
DATA

1

A Primer on Provenance

Better understanding data requires tracking its history and context

Lucian Carata, Sherif Akoush, Nikilesh Balakrishnan, Thomas Bytheway,
Ripduman Sohan, Margo Seltzer, Andy Hopper

Assessing the quality or validity of a piece of data is not usually done in isolation. You typically
examine the context in which the data appears and try to determine its original sources or review
the process through which it was created. This is not so straightforward when dealing with digital
data, however: the result of a computation might have been derived from numerous sources and by
applying complex successive transformations, possibly over long periods of time.

As the quantity of data that contributes to a particular result increases, keeping track of how
different sources and transformations are related to each other becomes more difficult. This
constrains the ability to answer questions regarding a result’s history, such as: What were the
underlying assumptions on which the result is based? Under what conditions does it remain valid?
What other results were derived from the same data sources?

The metadata that needs to be systematically captured to answer those (or similar) questions is
called provenance (or lineage) and refers to a graph describing the relationships among all the elements
(sources, processing steps, contextual information and dependencies) that contributed to the
existence of a piece of data.

This article presents current research in this field from a practical perspective, discussing not only
existing systems and the fundamental concepts needed for using them in applications today, but
also future challenges and opportunities. A number of use cases illustrate how provenance might be
useful in practice.

WHERE DOES DATA COME FROM?

Consider the need to understand the conditions, parameters, or assumptions behind a given result—
in other words, the ability to point at a piece of data, e.g. research result or anomaly in a system
trace, and ask: Where did it come from? This would be useful for experiments involving digital data
(such as in silico experiments in biology, other types of numerical simulations, or system evaluations
in computer science).

The provenance for each run of such experiments contains the links between results and
corresponding starting conditions or configuration parameters. This becomes important especially
when considering processing pipelines, where some early results serve as the basis of further
experiments. Manually tracking all the parameters from a final result through intermediary data
back to the original sources is burdensome and error-prone.

Of course, researchers are not the only ones who need this type of tracking. The same techniques
could be used to help people in the business or financial sectors—for example, figuring out the set of
assumptions behind the statistics reported to a board of directors, or determining which mortgages
were part of a traded security.

DATA

2

WHO IS USING THIS DATA?

Instead of tracking a result back to its sources, you can capture provenance to understand where that
result has been subsequently used or to find out what data was further derived from it. For example,
a company might want to identify all the internal uses of a certain piece of code in order to respect
licensing agreements or to keep track of code still using deprecated or unsafe functions that need to
be removed.

Using similar mechanisms, end users should be able to track what personal information is used
by a mobile application and determine whether it is displayed locally or sent over the network to a
third party. The same use case covers the general propagation of erroneous results, when we need to
understand what pieces of data have been invalidated by the discovery of an error.

HOW WAS IT OBTAINED?

Provenance can also be used to obtain a better understanding of the actual process through which
different pieces of input data are transformed into outputs. This is important in situations where
computer engineers or system administrators need to debug the problems that arise when running
complex software stacks.

In cases where it is possible to differentiate between correct and erroneous system output,
comparing their provenance will point to a list of potential root causes of the error. In more complex
scenarios, the issue might not be directly linked to particular outputs but to an (undesired) change
in behavior. Detecting system intrusions or explaining why the response tail latency for a server
has increased by 20 percent are good examples. In those cases, grouping outputs with similar
provenance could be used for identifying normal versus abnormal system behavior and explaining
the differences between the two.

PROVENANCE SYSTEMS
Together, the three use cases provide an overview of the ideal provenance application space, but
they do not describe the technical details involved in making those applications possible. To realize
each scenario in practice, one or more provenance systems need to be integrated into the data-
processing workflow, becoming responsible for capturing provenance, propagating it among related
components, and making it accessible to user queries.

In many ways, you might already be running a specialized version of such a system: all auditing,
tracing frameworks, or change-tracking solutions collect some form of provenance, even though they
might not identify it as such. The advantage of thinking about provenance as a stand-alone concept
is the ability to use this metadata in a principled way, allowing result verifiability and complex
historical queries regardless of the underlying mechanisms used to collect it and across applications
and software stacks.

Historically, provenance systems were the focus of research in the database field, with the aim
of understanding how and when materialized views should be updated in response to changes in
the underlying tables.9 Because of the well-defined relational model, it has proven possible both
to derive precise provenance information from queries7 and to develop formalisms that allow its
concise representation.13 This has been further extended in systems such as Trio,28 allowing records
to incorporate an associated uncertainty which can be propagated across multiple queries by using
provenance.

