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ABSTRACT

UNIX support of disk oriented hashing was originally provided by dbm [ATT79] and subse-
quently improved upon in ndbm [BSD86]. In AT&T System V, in-memory hashed storage and
access support was added in the hsearch library routines [ATT85]. The result is a system with
two incompatible hashing schemes, each with its own set of shortcomings.

This paper presents the design and performance characteristics of a new hashing package provid-
ing a superset of the functionality provided by dbm and hsearch. The new package uses linear
hashing to provide efficient support of both memory based and disk based hash tables with perfor-
mance superior to both dbm and hsearch under most conditions.

1. Introduction

Current UNIX systems offer two forms of
hashed data access. Dbm and its derivatives provide
keyed access to disk resident data while hsearch pro-
vides access for memory resident data. These two
access methods are incompatible in that memory
resident hash tables may not be stored on disk and
disk resident tables cannot be read into memory and
accessed using the in-memory routines.

Dbm has several shortcomings. Since data is
assumed to be disk resident, each access requires a
system call, and almost certainly, a disk operation.
For extremely large databases, where caching is
unlikely to be effective, this is acceptable, however,
when the database is small (i.e. the password file),
performance improvements can be obtained through
caching pages of the database in memory. In addi-
tion, dbm cannot store data items whose total key and
data size exceed the page size of the hash table.
Similarly, if two or more keys produce the same hash
value and their total size exceeds the page size, the
table cannot store all the colliding keys.

The in-memory hsearch routines have different
shortcomings. First, the notion of a single hash table
is embedded in the interface, preventing an applica-
tion from accessing multiple tables concurrently.
Secondly, the routine to create a hash table requires a
parameter which declares the size of the hash table. If
this size is set too low, performance degradation or
the inability to add items to the table may result. In
addition, hsearch requires that the application allocate
memory for the key and data items. Lastly, the
hsearch routines provide no interface to store hash
tables on disk.
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1 Appeared in the Proceedings of the 1991 Winter Usenix,

Dallas, TX, January 1991.

The goal of our work was to design and imple-
ment a new package that provides a superset of the
functionality of both dbm and hsearch. The package
had to overcome the interface shortcomings cited
above and its implementation had to provide perfor-
mance equal or superior to that of the existing imple-
mentations. In order to provide a compact disk
representation, graceful table growth, and expected
constant time performance, we selected Litwin’s
linear hashing algorithm [LAR88, LIT80]. We then
enhanced the algorithm to handle page overflows and
large key handling with a single mechanism, named
buddy-in-waiting.

2. Existing UNIX Hashing Techniques

Over the last decade, several dynamic hashing
schemes have been developed for the UNIX timeshar-
ing system, starting with the inclusion of dbm, a
minimal database library written by Ken Thompson
[THOM90], in the Seventh Edition UNIX system.
Since then, an extended version of the same library,
ndbm, and a public-domain clone of the latter, sdbm,
have been developed. Another interface-compatible
library gdbm, was recently made available as part of
the Free Software Foundation’s (FSF) software distri-
bution.

All of these implementations are based on the
idea of revealing just enough bits of a hash value to
locate a page in a single access. While dbm/ndbm
and sdbm map the hash value directly to a disk
address, gdbm uses the hash value to index into a
directory [ENB88] containing disk addresses.

The hsearch routines in System V are designed
to provide memory-resident hash tables. Since data
access does not require disk access, simple hashing
schemes which may require multiple probes into the
table are used. A more interesting version of hsearch
is a public domain library, dynahash, that implements



Larson’s in-memory adaptation [LAR88] of linear
hashing [LIT80].

2.1. dbm and ndbm

The dbm and ndbm library implementations are
based on the same algorithm by Ken Thompson
[THOM90, TOR88, WAL84], but differ in their pro-
grammatic interfaces. The latter is a modified version
of the former which adds support for multiple data-
bases to be open concurrently. The discussion of the
algorithm that follows is applicable to both dbm and
ndbm.

The basic structure of dbm calls for fixed-sized
disk blocks (buckets) and an access function that
maps a key to a bucket. The interface routines use
the access function to obtain the appropriate bucket in
a single disk access.

Within the access function, a bit-randomizing
hash function2 is used to convert a key into a 32-bit
hash value. Out of these 32 bits, only as many bits as
necessary are used to determine the particular bucket
on which a key resides. An in-memory bitmap is
used to determine how many bits are required. Each
bit indicates whether its associated bucket has been
split yet (a 0 indicating that the bucket has not yet
split). The use of the hash function and the bitmap is
best described by stepping through database creation
with multiple invocations of a store operation.

