
A Framework for Incentivizing Deep Fixes
The Harvard community has made this

article openly available.  Please share  how
this access benefits you. Your story matters

Citation Rao, Malvika, David C. Parkes, Margo Seltzer, and David F. Bacon.
2015. A Framework for Incentivizing Deep Fixes. In Proceedings of
the AAAI 2014 Workshop on Incentives and Trust in E-Communities
(WIT-EC 2014), Quebec, Canada, July 27-31, 2014.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33009631

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#OAP

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=A%20Framework%20for%20Incentivizing%20Deep%20Fixes&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=4d61db5116e95d1c3fdc2caf14acc754&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33009631
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP


A Framework for Incentivizing Deep Fixes

Malvika Rao
SEAS, Harvard University
malvika@eecs.harvard.edu

David C. Parkes
SEAS, Harvard University
parkes@eecs.harvard.edu

Margo Seltzer
SEAS, Harvard University
margo@eecs.harvard.edu

David F. Bacon
IBM Research

bacon@us.ibm.com

Abstract
We study the problem of how to incentivize deep fixes
to software bugs, where a deep fix attempts to correct
the root cause of the bug instead of just suppressing it
superficially. To this end we introduce a dynamic model
of the software engineering ecosystem. We then solve
this problem by proposing subsumption mechanisms.
In a subsumption mechanism, deeper fixes can replace
or subsume shallower fixes and a worker’s payoff in-
creases if his fix subsumes other fixes. We use a solution
concept known as mean field equilibrium, an approx-
imation methodology suited to large market settings.
Taking a computational approach, we simulate the dy-
namic model of the ecosystem with subsumption mech-
anisms. Our algorithm achieves convergence and thus
estimates a mean field equilibrium. We further com-
pare our mechanism to baseline mechanisms using met-
rics, such as percentage of bugs receiving deep fixes,
rate of bugs fixed, and cost to the user. Simulation re-
sults indicate that the subsumption mechanism performs
favourably versus the baseline mechanisms.

Introduction
The size and complexity of software systems have increased
to such an extent that it is beyond our ability to effec-
tively manage them. A study commissioned by the U.S. Na-
tional Institute of Standards and Technology concluded that
software errors alone cost the U.S. economy approximately
$59.5 billion annually (NIST 2002). Software often ships
with discovered as well as undiscovered bugs because there
are simply not enough resources to address all issues (Lib-
lit et al. 2003), (Anvik, Hiew, and Murphy 2006). Through
an empirical study of 277 coding projects in 15 companies,
Wright and Zia (Wright and Zia 2011) determine that soft-
ware maintenance actually introduces more bugs: each sub-
sequent iteration of fixes has a 20− 50% chance of creating
new bugs.

In fact software systems have come to resemble systems
where behaviour is decentralized, interdependent, and dy-
namic – rather like economies. This suggests that the prin-
ciples of market and mechanism design might be more ef-
fective in managing software than traditional software engi-
neering techniques. In previous work (Bacon et al. 2010) we

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

described our vision for a software development process, in-
spired by economies, where supply and demand drive the
allocation of work and the evolution of the system. Soft-
ware economies consist of a private and a public compo-
nent. A private software economy deals with the internal
incentives of managers and their employees, such as allo-
cating resources and predicting completion times. On the
other hand a public software economy refers to a market
mechanism where users bid for coveted bug fixes and fea-
tures. Over time the software reaches an equilibrium where
all fixes and features for which there is enough market value
have been implemented. However designing such a market
mechanism is fraught with challenges. This work addresses
the public software economy and is a response to a challenge
raised in (Bacon et al. 2009).

Specifically the problem we are interested in is how to de-
sign incentives to obtain “deep” rather than “shallow” fixes
to bugs. A deep fix attempts to correct the root cause of
the problem so that another bug with the same root cause
is found only after a long time or not at all. In contrast a
shallow fix suppresses the bug at a superficial level so that
other bugs with the same root cause appear soon after. We
solve this problem by proposing subsumption mechanisms.
In a subsumption mechanism, deeper fixes can replace or
subsume shallower fixes and a worker’s payoff increases if
his fix subsumes other fixes. The mechanism employs an
instalment-based payment rule that stops paying the worker
when his fix is subsumed and transfers the remaining reward
to the competitor responsible for the deeper fix.