DATA

3

In contrast, capturing provenance for applications performing arbitrary computations (not
restricted to a small set of valid transformations) has proven more challenging. Research efforts in
this area have focused on the collection of provenance at particular points in the software stack (by
modifying applications, the runtime environment, or the kernel).

Figure 1 presents a general timeline of provenance systems. This article looks at the characteristics
of eight of these (PASS, SPADE, VisTrails, ZOOM, Burrito, Lipstick, and RAMP), each representative of
a larger class of solutions:

Operating-system level. PASS22,23 and SPADE12 investigate provenance by observing application
events such as process creation or I/O. Those are then used for inferring dependencies among
different pieces of data.

Workflows. VisTrails26 and ZOOM2 are workflow-management systems with the ability to track
provenance for the execution of various workflows and (in the case of VisTrails) for the evolution of
the workflows themselves.

Application level. Burrito14 tracks user-space events, while also supporting additional user-provided
annotations. SPROV16 focuses on the security of provenance and provides a thin wrapper around the
standard C I/O library. A newer version is capable of using provenance captured by other systems,
such as PASS.

Big data. Lipstick1 and RAMP24 both tackle the problem of tracking provenance in big-data
scenarios (MapReduce jobs).

It is the properties of these systems that define what can be recorded and with what tradeoffs,
overhead, and security implications.

PROVENANCE SYSTEM PROPERTIES
Effectively using provenance systems in practice requires understanding a number of aspects related
to:
• The exact metadata being captured.

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

A Timeline of Provenance Systems

DATA

4

• The effort required for integrating provenance systems within existing workflows (running special
kernels, making runtime changes, or linking applications with provenance libraries).
• Understanding how provenance metadata can be queried later.
• Evaluating the overhead imposed by those systems.
• Security issues added by provenance, which might require different access controls from those of
the data itself.

This article categorizes the properties of the systems selected as representative according to these
features (summarized in table 1), referring to the motivating use cases as required.

WHAT CAN IT CAPTURE?

The metadata captured by provenance systems typically relates the state of digital entities (files,
tables, programs, network connections, etc.) at different stages in their lifetimes to historic
dependencies on other entities or processes. In this context, two concepts are fundamental for
determining what is captured and how: granularity and layering.

Granularity. The granularity of capture refers to the size of basic primitives that accumulate
provenance within a system. Consider a scientist who uses a configuration file storing various
experiment parameters as one of the inputs to a simulation program. Capturing provenance at file
granularity will establish the dependency between the simulation program and the configuration file
name. The scientist is interested in understanding the relationships between the simulation results
and individual parameters in the file, however, and this requires capture at subfile granularity.

The exact meaning of varying granularity (from fine to coarse) also depends on the underlying
data model of the application. For example, database-provenance systems could store provenance
metadata for an entire table, a row within the table, or for each cell. Provenance capture at the
table level is coarse-grained and can answer questions such as: From which other tables has table X
derived its data? Finer granularities would determine the relationships between individual rows or
cells. Of course, multiple granularities can be considered at the same time.

Systems such as PASS6 capture provenance by intercepting system calls made by applications
as they execute. At this level, provenance is fine-grained and can provide a detailed image of an
application’s execution and dependencies.

The noise levels in the collected data, however, are also elevated, making it harder to extract
useful information. Consider a Python script that copies one file to another. When running the
script, the Python interpreter will first read and load any required modules from disk. Thus, beyond
the dependency on the actual input, the final provenance graph will link the output file to all the
Python modules used by the interpreter. This extra data can make it difficult to sift through the
provenance graph as an end user, so, generally, heuristics are needed to determine which entities are
important and which should be ignored.

Workflow systems such as VisTrails26 avoid the noise problem and can capture provenance at any
granularity, because the processing steps and their dependencies are explicitly declared by the end
user. Such systems, however, are also inherently limited to recording only those data transformations
that were part of the defined workflow.