Initially, the hash table contains a single bucket
(bucket 0), the bit map contains a single bit (bit 0
corresponding to bucket 0), and 0 bits of a hash value
are examined to determine where a key is placed (in
bucket 0). When bucket 0 is full, its bit in the bitmap
(bit 0) is set, and its contents are split between buck-
ets 0 and 1, by considering the 0th bit (the lowest bit
not previously examined) of the hash value for each
key within the bucket. Given a well-designed hash
function, approximately half of the keys will have
hash values with the 0th bit set. All such keys and
associated data are moved to bucket 1, and the rest
remain in bucket 0.

After this split, the file now contains two buck-
ets, and the bitmap contains three bits: the 0th bit is
set to indicate a bucket 0 split when no bits of the
hash value are considered, and two more unset bits
for buckets 0 and 1. The placement of an incoming
key now requires examination of the 0th bit of the
hash value, and the key is placed either in bucket 0 or
bucket 1. If either bucket 0 or bucket 1 fills up, it is
split as before, its bit is set in the bitmap, and a new
set of unset bits are added to the bitmap.
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2 This bit-randomizing property is important to obtain radi-
cally different hash values for nearly identical keys, which in turn
avoids clustering of such keys in a single bucket.

Each time we consider a new bit (bit n), we add
2n +1 bits to the bitmap and obtain 2n +1 more address-
able buckets in the file. As a result, the bitmap con-
tains the previous 2n +1−1 bits (1+2+4+...+2n ) which
trace the entire split history of the addressable buck-
ets.

Given a key and the bitmap created by this
algorithm, we first examine bit 0 of the bitmap (the bit
to consult when 0 bits of the hash value are being
examined). If it is set (indicating that the bucket split),
we begin considering the bits of the 32-bit hash value.
As bit n is revealed, a mask equal to 2n +1−1 will yield
the current bucket address. Adding 2n +1−1 to the
bucket address identifies which bit in the bitmap must
be checked. We continue revealing bits of the hash
value until all set bits in the bitmap are exhausted.
The following algorithm, a simplification of the algo-
rithm due to Ken Thompson [THOM90, TOR88],
uses the hash value and the bitmap to calculate the
bucket address as discussed above.

hash = calchash(key);
mask = 0;
while (isbitset((hash & mask) + mask))

mask = (mask << 1) + 1;
bucket = hash & mask;

2.2. sdbm

The sdbm library is a public-domain clone of
the ndbm library, developed by Ozan Yigit to provide
ndbm’s functionality under some versions of UNIX
that exclude it for licensing reasons [YIG89]. The
programmer interface, and the basic structure of sdbm
is identical to ndbm but internal details of the access
function, such as the calculation of the bucket
address, and the use of different hash functions make
the two incompatible at the database level.

The sdbm library is based on a simplified
implementation of Larson’s 1978 dynamic hashing
algorithm including the refinements and variations of
section 5 [LAR78]. Larson’s original algorithm calls
for a forest of binary hash trees that are accessed by
two hash functions. The first hash function selects a
particular tree within the forest. The second hash
function, which is required to be a boolean pseudo-
random number generator that is seeded by the key, is
used to traverse the tree until internal (split) nodes are
exhausted and an external (non-split) node is reached.
The bucket addresses are stored directly in the exter-
nal nodes.

Larson’s refinements are based on the observa-
tion that the nodes can be represented by a single bit
that is set for internal nodes and not set for external
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Figure 1: Radix search trie with internal nodes A and B, external

nodes C, D, and E, and bucket addresses stored in the unused por-

tion of the trie.
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nodes, resulting in a radix search trie. Figure 1 illus-
trates this. Nodes A and B are internal (split) nodes,
thus having no bucket addresses associated with
them. Instead, the external nodes (C, D, and E) each
need to refer to a bucket address. These bucket
addresses can be stored in the trie itself where the
subtries would live if they existed [KNU68]. For
example, if nodes F and G were the children of node
C, the bucket address L00 could reside in the bits that
will eventually be used to store nodes F and G and all
their children.

