Provenance in the Wild

4th USENIX Workshop on the Theory and Practice of Provenance

JUNE 14-15, 2012

usenix
sponsored by USENIX in cooperation with ACM SIGOPS, ACM SIGMOD, and ACM SIGPLAN R et ri Nty TENE

h ASSOCIATION

Peter Macko, Margo Seltzer
June 14, 2012



June 2011

What’s the Problem?

What does it mean to collect provenance
when you don’t control:

— The data (types, format, organization, structure)
— The operators
— The environment in which its processed

Can you impose/
extract any semantic
meaning to
provenance when it's
collected by a herd
of cats?

http://www.newsrealblog.com/wp-content/uploads/2011/04/Herding-Cats.jpg
2



What do the Cats do?

* They use data in arbitrary formats
— Flatfiles
— Unstructured, semi-structured, badly-structured
— Proprietary formats
— The cram twelve different kinds of data into a single container.
« Transformations are arbitrary code
— Pick your favorite turing-complete language.
— Apply said language to data.
— Transformations can depend on the environment.
— Repeat
+ They move data around
— Download objects from the web
— Copy, rename objects
— Replace objects
* They install new software
— New programs
— New libraries
— New compilers

June 2011



A Proposed Architecture

Applications *

In multiple languages . P -~
Language Python e R e
adapters

Provenance Library
C++

Database
adapters

Provenance Store

With multiple implementations

SPARQL/RDF
adapter

PostgreSQL

June 2011 4

4store



Why do we think this is a
good idea?

* Heterogeneous environments are the norm.
 Provenance must span those environments.

» Users and/or applications can:

— create connections that are implicit or
unobservable by software systems.

— Integrate both static and dynamic dependencies.
Bring provenance to the users rather
than the users to the provenance.

June 2012



Basic Use Model

» Connect to the library: cpl attach

* Disclose provenance
— Create/lookup objects: cpl create object,
cpl lookup object
— Disclose data flow: cpl data flow
— Disclose control flow: cpl control flow
— Add properties to objects: cpl add property

* Disconnect from the library: cpl detach

June 2012



Naming

* Goal is to allow interoperability with minimal
coordination.

* Objects are identified by three parameters:

— Namespace: the application or system component that
“‘owns” the object. Examples: OS, a specific database,
workflow engine or application, or a project.

— Name: local name (unique within a namespace)
— Type: file, process, or namespace-specific type
— Version: cycle avoidance algorithm create versions

June 2012



Additional Automatic Capture

« Capture object creation MAC address so that
we can transmit provenance across a network
(and still identify it).

« Capture provenance of provenance

— Ties provenance to a specific instance of an
application (e.g., a process).

— Results in capture of command line arguments
(e.qg., size of the Java heap).

June 2012 8



Use Case: GraphDB Bench

A benchmark suite (and lots of experiments) to evaluate
absolute and relative performance of graph databases.

Instrument flow from the graph database to the
benchmark operators to results.

Modifications: 270 lines of code (out of 7500 total)
— Most is cut and paste

Result: every csv result file has provenance indicating

which operations were run, what the source database
was, etc.

Helped us debug benchmark suite, identify missing
benchmark results, etc.

Integration with scripts led us to develop command-line
tool to track directory creation, file copies, etc.

June 2012



Discussion

« Won't this free for all lead to semantically
meaningless provenance?

— Some provenance is better than no provenance.

— Users/application developers who care are likely to provide
more semantically meaningful provenance than is available
by less flexible systems.

« What do you do about missing provenance?
— Some provenance is better than no provenance.

— "Downstream” applications can connect upstream to bypass

provenance oblivious applications.

« Bottom line: We make rope — make it possible to
have provenance without requiring that analysts or
programmers use specific languages or tools.

June 2012

10