The n-by-m problem. Independent of the system that is chosen, accurately determining the
dependencies between input and output data may not be possible. This is illustrated by the n-by-m
problem, where a program reads n input files and writes m output files. Even when tracing system

DATA

5

OS Level Workflow Systems Application Level Big Data (MapReduce)
PASSv2 SPADE Vistrails ZOOM SPROV Burrito Lipstick RAMP

Capture
Disclosed
(DPAPI) and
Observed

Disclosed
(custom capture
module) and
Observed

Disclosed
(WF) and
Observed (WF
evolution)

Disclosed Observed
Disclosed
(annotations)
and Observed

Disclosed Observed

Granularity

Mainly system
calls, user
defined with
DPAPI

File-level,
potentially at
byte level, given
custom capture
modules

Data
artifact

Data
artifact

C library
calls

System calls
and custom
plug-ins

Module level
(coarse),
operators and
state (fine-
grained)

Record
level

Layering

Mainly OS.
DPAPI links
this to storage
and application
layers.

Provenance at
application, OS,
and middleware
levels

Workflow
execution
and data
generated

Application
Application
(in the
prototype)

OS and
application
level

Pig
workflows

MapReduce
workflows

Mapping Using DPAPI
Fusion and
composition
filters

-- -- -- Using
annotations -- --

Versioning Events Events
Events
and data
changes

Events and
append-only
file system.

Events and
potentially
data changes

Events and
causality-
based
versioning

Append-only
file system

Append-only
file system

Setup /
Integration Custom kernel Kernel module

User-defined
workflows;
annotations

User-defined
workflows;
annotations

Library that is
linked to any
application

SystemTap
script, custom
plug-ins; users
annotate
activity events

Seamless to
the user by
augmenting
pig-latin
operators

Minimal
modifications
to the user
code

Query
Types

Exploratory
using PQL

Directed and
limited support
for Exploratory

Exploratory
and Directed
queries using
vtPQL

Hybrid Directed Activity feed Directed Directed

Time
Overhead1 1%-23% 10% 1% 1% 11% 12% 3x 20%--75%

Space
Overhead1 20% On the order of

I/O operations

Minimal (#
of module
invocations)

Minimal (#
of module
invocations)

On the order
of write
operations

2 GB/month N/A On the order
of records

Provenance
Graph
Construction

Background
thread

Background
thread On demand On demand -- -- Post-

processing
During
runtime

Query
Overhead N/A N/A N/A Seconds N/A N/A Seconds Minutes

Security -- -- -- -- Integrity and
confidentiality -- -- --

TABLE 1: Summary of System Properties

1 �Typical overhead as described in the evaluation section of the corresponding system; not directly comparable
as they were not obtained by running the same workloads.

N/A: Data not available

 --: Not applicable

DATA

6

calls for individual reads and writes, it’s not possible to infer which reads affected a particular write,
so the provenance graph has to link each output file to all of the inputs. A system that is unaware of
the semantics of individual data transformations within a process will always present a number of
such false-positive relationships. Both PASS and VisTrails have this problem, as they treat the process
or each workflow step as a black box.

The n-by-m problem can be solved by capturing provenance at an even finer granularity. This can
be done using binary instrumentation techniques25 and computing the provenance of the output
as a function of the executed code path and data dependencies. Even if this method requires no
modification of the application, the tradeoff is a significant increase in space and time overhead.
A low-overhead alternative would be to modify the application to explicitly disclose relevant
provenance using an API such as CPL,17 but this requires additional effort from the developer, as
discussed in the next section.

Granularity is not the only aspect that users need to think about when determining their
requirements for a provenance system. It is just as important to know in which layer the provenance
collection takes place.

Layering. Provenance metadata can be captured at multiple layers in the stack (i.e., for the
application, middleware (runtime/libraries), operating system, and/or in hardware). Capturing
provenance across multiple layers provides users with the ability to reason about their data and
processes at different levels of abstraction, with each layer providing a different view on the same set
of events happening in the system.

For example, consider copying rows between two tables in a spreadsheet and saving the result.
A system that collects provenance at the operating-system layer will observe a number of I/O
operations to/from the file. The notions of tables and rows, however, are known only to the
application, and dependencies among them cannot be inferred from the metadata collected by lower
layers. If querying for such relationships is needed, provenance must be captured in the application
layer as well.

Cooperation between layers. When requiring provenance capture at multiple layers, a practitioner
could choose a different (specialized) provenance system for each layer in the stack or a single
provenance system that was designed to span capture across multiple layers.

In both cases, multiple provenance-aware components must cooperate by communicating
different metadata between layers. This can be achieved either by adhering to a common provenance
data model, such as OPM (Open Provenance Model)21 or PROV-DM20 (Provenance Data Model), or
by providing a universal API and allowing each component to both accept and generate provenance
using it. PASSv2 provides a disclosed-provenance API (DPAPI) that can be used for this purpose.