Further simplifications of the above [YIG89]
are possible. Using a single radix trie to avoid the first
hash function, replacing the pseudo-random number
generator with a well designed, bit-randomizing hash
function, and using the portion of the hash value
exposed during the trie traversal as a direct bucket
address results in an access function that works very
similar to Thompson’s algorithm above. The follow-
ing algorithm uses the hash value to traverse a linear-
ized radix trie3 starting at the 0th bit.

tbit = 0; /* radix trie index */
hbit = 0; /* hash bit index */
mask = 0;
hash = calchash(key);

for (mask = 0;
isbitset(tbit);

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
3 A linearized radix trie is merely an array representation of

the radix search trie described above. The children of the node with

mask = (mask << 1) + 1)
if (hash & (1 << hbit++)))

/* right son */
tbit = 2 * tbit + 2;

else
/* left son */
tbit = 2 * tbit + 1;

bucket = hash & mask;

2.3. gdbm

The gdbm (GNU data base manager) library is
a UNIX database manager written by Philip A. Nel-
son, and made available as a part of the FSF software
distribution. The gdbm library provides the same
functionality of the dbm/ndbm libraries [NEL90] but
attempts to avoid some of their shortcomings. The
gdbm library allows for arbitrary-length data, and its
database is a singular, non-sparse4 file. The gdbm
library also includes dbm and ndbm compatible inter-
faces.

The gdbm library is based on extensible hash-
ing, a dynamic hashing algorithm by Fagin et al
[FAG79]. This algorithm differs from the previously
discussed algorithms in that it uses a directory that is
a collapsed representation [ENB88] of the radix
search trie used by sdbm.

In this algorithm, a directory consists of a
search trie of depth n , containing 2n bucket addresses
(i.e. each element of the trie is a bucket address). To
access the hash table, a 32-bit hash value is calculated
and n bits of the value are used to index into the
directory to obtain a bucket address. It is important to
note that multiple entries of this directory may con-
tain the same bucket address as a result of directory
doubling during bucket splitting. Figure 2 illustrates
the relationship between a typical (skewed) search
trie and its directory representation. The formation of
the directory shown in the figure is as follows.

Initially, there is one slot in the directory
addressing a single bucket. The depth of the trie is 0
and 0 bits of each hash value are examined to deter-
mine in which bucket to place a key; all keys go in
bucket 0. When this bucket is full, its contents are
divided between L0 and L1 as was done in the previ-
ously discussed algorithms. After this split, the
address of the second bucket must be stored in the
directory. To accommodate the new address, the

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
index i can be found at the nodes indexed 2*i+1 and 2*i+2.

4 It does not contain holes.
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Figure 2: A radix search trie and a directory representing the trie.
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directory is split5, by doubling it, thus increasing the
depth of the directory by one.

After this split, a single bit of the hash value
needs to be examined to decide whether the key
belongs to L0 or L1. Once one of these buckets fills
(L0 for example), it is split as before, and the direc-
tory is split again to make room for the address of the
third bucket. This splitting causes the addresses of
the non-splitting bucket (L1) to be duplicated. The
directory now has four entries, a depth of 2, and
indexes the buckets L00, L01 and L1, as shown in the
Figure 2.

The crucial part of the algorithm is the observa-
tion that L1 is addressed twice in the directory. If this
bucket were to split now, the directory already con-
tains room to hold the address of the new bucket. In
general, the relationship between the directory and
the number of bucket addresses contained therein is
used to decide when to split the directory. Each
bucket has a depth, (nb ), associated with it and
appears in the directory exactly 2n −nb times. When a
bucket splits, its depth increases by one. The direc-
tory must split any time a bucket’s depth exceeds the
depth of the directory. The following code fragment
helps to illustrate the extendible hashing algorithm
[FAG79] for accessing individual buckets and main-
taining the directory.

hash = calchash(key);
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

5 This decision to split the directory is based on a comparison
of the depth of the page being split and the depth of the trie. In Fig-
ure 2, the depths of both L00 and L01 are 2, whereas the depth of
L1 is 1. Therefore, if L1 were to split, the directory would not need
to split. In reality, a bucket is allocated for the directory at the time
of file creation so although the directory splits logically, physical
splits do not occur until the file becomes quite large.

mask = maskvec[depth];

bucket = directory[hash & mask];

/* Key Insertion */
if (store(bucket, key, data) == FAIL) {

newbl = getpage();
bucket->depth++;
newbl->depth = bucket->depth;
if (bucket->depth > depth) {

/* double directory */
depth++;
directory = double(directory);

}
splitbucket(bucket, newbl)
...