To this end we design a dynamic model of the soft-
ware engineering ecosystem comprising workers, users, root
causes of bugs, bugs, fixes, time periods, rewards, and pay-
ments. The user base reports bugs and offers reward money
for fixes. A worker assigned a bug decides which fix to sub-
mit subject to cost and payment. The paradigm we adopt is
of restricting our attention to those features of the software
development process that are externally observable. In other
words we use only the information that can be observed by
the market, and refrain from delving into the internal work-
ings of the software such as the structure and composition
of the code. Some externally observable features are: time
taken for the next bug to appear, number of bugs fixed, and
the amount of reward money. Our framework is novel and
can be viewed as building blocks that can be reconfigured to



explore different questions in this ecosystem.
Our technical approach is to frame our problem in the

context of an approximation methodology, useful to analyze
the behaviour of large systems, called mean field equilib-
rium (MFE). In large markets, it is intractable and implau-
sible for individuals to best-respond to competitors’ exact
play (Adlakha, Johari, and Weintraub 2011). Instead it is as-
sumed that in the long run fluctuations in agents’ actions
“average out”. Hence agents optimize with respect to long
run estimates of the distribution of other agents’ actions. Us-
ing this methodology we simulate the dynamic model of the
software engineering ecosystem. In the case of subsumption
mechanisms, our algorithm achieves convergence and is thus
able to estimate an MFE. We then compare the subsump-
tion mechanism to two other mechanisms that do not involve
subsumption. For this purpose we consider metrics such as
the percentage of bugs receiving deep fixes, coverage rate,
and user cost. Coverage rate refers to how many bugs are
fixed per time period on average, and user cost refers to the
total monetary amount spent by users towards these fixes.
Preliminary results show that the subsumption mechanism
produces deeper fixes and consequently achieves higher cov-
erage rate for lower user cost than the other mechanisms.

Related work
Research into vulnerability reporting systems has explored
a market-based approach. Schechter (Schechter 2002) de-
scribes a vulnerability market where a reward is offered to
the first tester that reports a specific security flaw. The re-
ward grows if no one claims it. At any point in time the prod-
uct can be considered secure enough to protect information
worth the total value of all such rewards being offered. Oz-
ment (Ozment 2004) likens this type of vulnerability market
to an open first price ascending auction. While the vulnera-
bility market as well as existing bug bounty programs (e.g.
Mozilla security bug bounty) motivate testers to report flaws,
such systems do not capture users’ valuations for fixes.

Le Goues et al. (Goues, Forrest, and Weimer 2010) share
our view of software as an evolving, dynamic process. How-
ever where we approach software engineering from a mech-
anism design perspective, they are influenced by biological
systems. They apply genetic programming for automated
code repair (Goues et al. 2012), (Weimer et al. 2010).

Methodologically our work is most closely related to a
series of recent papers that analyze MFE in dynamic set-
tings. Iyer et al. (Iyer, Johari, and Sundararajan 2011) con-
sider a sequence of single-item second price auctions where
bidders are still learning their private valuations. Gummadi
et al. (Gummadi, Key, and Proutiere 2011) examine both
repeated second price as well as generalized second price
(GSP) auctions when bidders are budget constrained. Both
papers establish existence of MFE and characterize the opti-
mal bidding strategy. Other settings have also been analyzed
in the mean field context (Adlakha and Johari 2010), (Gum-
madi, Johari, and Yu 2012).

Organizations that crowdsource software development
exist 1. A notable example is TopCoder (TopCoder Inc. )

1A survey of crowdsourced software platforms is presented

RC1	
  

RC2	
  

RCX	
  

Time	
  ti	
   ti+1	
   ti+2	
   ti+3	
  

bk	
   bk+1	
   bk+2	
  

bk	
  

bk	
   bk+1	
   bk+2	
  

fk	
  

fk	
   fk+1	
  	
   fk+2	
  	
  

fk+2	
  	
  

Figure 1: Root causes generate bugs which receive fixes.

where programmers compete in a contest with cash awards
to submit the best solution to a software project. DiPalantino
and Vojnovic (DiPalantino and Vojnovic 2009) and Chawla
et al. (Chawla, Hartline, and Sivan 2012) study crowdsourc-
ing contests like TopCoder and model them as all-pay auc-
tions. However crowdsourcing contests are an altogether dif-
ferent scenario to ours.

BountySource (BountySource Inc. ) is a funding platform
for open-source software, where users post rewards on is-
sues they want solved while developers devise solutions and
claim rewards. GitHub (GitHub Inc. ) is a code repository
that allows programmers to work on portions or versions of
the code by providing operations like forking, merging, and
syncing. These seem like natural precursors to the externally
observable market-based system proposed in this paper.