A second issue exists, however. Merely collecting metadata at different layers will result in islands
of provenance, unrelated to each other. For an actual mapping of provenance objects between layers,
all entities describing the same event must be grouped—for example, by tagging them with a unique
identifier.

SPADEv2, for example, uses a multisource fusion filter (with process ID as a tag) to combine
provenance data from multiple sources describing the same event and working at the same level of
abstraction. When provenance is reported at different levels of abstraction, SPADEv2 uses a cross-
layer composition filter that has the same purpose.

Data versioning. Provenance collection in a given layer typically involves capturing the chain

DATA

7

of events performed by the application on a given piece of data, though this does not necessarily
require the system to capture multiple versions of data as it is being transformed. Assume that a user
edits a file using a text editor on a PASS-enabled system. The provenance metadata saved by PASS
can provide information such as the program used to edit, number of bytes written to the file, etc.,
but it is not possible to revert the file to a previous state or know what the actual data changes were.
In cases where the current contents of the file depend on values in previous versions, provenance
systems need to store versions of data as well as events in order to assure full verifiability.

Because of this, provenance systems such as Burrito14 not only track system call-level events, but
also run on top of a versioning file system. Other systems such as Lipstick and RAMP do not require
versioning as they run on top of append-only file systems (all versions are implicitly stored).

Versioning can prove expensive when done for certain layers in the stack (i.e. for hardware
registers), but in other cases it might simplify the capture of provenance. This is the case in
the application layer, where data versions are implicitly stored as undo/redo actions. Most GUI
applications provide this functionality by default, and intercepting the undo stack has been shown
to be a viable method for automatically inferring provenance.8

INTEGRATING PROVENANCE INTO EXISTING WORKFLOWS

The effort needed for integrating a new piece of technology within an existing workflow is an
important practical criterion when choosing a provenance system. This measures how much the
provenance system will intrude on the user’s normal working practices, and a cost-benefit analysis
should be made depending on the use case.

Some systems impose larger up-front expenses because of how they collect metadata. For example,
some systems require developers to attest explicitly to provenance information through APIs that
record annotations about the actions being executed. An example of this is DPAPI, which offers
augmented read and write calls to which one can pass data indicating the meaning of the read or
write call being made. The result is an increase in the development effort, as code must be updated
to call the new API. All future code changes must also keep the provenance-related code in sync, and
failing to do so will most likely cause invalid metadata to be captured.

Similarly, systems such as ZOOM or VisTrails require you to declare the entire workflow in advance
and can track only those dependencies that run on top of their execution engines. Subsequent work
must be done within the same system if dependency links need to be maintained. As a group, the
literature refers to these as disclosed provenance systems, and they are recognized for their ability
to offer improved semantic descriptions of provenance. The trustworthiness of the provenance
captured in this way, however, is a concern when running in untrusted environments.

Other provenance systems aim to reduce the overhead imposed on the user. These tend to take
a different approach by observing the users’ applications, recording information about how these
applications interact with each other and the rest of the operating system, and inferring provenance
based on it. They are often referred to as observed provenance systems. Examples are systems such
as PASS that intercept system calls made by a program, or others such as SPADE that can hook
into the audit subsystem in the Linux kernel to observe the program’s actions. They tend to have
the lowest intrusiveness. Often, once the system is installed, a user can proceed as usual while
provenance is captured for all the executed operations. Observed provenance systems have their
own shortcomings, however, mostly because of the loss of semantic information when treating each
process as a black box.

DATA

8

HOW DO YOU ANSWER QUESTIONS USING PROVENANCE?

A provenance system is only as useful as the questions that one can answer based on the collected
metadata. Querying, however, is recognized as a challenging problem: users often want to query over
a broad range of information, or they ask questions that the designers of the provenance system did
not anticipate; depending on the granularity of capture, the system either might have insufficient
data to respond to a query, or it might produce so much data that it is difficult to explore and
understand it. From the research performed to date in the field, two core paradigms of querying have
emerged, and a smaller number of systems use a hybrid of both approaches.

Exploratory. The first major paradigm is the exploratory query, which takes advantage of the
human ability to spot patterns. This is important when users don’t have an exact idea of what
metadata they might want to retrieve. Exploratory systems are usually characterized by presenting
the user with a visual representation of the provenance graph and providing tools to explore it
without succumbing to information overload. This is a notably hard problem, given that even small
provenance graphs can easily contain thousands of nodes. A number of the approaches involve
either exploring subgraphs based on contextual filtering (such as InProv4) or using intelligent
clustering methods. An example of the latter is the PASS Map Orbiter18 viewer, which implements an
algorithm for dynamically summarizing nodes, allowing the user to expand and contract areas of
detail while browsing.