}

2.4. hsearch

Since hsearch does not have to translate hash
values into disk addresses, it can use much simpler
algorithms than those defined above. System V’s
hsearch constructs a fixed-size hash table (specified
by the user at table creation). By default, a multipli-
cative hash function based on that described in Knuth,
Volume 3, section 6.4 [KNU68] is used to obtain a
primary bucket address. If this bucket is full, a secon-
dary multiplicative hash value is computed to define
the probe interval. The probe interval is added to the
original bucket address (modulo the table size) to
obtain a new bucket address. This process repeats
until an empty bucket is found. If no bucket is found,
an insertion fails with a ‘‘table full’’ condition.

The basic algorithm may be modified by a
number of compile time options available to those
users with AT&T source code. First, the package
provides two options for hash functions. Users may
specify their own hash function by compiling with
‘‘USCR’’ defined and declaring and defining the vari-
able hcompar, a function taking two string arguments
and returning an integer. Users may also request that
hash values be computed simply by taking the
modulo of key (using division rather than multiplica-
tion for hash value calculation). If this technique is
used, collisions are resolved by scanning sequentially
from the selected bucket (linear probing). This option
is available by defining the variable ‘‘DIV’’ at com-
pile time.

A second option, based on an algorithm
discovered by Richard P. Brent, rearranges the table
at the time of insertion in order to speed up retrievals.
The basic idea is to shorten long probe sequences by
lengthening short probe sequences. Once the probe
chain has exceeded some threshold (Brent suggests



2), we attempt to shuffle any colliding keys (keys
which appeared in the probe sequence of the new
key). The details of this key shuffling can be found in
[KNU68] and [BRE73]. This algorithm may be
obtained by defining the variable ‘‘BRENT’’ at com-
pile time.

A third set of options, obtained by defining
‘‘CHAINED’’, use linked lists to resolve collisions.
Either of the primary hash function described above
may be used, but all collisions are resolved by build-
ing a linked list of entries from the primary bucket.
By default, new entries will be added to a bucket at
the beginning of the bucket chain. However, compile
options ‘‘SORTUP’’ or ‘‘SORTDOWN’’ may be
specified to order the hash chains within each bucket.

2.5. dynahash

The dynahash library, written by Esmond Pitt,
implements Larson’s linear hashing algorithm
[LAR88] with an hsearch compatible interface.
Intuitively, a hash table begins as a single bucket and
grows in generations, where a generation corresponds
to a doubling in the size of the hash table. The 0th

generation occurs as the table grows from one bucket
to two. In the next generation the table grows from
two to four. During each generation, every bucket
that existed at the beginning of the generation is split.

The table starts as a single bucket (numbered
0), the current split bucket is set to bucket 0, and the
maximum split point is set to twice the current split
point (0). When it is time for a bucket to split, the
keys in the current split bucket are divided between
the current split bucket and a new bucket whose
bucket number is equal to 1 + current split bucket +
maximum split point. We can determine which keys
move to the new bucket by examining the n th bit of a
key’s hash value where n is the generation number.
After the bucket at the maximum split point has been
split, the generation number is incremented, the
current split point is set back to zero, and the max-
imum split point is set to the number of the last
bucket in the file (which is equal to twice the old
maximum split point plus 1).

To facilitate locating keys, we maintain two
masks. The low mask is equal to the maximum split
bucket and the high mask is equal to the next max-
imum split bucket. To locate a specific key, we com-
pute a 32-bit hash value using a bit-randomizing algo-
rithm such as the one described in [LAR88]. This
hash value is then masked with the high mask. If the
resulting number is greater than the maximum bucket
in the table (current split bucket + maximum split
point), the hash value is masked with the low mask.
In either case, the result of the mask is the bucket
number for the given key. The algorithm below

illustrates this process.

h = calchash(key);
bucket = h & high_mask;
if ( bucket > max_bucket )

bucket = h & low_mask;
return(bucket);

In order to decide when to split a bucket,
dynahash uses controlled splitting. A hash table has a
fill factor which is expressed in terms of the average
number of keys in each bucket. Each time the table’s
total number of keys divided by its number of buckets
exceeds this fill factor, a bucket is split.

Since the hsearch create interface (hcreate)
calls for an estimate of the final size of the hash table
(nelem), dynahash uses this information to initialize
the table. The initial number of buckets is set to
nelem rounded to the next higher power of two. The
current split point is set to 0 and the maximum bucket
and maximum split point are set to this rounded
value.