A system of bugs and fixes
We present an abstract model of the software as a set of in-
dependent root causes, where each root cause generates a
series of related bugs. To draw an analogy with a real world
scenario, a root cause may be thought of as a specific com-
ponent or functionality of a software; for example, one root
cause might be the user interface component, while another
might be the graphics component.

Bit string representation A bit string model is used to
capture how a particular root cause can generate several
bugs. Each root cause is associated with a particular bit
string length l. The set of bugs belonging to this root cause
comprises the 2l− 1 non-zero bit strings of length l. The set
of fixes that can address this set of bugs is represented by
the same language – it consists of the set of 2l bit strings,
including the null string (i.e. the string with all 0’s). The in-
clusion of the null string is to allow for the possibility that a
bug may not receive a fix at all. Next we describe rules and
relationships between bugs and fixes in our system.

Properties of bugs and fixes
Armed with the bit string language we proceed to define
concrete properties relating bugs and fixes. First we note
that, in our model, fixes pertaining to a particular root cause
cannot be used to fix bugs generated by other root causes.

in (Bacon et al. 2009).



Thus all relationships and properties are relevant for only
those bugs and fixes that belong to the same root cause. In
what follows, we refer to a bit whose value is 1 as an ON-bit.
Definition 1. A fix f fixes a bug b if it includes all the ON-
bits in b. Thus an AND operation between f and bmust result
in b. 2

We refer to the set of fixes for a bug plus the null fix as
the set of feasible fixes. Different bugs can have different
numbers of feasible fixes. Bug 1110 has only 3 feasible fixes.
In contrast bug 0001 has 23 + 1 feasible fixes.
Example 1. A root cause with l = 4 can generate the set
of bugs {0001, 0010, . . . , 1111}, where each bit string rep-
resents a single bug. Consider bug bi = 1110. bi is fixed
by two fixes: fi1 = 1110 and fi2 = 1111. The entire set of
feasible fixes for bi is {1110, 1111, 0000}. However fix 0111
cannot fix bi as they do not have the same ON-bits.
Definition 2. [Fix depth]
The fix depth of f refers to the number of ON-bits in the bit
string of f and is denoted |f |.

Continuing with the above example, fi1 and fi2 have fix
depths equal to 3 and 4 respectively. We can now define, in
the context of the bit string representation, what constitutes
a shallow or deep fix with respect to a given bug.
Definition 3. [Shallow fix]
Given a bug b, a shallow fix f is one whose bit string is
exactly identical to b, |f | = |b|.
Definition 4. [Deep fix]
Given a bug b of bit string length l, a deep fix f is a fix with
|f | > |b|, for a maximum of l ON-bits.

In other words, a shallow fix is the fix that meets the es-
sential requirement of having the same ON-bits as the bug
being fixed and no more. The deepest fix not only fixes the
bug in question but all bugs of that root cause.
Example 2. Consider bug bj = 1001 generated by a
root cause with bit string length 4. A shallow fix for bj is
fj1 = 1001. A deeper fix for bj would be fj2 = 1011 or
fj3 = 1101. Notice that even fj1 could fix more than just
bj; for example it could fix bugs 0001 and 1000. The deepest
possible fix would be fj4 = 1111, which fixes all possible
bugs on the root cause.

Externally Observable So far we have described how
bugs and fixes relate to one another in the context of the bit
string representation. Moving on, we consider those proper-
ties that are externally observable, and to that end introduce
a key concept: subsumption.
Definition 5. [Subsumption relation]
A fix fz subsumes another fix fy (fz � fy) if the set of bugs
fixed by fz contains the set fixed by fy .

Using example 2, suppose the root cause generates an-
other bug bk = 1111 The only possible non-null fix for bk is
fk1 = 1111. fk1 subsumes fj1 since fk1 fixes all the bugs
fixed by fj1 as well as fixing bj . In example 2, the subsump-
tion relation is as follows: fj1 ≺ {fj2, fj3} ≺ fj4, where

2The null fix is the exception.

fixes fj2 and fj3 do not subsume each other. A sequence
f1 ≺ f2 ≺ · · · ≺ fx implies a partial order on the set of
fixes pertaining to a root cause.

From an externally observable viewpoint, if fz subsumes
fy , then fz is considered to be a deeper fix than fy .