Directed. The second major paradigm is the directed query, an approach more closely linked to
the classic field of database query. It requires the user to express questions about the provenance of
data as queries in a language that is often a specialized extension of SQL or a path query language.

This is effective if the user knows precisely what information is required, but unlike exploratory
methods, the directed query approach does not facilitate discovery of new insights about the
provenance graph.

One example of the directed approach is vtPQL,26 used in the VisTrails system. The language
is designed to enable the user to express provenance queries about three different aspects of the
workflow: the execution log, the abstract workflow representation, and the evolution of the workflow
in time.

The user can specify restrictions on all of these spaces simultaneously—for example, restricting
the execution logs to a particular day, highlighting a single workflow module, and choosing
a particular version of the workflow. This is helpful, as it allows the user to think in terms of
orthogonal querying concerns.

Hybrid. Some systems use a hybrid of the two paradigms. For example, the ZOOM system2 starts
from a user-provided “declaration of interest” to derive a contextually appropriate minimal form of
the provenance graph. The heart of the system is an algorithm that summarizes “irrelevant” parts
of the graph in ways that maintain their semantics. The user needs only to provide the list of the
modules in the workflow definition that are of interest and is then allowed to browse the provenance
graph without being distracted by unimportant pieces of information.

UNDERSTANDING OVERHEAD

As with any computational functionality, provenance capture has associated temporal and spatial
costs. Given that provenance support is likely to be an additional consideration to the primary
function of the system, leveraged only when the lineage properties of the data are required, it is
imperative to minimize the overhead.

DATA

9

General-purpose provenance systems typically capture either (disclosed) evolutions of a given
workflow or (observed) low-level operations carried out by executing processes. Broadly speaking,
the time and space overhead for capturing the provenance of workflow evolution is proportional to
both the number of changes in the workflow and the number of times a workflow is executed. In
comparison, the provenance overhead of capturing an execution log is proportional to the number
of recordable operations executed.

Time overhead. In practice, the provenance-capture cost of workflow systems (and, by extension,
other disclosed provenance systems) is minuscule because of their limited approach to collecting
running process information. Both ZOOM and VisTrails, for example, report an approximately 1
percent increase in execution time.2,10

For systems that record process execution, provenance capture costs are a function of the costs of
intercepting and recording observable operations. While intuitively it may appear that provenance
capture at the operation level is prohibitively expensive from a temporal perspective, reported results
show that this is not the case. Kernel-based system-call interception mechanisms such as in PASSv2
have a 1 to 23 percent overhead on workloads representative of real-world applications.22,23 Similarly,
SPADEv2, which uses kernel auditing infrastructure for provenance capture, reports less than a 10
percent overhead on Windows, Linux, and OS X for production Apache runs.12

For I/O-heavy workloads, however, provenance capture may impose larger runtime overheads.
PASS, for example, reports up to a 230 percent overhead on small file benchmarks,23 even though the
absolute increase in execution times remains small.

The interception mechanism can also significantly influence provenance-capture overhead in this
regard. SPADEv2, for example, supports operation interception via the kernel auditing mechanisms
on OS X, while on Windows it requires a file-system filter driver that relays operations to the
provenance collector. As a consequence, provenance-enabled Apache builds are 50 percent slower on
Windows but only 5 percent slower on OS X.

The temporal cost of recording operations may also be of potential concern where provenance
is being recorded at an extremely fine-grained level. In such situations it is common for the cost
of provenance capture to equal or exceed the cost of the recorded operation, leading to slowdowns
exceeding 100 percent. For example, in the Lipstick system, operator-level provenance is reported to
lead to a slowdown of two to three times,1 while in the RAMP system, where provenance is collected
at the tuple level by propagating tags through a MapReduce workflow, it is common to observe a
temporal overhead of up to 75 percent.24

Spatial overhead. Similar to temporal overhead, the spatial overhead of recording process
execution is a function of the amount of data per operation and the number of recorded operations.
In the set of systems we studied, only half (SPROV, Burrito, Lipstick, and RAMP) are capable of
recording data changes.