3. The New Implementation

Our implementation is also based on Larson’s
linear hashing [LAR88] algorithm as well as the
dynahash implementation. The dbm family of algo-
rithms decide dynamically which bucket to split and
when to split it (when it overflows) while dynahash
splits in a predefined order (linearly) and at a
predefined time (when the table fill factor is
exceeded). We use a hybrid of these techniques.
Splits occur in the predefined order of linear hashing,
but the time at which pages are split is determined
both by page overflows (uncontrolled splitting) and
by exceeding the fill factor (controlled splitting)

A hash table is parameterized by both its bucket
size (bsize) and fill factor (ffactor). Whereas
dynahash’s buckets can be represented as a linked list
of elements in memory, our package needs to support
disk access, and must represent buckets in terms of
pages. The bsize is the size (in bytes) of these pages.
As in linear hashing, the number of buckets in the
table is equal to the number of keys in the table
divided by ffactor.6 The controlled splitting occurs
each time the number of keys in the table exceeds the
fill factor multiplied by the number of buckets.

Inserting keys and splitting buckets is per-
formed precisely as described previously for
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

6 This is not strictly true. The file does not contract when
keys are deleted, so the number of buckets is actually equal to the
maximum number of keys ever present in the table divided by the
fill factor.



dynahash. However, since buckets are now
comprised of pages, we must be prepared to handle
cases where the size of the keys and data in a bucket
exceed the bucket size.

3.1. Overflow Pages

There are two cases where a key may not fit in
its designated bucket. In the first case, the total size
of the key and data may exceed the bucket size. In
the second, addition of a new key could cause an
overflow, but the bucket in question is not yet
scheduled to be split. In existing implementations,
the second case never arises (since buckets are split
when they overflow) and the first case is not handled
at all. Although large key/data pair handling is
difficult and expensive, it is essential. In a linear
hashed implementation, overflow pages are required
for buckets which overflow before they are split, so
we can use the same mechanism for large key/data
pairs that we use for overflow pages. Logically, we
chain overflow pages to the buckets (also called pri-
mary pages). In a memory based representation,
overflow pages do not pose any special problems
because we can chain overflow pages to primary
pages using memory pointers. However, mapping
these overflow pages into a disk file is more of a chal-
lenge, since we need to be able to address both bucket
pages, whose numbers are growing linearly, and some
indeterminate number of overflow pages without reor-
ganizing the file.

One simple solution would be to allocate a
separate file for overflow pages. The disadvantage
with such a technique is that it requires an extra file
descriptor, an extra system call on open and close,
and logically associating two independent files. For
these reasons, we wanted to map both primary pages
and overflow pages into the same file space.

The buddy-in-waiting algorithm provides a
mechanism to support multiple pages per logical
bucket while retaining the simple split sequence of
linear hashing. Overflow pages are preallocated
between generations of primary pages. These
overflow pages are used by any bucket containing
more keys than fit on the primary page and are
reclaimed, if possible, when the bucket later splits.
Figure 3 depicts the layout of primary pages and
overflow pages within the same file. Overflow page
use information is recorded in bitmaps which are
themselves stored on overflow pages. The addresses
of the bitmap pages and the number of pages allo-
cated at each split point are stored in the file header.
Using this information, both overflow addresses and
bucket addresses can be mapped to disk addresses by
the following calculation:

2/32/22/11/21/1

Overflow Addresses

Overflow PagesBuckets

3210

Overflow Pages

Split Points

Figure 3: Split points occur between generations and are numbered

from 0. In this figure there are two overflow pages allocated at split

point 1 and three allocated at split point 2.
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int bucket; /* bucket address */
u_short oaddr; /* overflow address */
int nhdr_pages; /* pages in header */
int spares[32]; /* pages at splits */
int log2(); /* ceil(log base 2) */

#define BUCKET_TO_PAGE(bucket) \
bucket + nhdr_pages + \
(bucket ? \
spares[logs2(bucket + 1)-1] : 0)

#define OADDR_TO_PAGE(oaddr) \
BUCKET_TO_PAGE((1 << (oaddr>>11)) - 1) \
+ oaddr & 0x7ff;

An overflow page is addressed by its split point,
identifying the generations between which the
overflow page is allocated, and its page number, iden-
tifying the particular page within the split point. In
this implementation, offsets within pages are 16 bits
long (limiting the maximum page size to 32K), so we
select an overflow page addressing algorithm that can
be expressed in 16 bits and which allows quick
retrieval. The top five bits indicate the split point and
the lower eleven indicate the page number within the
split point. Since five bits are reserved for the split
point, files may split 32 times yielding a maximum
file size of 232 buckets and 32* 211 overflow pages.
The maximum page size is 215, yielding a maximum
file size greater than 131,000 GB (on file systems



supporting files larger than 4GB).

