedings of the 35th annual ACM/IEEE
international symposium on Microarchitecture, MICRO 35,
pages 85-96, Los Alamitos, CA, USA, 2002. IEEE Computer
Society Press.

	Introduction
	Related work
	Compiler parallelization
	Binary parallelization
	Hardware parallelization

	The ASC architecture
	Trajectory-based computation
	Architecture components
	Discussion

	Implementation
	Trajectory-based functional simulator
	Cache
	Recognizer
	Predictors
	Interfaces
	Prediction algorithms

	Allocator
	Combining multiple predictions
	Scheduling speculative threads

	Evaluation
	Benchmarks
	Predictor accuracy
	Software implementation of the ASC architecture
	Scaling results
	Limitations

	Conclusion