While the actual overhead of any workload is sensitive to multiple factors, here are two reported
data points for illustrative purposes:
• �The general-purpose PASSv2 system requires, on average, approximately 20 percent additional

space overhead (as compared with the original output size) to log all the operations for a workload
representative of real-world applications.22

• �The Burrito system, running on a real user workload, required 800 MB for provenance storage and
2 GB for file versions over a two-month period.14

DATA

10

These results indicate that storage overhead should not be prohibitive for most cases.
Overhead tradeoffs. Generally speaking, there is a direct tradeoff between capture granularity

and provenance overhead. SPADEv2, for example, allows users to capture information at the
function call level or an application-defined level at the cost of increased temporal and spatial
capture overhead. Similarly, SPROV allows users to specify modifications in higher-level semantics
(e.g., “new section added to file”) at the cost of reduced per-operation observability.

For users to adopt the most suitable system for their needs, it may be useful for them to
predetermine what provenance information will be required to answer queries and at what
granularity this information will be sufficient, mapping it to the appropriate system.

Most systems also delay provenance construction in order to minimize capture overhead. PASSv2,
for example, captures raw operation records, converting them to their final representation via an
asynchronous user-space daemon.22 SPADEv2 uses separate provenance collection threads to extract,
filter, and commit operations to the provenance log. Other systems delay provenance collection
to query time to avoid wasting resources computing provenance that will never be accessed. For
example, Lipstick carries out provenance construction only when a query is made.1 This delayed
provenance construction is present in some workflow systems as well. ZOOM, for example, will
compute some of the provenance at query time, based on the current user view. Depending on the
required cardinality, timeliness, and complexity of provenance queries, deciding on those tradeoffs
may considerably improve overhead.

SECURITY ISSUES

It is imperative for provenance data to be secured against unauthorized access and not to leak any
information about the data against which it is collected.5 Fundamentally, this requires provenance
to be managed under different access policies than those of the data. Doing so allows the user
flexibility over the disclosure of provenance information. For example, one might make provenance
inaccessible to people outside an organization, as it would reveal proprietary workflow or processes.
The final data result, however, might be freely available to anyone.

Formally, the security aspects of provenance are defined as its confidentiality (only authorized
parties can read it) and its integrity (it cannot be forged or altered). Both properties are considered
essential for performing integrity, validation, and consistency checks on data.

Two solutions to the problem of providing secure provenance have been put forth. The first
leverages the concept of reference monitors: Patrick McDaniel et al. discuss a secure system for end-
to-end provenance based on the principle of a host-based tamper-proof provenance monitor that
mirrors the well-known reference monitor concept for the enforcement of security policies.19 The
presence of the reference monitor means that the security of provenance collection doesn’t have to
rely on the integrity of other system components such as the kernel. While this solution is feasible,
there is no known practical implementation to date.

The second solution is based on provenance chains11,16 where processes that generate provenance
must attest to the information added in an encrypted, nonmodifiable, and nonrepudiable
manner. Guaranteeing these three properties ensures that all collected provenance can remain
confidential and keep its integrity. Of the systems included in this article, SPROV16 is a practical
implementation of provenance chains. It primarily provides confidentiality and integrity guarantees
for file modifications. SPROV leverages a number of concepts in cryptography to fulfill the security

DATA

11

requirements: confidentiality is maintained by encrypting the metadata describing each change;
record integrity is maintained by checksumming records; and attestation is supported by signing
records with the public key of the creating user.

In addition to the key concepts of confidentiality and integrity, SPROV provides a number of
useful features that may be of interest to the practitioner (and a consideration for future secure
provenance systems): through the use of cryptographic commitments,3 SPROV enables selective
exposure of records to third parties; by employing broadcast encryption,15 it supports selective access
control for multiple auditors without requiring a corresponding proportional increase in the number
of keys; finally, threshold encryption27 is supported, enabling separation-of-duty scenarios in which
the decryption of records requires participation from at least one auditor in a number of distinct
groups.

SPROV has no mechanism for preventing unauthorized reads, relying instead on the encryption
of records to prevent unauthorized access. It is, however, the only system of those included here that
provides any provenance confidentiality and integrity guarantees. While all systems acknowledge
that the security of provenance is a fundamental concern, the rest rely on existing access-control
mechanisms such as SQL grant privileges and file permissions to ensure security.

RESEARCH CHALLENGES AND OPPORTUNITIES
Contrasting the initial use cases and what can actually be achieved with current provenance systems
makes it clear that research is needed in a number of areas.