3.2. Buffer Management

The hash table is stored in memory as a logical
array of bucket pointers. Physically, the array is
arranged in segments of 256 pointers. Initially, there
is space to allocate 256 segments. Reallocation
occurs when the number of buckets exceeds 32K (256
* 256). Primary pages may be accessed directly
through the array by bucket number and overflow
pages are referenced logically by their overflow page
address. For small hash tables, it is desirable to keep
all pages in main memory while on larger tables, this
is probably impossible. To satisfy both of these
requirements, the package includes buffer manage-
ment with LRU (least recently used) replacement.

By default, the package allocates up to 64K
bytes of buffered pages. All pages in the buffer pool
are linked in LRU order to facilitate fast replacement.
Whereas efficient access to primary pages is provided
by the bucket array, efficient access to overflow pages
is provided by linking overflow page buffers to their
predecessor page (either the primary page or another
overflow page). This means that an overflow page
cannot be present in the buffer pool if its primary
page is not present. This does not impact perfor-
mance or functionality, because an overflow page will
be accessed only after its predecessor page has been
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Figure 4: Three primary pages (B0, B5, B10) are accessed directly

from the bucket array. The one overflow page (O1/1) is linked phy-

sically from its primary page’s buffer header as well as logically

from its predecessor page buffer (B5).

accessed. Figure 4 depicts the data structures used to
manage the buffer pool.

The in-memory bucket array contains pointers
to buffer header structures which represent primary
pages. Buffer headers contain modified bits, the page
address of the buffer, a pointer to the actual buffer,
and a pointer to the buffer header for an overflow
page if it exists, in addition to the LRU links. If the
buffer corresponding to a particular bucket is not in
memory, its pointer is NULL. In effect, pages are
linked in three ways. Using the buffer headers, they
are linked physically through the LRU links and the
overflow links. Using the pages themselves, they are
linked logically through the overflow addresses on the
page. Since overflow pages are accessed only after
their predecessor pages, they are removed from the
buffer pool when their primary is removed.

3.3. Table Parameterization

When a hash table is created, the bucket size,
fill factor, initial number of elements, number of bytes
of main memory used for caching, and a user-defined
hash function may be specified. The bucket size (and
page size for overflow pages) defaults to 256 bytes.
For tables with large data items, it may be preferable
to increase the page size, and, conversely, applica-
tions storing small items exclusively in memory may
benefit from a smaller bucket size. A bucket size
smaller than 64 bytes is not recommended.

The fill factor indicates a desired density within
the hash table. It is an approximation of the number
of keys allowed to accumulate in any one bucket,
determining when the hash table grows. Its default is
eight. If the user knows the average size of the
key/data pairs being stored in the table, near optimal
bucket sizes and fill factors may be selected by apply-
ing the equation:

(1) ((average_pair_length + 4) *
ffactor) >= bsize

For highly time critical applications, experimenting
with different bucket sizes and fill factors is
encouraged.

Figures 5a,b, and c illustrate the effects of vary-
ing page sizes and fill factors for the same data set.
The data set consisted of 24474 keys taken from an
online dictionary. The data value for each key was an
ASCII string for an integer from 1 to 24474 inclusive.
The test run consisted of creating a new hash table
(where the ultimate size of the table was known in
advance), entering each key/data pair into the table
and then retrieving each key/data pair from the table.
Each of the graphs shows the timings resulting from



varying the pagesize from 128 bytes to 1M and the fill
factor from 1 to 128. For each run, the buffer size
was set at 1M. The tests were all run on an HP
9000/370 (33.3 Mhz MC68030), with 16M of
memory, 64K physically addressed cache, and an
HP7959S disk drive, running 4.3BSD-Reno single-
user.