Querying and visualization. Despite the research carried out so far toward querying and
visualizing provenance, these are still challenging problems. It remains to be seen how existing
knowledge about graph exploration and visualizations could be applied, or whether totally different
representations are required.

Computing with provenance. Moving beyond human queries, provenance should be made
available to applications, allowing automated validation of inputs, limiting error propagation, or self-
diagnosing changes in output quality or system behavior.

Distributed systems. There have been attempts to extend provenance to networked systems, but
problems related to heterogeneity (not all nodes being provenance-aware), scalability, long-term
collection, and storage remain to be solved.

Security and privacy. Collecting provenance has implications on data security and privacy, but
most implementations have not considered untrusted environments or adversarial workloads.

CONCLUSION
The computing power and storage capacities available today allow large quantities of data to be
processed in complex ways. Sometimes the transformations applied are not directly controlled by
or even known to developers (multiple layers of abstraction, learning algorithms). Therefore, a lot of
information about a result is lost when no provenance is recorded, making it harder to assess quality
or reproducibility. Computing is becoming pervasive, and the need for guarantees about it being
dependable will only aggravate those problems; treating provenance as a first-class citizen in data
processing represents a possible solution.

DATA

12

ACKNOWLEDGMENTS

We would like to thank George Coulouris for his feedback and support in shaping this article toward
its current form, and our reviewers for their constructive comments and suggestions.

REFERENCES

1. �Amsterdamer, Y., et al. 2011. Putting lipstick on pig: enabling database-style workflow
provenance. In Proceedings of the VLDB Endowment 5(4): 346–357.

2. �Biton, O., Cohen-Boulakia, S., Davidson, S. B. 2007. ZOOM*UserViews: querying relevant
provenance in workflow systems. In Proceedings of the 33rd International Conference on Very Large
Databases: 1366–1369.

3. �Blum, M. 1982. Coin flipping by telephone: a protocol for solving impossible problems. In
Advances in Cryptology—A Report on CRYPTO ’81.

4. �Borkin, M. A., et al. 2013. Evaluation of filesystem provenance visualization tools. In IEEE
Transactions on Visualization and Computer Graphics 19(12): 2476–2485.

5. �Braun, U., Shinnar, A., Seltzer, M. 2008. Securing provenance. In the 3rd Usenix Workshop on
Hot Topics in Security: 1–5.

6. �Braun, U., et al. 2006. Issues in automatic provenance collection. In Proceedings of the International
Conference on Provenance and Annotation of Data: 171–183.

7. �Buneman, P., Khanna, S., Tan, W.-C. 2002. Why and where: a characterization of data
provenance. In Proceedings of the 8th International Conference on Database Theory: 316–330.

8. �Callahan, S. P., et al. 2008. Towards process provenance for existing applications. In Proceedings of
the 2nd International Provenance and Annotation Workshop: 120–127.

9. �Cui, Y., Widom, J., Wiener, J. L. 2000. Tracing the lineage of view data in a warehousing
environment. ACM Transactions on Database Systems 25(2): 179–227.

10. �Freire, J., et al. 2006. Managing rapidly evolving scientific workflows. In Proceedings of the
International Conference on Provenance and Annotation of Data: 10–18.

11. �Gates, C., Bishop, M. 2011. One of these records is not like the others. In Proceedings of the 3rd
Usenix Workshop on the Theory and Practice of Provenance.

12. �Gehani, A., Tariq, D. 2012. SPADE: support for provenance auditing in distributed environments.
In Proceedings of the 13th International Middleware Conference: 101–120.

13. �Green, T. J., Karvounarakis, G., Tannen, V. 2007. Provenance semirings. In Proceedings of the 26th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems: 31–40.

14. �Guo, P. J., Seltzer, M. 2012. Burrito: wrapping your lab notebook in computational infrastructure.
In Proceedings of the 4th Usenix Conference on Theory and Practice of Provenance: 7–7.

15. �Halevy, D., Shamir, A. 2002. The LSD broadcast encryption scheme. In Advances in Cryptology:
47–60.

16. �Hasan, R., Sion, R., Winslett, M. 2009. The case of the fake Picasso: preventing history forgery
with secure provenance. In Proceedings of the 7th Conference on File and Storage Technologies: 1–14.

17. �Macko, P., Seltzer, M. 2012. A general-purpose provenance library. In Proceedings of the 4th Usenix
Conference on Theory and Practice of Provenance: 6–6.