Both system time (Figure 5a) and elapsed time
(Figure 5b) show that for all bucket sizes, the greatest
performance gains are made by increasing the fill fac-
tor until equation 1 is satisfied. The user time shown
in Figure 5c gives a more detailed picture of how per-
formance varies. The smaller bucket sizes require
fewer keys per page to satisfy equation 1 and there-
fore incur fewer collisions. However, when the buffer
pool size is fixed, smaller pages imply more pages.
An increased number of pages means more malloc(3)
calls and more overhead in the hash package’s buffer
manager to manage the additional pages.

The tradeoff works out most favorably when
the page size is 256 and the fill factor is 8. Similar
conclusions were obtained if the test was run without
knowing the final table size in advance. If the file
was closed and written to disk, the conclusions were
still the same. However, rereading the file from disk
was slightly faster if a larger bucket size and fill fac-
tor were used (1K bucket size and 32 fill factor). This
follows intuitively from the improved efficiency of
performing 1K reads from the disk rather than 256
byte reads. In general, performance for disk based
tables is best when the page size is approximately 1K.

If an approximation of the number of elements
ultimately to be stored in the hash table is known at
the time of creation, the hash package takes this
number as a parameter and uses it to hash entries into
the full sized table rather than growing the table from
a single bucket. If this number is not known, the hash
table starts with a single bucket and gracefully
expands as elements are added, although a slight per-
formance degradation may be noticed. Figure 6 illus-
trates the difference in performance between storing
keys in a file when the ultimate size is known (the left
bars in each set), compared to building the file when
the ultimate size is unknown (the right bars in each
set). Once the fill factor is sufficiently high for the
page size (8), growing the table dynamically does lit-
tle to degrade performance.

Since no known hash function performs equally
well on all possible data, the user may find that the
built-in hash function does poorly on a particular data
set. In this case, a hash function, taking two argu-
ments (a pointer to a byte string and a length) and
returning an unsigned long to be used as the hash
value, may be specified at hash table creation time.
When an existing hash table is opened and a hash
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Figure 5a: System Time for dictionary data set with 1M of buffer

space and varying bucket sizes and fill factors. Each line is labeled

with its bucket size.
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Figure 6: The total regions indicate the difference between the

elapsed time and the sum of the system and user time. The left bar

of each set depicts the timing of the test run when the number of en-

tries is known in advance. The right bars depict the timing when

the file is grown from a single bucket.

function is specified, the hash package will try to
determine that the hash function supplied is the one
with which the table was created. There are a variety
of hash functions provided with the package. The
default function for the package is the one which
offered the best performance in terms of cycles exe-
cuted per call (it did not produce the fewest collisions
although it was within a small percentage of the func-
tion that produced the fewest collisions). Again, in
time critical applications, users are encouraged to
experiment with a variety of hash functions to achieve
optimal performance.

Since this hashing package provides buffer
management, the amount of space allocated for the
buffer pool may be specified by the user. Using the
same data set and test procedure as used to derive the
graphs in Figures 5a-c, Figure 7 shows the impact of
varying the size of the buffer pool. The bucket size
was set to 256 bytes and the fill factor was set to 16.
The buffer pool size was varied from 0 (the minimum
number of pages required to be buffered) to 1M.
With 1M of buffer space, the package performed no
I/O for this data set. As Figure 7 illustrates, increas-
ing the buffer pool size can have a dramatic affect on
resulting performance.7

3.4. Enhanced Functionality

This hashing package provides a set of compa-
tibility routines to implement the ndbm interface.
However, when the native interface is used, the fol-
lowing additional functionality is provided:

g Inserts never fail because too many keys
hash to the same value.

g Inserts never fail because key and/or asso-
ciated data is too large

g Hash functions may be user-specified.
g Multiple pages may be cached in main

memory.

It also provides a set of compatibility routines to
implement the hsearch interface. Again, the native
interface offers enhanced functionality:

g Files may grow beyond nelem elements.
g Multiple hash tables may be accessed con-

currently.
g Hash tables may be stored and accessed on

disk.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
7 Some allocators are extremely inefficient at allocating

memory. If you find that applications are running out of memory
before you think they should, try varying the pagesize to get better
utilization from the memory allocator.
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g Hash functions may be user-specified at
runtime.

4. Relative Performance of the New Implementa-
tion

The performance testing of the new package is
divided into two test suites. The first suite of tests
requires that the tables be read from and written to
disk. In these tests, the basis for comparison is the
4.3BSD-Reno version of ndbm. Based on the designs
of sdbm and gdbm, they are expected to perform simi-
larly to ndbm, and we do not show their performance
numbers. The second suite contains the memory
resident test which does not require that the files ever
be written to disk, only that hash tables may be mani-
pulated in main memory. In this test, we compare the
performance to that of the hsearch routines.