18. �Macko, P., Seltzer, M. 2011. Provenance Map Orbiter: interactive exploration of large provenance
graphs. In Proceedings of the 3rd Conference on Theory and Practice of Provenance.

19. �McDaniel, P., et al. 2010. Towards a secure and efficient system for end-to-end provenance. In

DATA

13

Proceedings of the 2nd Conference on Theory and Practice of Provenance: 2–2.
20. �Moreau, L., Missier, P. 2013. PROV-DM: the PROV Data Model. Technical Report. World Wide

Web Consortium; http://www.w3.org/TR/prov-dm/.
21. �Moreau, L., et al. 2011. The Open Provenance Model Core Specification (V1.1). Future Generations

Computer Systems 27(6): 743–756.
22. �Muniswamy-Reddy, K.-K., et al. 2009. Layering in provenance systems. In Proceedings of the Usenix

Annual Technical Conference.
23. �Muniswamy-Reddy, K.-K., et al. 2006. Provenance-aware storage systems. In Proceedings of the

Usenix Annual Technical Conference: 43–56.
24. �Park, H., Ikeda, R., Widom, J. 2011. RAMP: a system for capturing and tracing provenance in

MapReduce workflows. The 37th International Conference on Very Large Databases.
25. �Saxena, P., Sekar, R., Puranik, V. 2008. Efficient fine-grained binary instrumentation with

applications to taint-tracking. In Proceedings of the 6th Annual IEEE/ACM International Symposium
on Code Generation and Optimization: 74–83.

26. �Scheidegger, C., et al. 2008. Tackling the provenance challenge one layer at a time. Concurrency
and Computation: Practice and Experience 20(5): 473–483.

27. Shamir, A. 1979. How to share a secret. Communications of the ACM 22(11): 612–613.
28. �Widom, J. 2004. Trio: a system for integrated management of data, accuracy, and lineage.

Technical Report 2004-40.

LOVE IT, HATE IT? LET US KNOW
feedback@queue.acm.org

LUCIAN CARATA (lucian.carata@cl.cam.ac.uk) is a PhD student in the Computer Laboratory, University
of Cambridge. His research focuses on the next generation disclosed provenance systems, with the aim
of understanding and controlling the behavior of complex systems.

SHERIF AKOUSH (sherif.akoush@cl.cam.ac.uk) is a Research Associate at the University of Cambridge
Computer Laboratory. He is exploring provenance in “Big Data” systems (e.g. MapReduce) and its
applications. He is also interested in energy efficient computing and developing new technologies for
emerging regions.

NIKILESH BALAKRISHNAN (nikilesh.balakrishnan@cl.cam.ac.uk) is a Research Assistant in the
Computer Laboratory, University of Cambridge. His research focuses on building general-purpose
provenance systems with emphasis on usability and wide adoption among the user community.

THOMAS BYTHEWAY (thomas.bytheway@cl.cam.ac.uk) is a Research Assistant in the Computer
Laboratory, University of Cambridge. His research interests are in building general-purpose provenance
systems and exploring querying and visualization techniques.

RIPDUMAN SOHAN (ripduman.sohan@cl.cam.ac.uk) is a Senior Research Associate and Co-PI of
the Fabric For Reproducible Computation (FRESCO) project in the Computer Laboratory, University
of Cambridge. He has previously worked on storage, virtualization, networking, and energy-efficient
computing.

mailto:lucian.carata@cl.cam.ac.uk
mailto:sherif.akoush@cl.cam.ac.uk
mailto:nikilesh.balakrishnan@cl.cam.ac.uk
mailto:thomas.bytheway@cl.cam.ac.uk
mailto:ripduman.sohan@cam.ac.uk

DATA

14

MARGO SELTZER (margo@eecs.harvard.edu) is the Herchel Smith Professor of Computer Science
in Harvard’s School of Engineering and Applied Sciences. She was also the co-founder and CTO of
Sleepycat Software, the makers of Berkeley DB, until Oracle acquired Sleepycat in 2006. She is now an
Architect at Oracle Labs.

ANDY HOPPER (ah12@cam.ac.uk) is Professor of Computer Technology at the University of Cambridge,
Head of Department of the Computer Laboratory, and elected member of the University Council. His
research interests include computer networking, pervasive and sensor-driven computing, and using
computers to ensure the sustainability of the planet.

© 2014 ACM 1542-7730/14/0300 $10.00

mailto:margo@eecs.harvard.edu
mailto:ah12@cam.ac.uk