For both suites, two different databases were
used. The first is the dictionary database described
previously. The second was constructed from a pass-
word file with approximately 300 accounts. Two

records were constructed for each account. The first
used the logname as the key and the remainder of the
password entry for the data. The second was keyed
by uid and contained the entire password entry as its
data field. The tests were all run on the HP 9000 with
the same configuration previously described. Each
test was run five times and the timing results of the
runs were averaged. The variance across the 5 runs
was approximately 1% of the average yielding 95%
confidence intervals of approximately 2%.

4.1. Disk Based Tests

In these tests, we use a bucket size of 1024 and
a fill factor of 32.

create test

The keys are entered into the hash table, and
the file is flushed to disk.

read test

A lookup is performed for each key in the hash
table.

verify test

A lookup is performed for each key in the hash
table, and the data returned is compared against
that originally stored in the hash table.

sequential retrieve

All keys are retrieved in sequential order from
the hash table. The ndbm interface allows
sequential retrieval of the keys from the data-
base, but does not return the data associated
with each key. Therefore, we compare the per-
formance of the new package to two different
runs of ndbm. In the first case, ndbm returns
only the keys while in the second, ndbm returns
both the keys and the data (requiring a second
call to the library). There is a single run for the
new library since it returns both the key and the
data.

4.2. In-Memory Test

This test uses a bucket size of 256 and a fill fac-
tor of 8.

create/read test

In this test, a hash table is created by inserting
all the key/data pairs. Then a keyed retrieval is
performed for each pair, and the hash table is
destroyed.

4.3. Performance Results

Figures 8a and 8b show the user time, system
time, and elapsed time for each test for both the new
implementation and the old implementation (hsearch
or ndbm, whichever is appropriate) as well as the



improvement. The improvement is expressed as a
percentage of the old running time:

% = 100 * (old_time - new_time) /
old_time

In nearly all cases, the new routines perform
better than the old routines (both hsearch and ndbm).
Although the create tests exhibit superior user time
performance, the test time is dominated by the cost of
writing the actual file to disk. For the large database
(the dictionary), this completely overwhelmed the
system time. However, for the small data base, we
see that differences in both user and system time con-
tribute to the superior performance of the new pack-
age.

The read, verify, and sequential results are
deceptive for the small database since the entire test
ran in under a second. However, on the larger
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
hash ndbm %changeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

CREATEiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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Figure 8a: Timing results for the dictionary database.

database the read and verify tests benefit from the
caching of buckets in the new package to improve
performance by over 80%. Since the first sequential
test does not require ndbm to return the data values,
the user time is lower than for the new package.
However when we require both packages to return
data, the new package excels in all three timings.

The small database runs so quickly in the
memory-resident case that the results are uninterest-
ing. However, for the larger database the new pack-
age pays a small penalty in system time because it
limits its main memory utilization and swaps pages
out to temporary storage in the file system while the
hsearch package requires that the application allocate
enough space for all key/data pair. However, even
with the system time penalty, the resulting elapsed
time improves by over 50%.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
hash ndbm %changeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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Figure 8b: Timing results for the password database.



5. Conclusion

This paper has presented the design, implemen-
tation and performance of a new hashing package for
UNIX. The new package provides a superset of the
functionality of existing hashing packages and incor-
porates additional features such as large key handling,
user defined hash functions, multiple hash tables,
variable sized pages, and linear hashing. In nearly all
cases, the new package provides improved perfor-
mance on the order of 50-80% for the workloads
shown. Applications such as the loader, compiler,
and mail, which currently implement their own hash-
ing routines, should be modified to use the generic
routines.

This hashing package is one access method
which is part of a generic database access package
being developed at the University of California,
Berkeley. It will include a btree access method as
well as fixed and variable length record access
methods in addition to the hashed support presented
here. All of the access methods are based on a
key/data pair interface and appear identical to the
application layer, allowing application implementa-
tions to be largely independent of the database type.
The package is expected to be an integral part of the
4.4BSD system, with various standard applications
such as more(1), sort(1) and vi(1) based on it. While
the current design does not support multi-user access
or transactions, they could be incorporated relatively
easily.
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