The model of the ecosystem
We are now ready to present the model of the entire
ecosystem. We study a setting with discrete time periods
{t1, t2, . . .} and an infinite population of workers who sub-
mit fixes. The software is used by a large, anonymous user
base who discover bugs and offer reward money for fixes.
The software consists of a fixed number X of root causes of
bugs, RC = {RC1, RC2, . . . , RCX}, where all root causes
are associated with the same bit string length l. The X root
causes regenerate with probabilities {β1, β2, . . . , βX}. Con-
sider a bug bk generated by root cause RCx. Reward money
for a fix for bk is denoted rk and drawn according to a dis-
tribution. Suppose a worker wj submits fix fki for bk. To
produce the fix wj incurs cost cj per ON-bit in fki (the total
cost being cj |fki|), where cj is drawn from a distribution.
The utility wj derives from submitting fix fki for bk is de-
noted yjki and comes from the payments wj receives.

Bug generation In each time period we sample uniformly
at random from all 2l − 1 bit strings or bugs associated with
a root cause, regardless of whether some of those bugs might
be already fixed (i.e. sampling with replacement). A new bug
enters the system only if we choose an unfixed and as yet
unreported bug. This reflects a natural situation where a root
cause may generate lots of bugs at the start but fewer and
fewer as fixes accumulate.

Root causes that have not generated a new bug in a while
(say the last t̄ time periods, for some t̄) are considered inac-
tive. LetDRC be the set of inactive root causes in the current
time period. Each RCi ∈ DRC is regenerated with proba-
bility βi. This models the root cause as having received deep
enough fixes that it is now hard to generate bugs. As a result
the user base shifts its attention to a new set of bugs. When
a root cause is regenerated it is removed and replaced with a
new root cause (one with all bugs yet to be generated) of the
same bit string length. The presence of multiple regenerating
root causes ensures an infinite stream of bugs and provides
the necessary conditions to model stationarity (needed for
equilibrium analysis later in the paper).

Model dynamics
We consider a dynamic setting that consists of a sequence of
fix-verify cycles that occur over time. Each fix-verify cycle
takes place in a single time period ti at a given root cause.
Thus at time period ti we “round-robin” around all X root
causes, executing fix-verify cycles at each root cause. This
process is repeated at time period ti+1. A fix-verify cycle
proceeds as follows.

1. The root cause is queried once to see if it generates a new
bug, which is associated with a user reward.

2. A worker is assigned to a bug, where the set of bugs in-
cludes prior unfixed bugs as well as newly generated ones.



3. The worker submits a feasible fix that maximizes his ex-
pected utility.

4. The fix is verified by the market infrastructure.

5. The total reward to be paid to the worker is calculated.

6. The worker is paid if he submits a non-null fix. Other pay-
ments may be made depending on the payment rule.

We make three assumptions. First, user rewards are col-
lected once when a new bug is generated and do not continue
to accumulate over time. Second, the worker incurs a cost to
produce a fix but that fix is submitted in the same time pe-
riod the bug is assigned. Third, the likelihood that the same
worker is repeatedly assigned bugs belonging to the same
root cause is low.

Each worker works on one bug at a time and submits a fix
before starting work on the next bug. Hence an individual
worker works sequentially. Moreover, in any given time pe-
riod, each root cause generates at most one new bug, at most
one worker is assigned to an unfixed bug, and at most one
bug is fixed 3. While work within a particular root proceeds
in sequential order, work across different roots may happen
in parallel.

Subsumption mechanism
Consider an instantiation of the model where Step 4 of the
fix-verify cycle involves a check for whether the current fix
subsumes any previous fixes. If so, the subsumed fixes are
discarded and replaced by the current fix. Suppose as well
that the worker’s payoff increases if his fix subsumes pre-
vious fixes. We refer to this instantiation as a subsumption
mechanism. Here the worker faces his (indirect) competi-
tors, who fix subsequent bugs on the same root cause, in
sequential order. Thus the model captures indirect competi-
tion in the following way: another worker wz might produce
a deeper fix for a subsequent bug bk, that not only fixes bk
but also subsumes wy’s fix for bj . Subsumption mechanisms
are the focus of the rest of the paper.

Payment scheme We concentrate on instalment-based
payment schemes. Specifically in this instance, we use a
simple payment rule that pays out equal instalments of the
total reward over a fixed number of time periods, h∗. The
total reward for a fix fk for bug bk is,

rtotal =
∑

i

r̂prev
i I{fk�fi

prev} +
∑

q

r̄open
q + rk (1)

where r̂prev
i is the remaining unpaid reward money of a

previous fix fi
prev subsumed by fk, and r̄open

q is the reward
money of an unfixed bug bq that fk has fixed. The worker
is paid an instalment every time period until all instalments
are exhausted or until the worker’s fix is subsumed by a new
fix, whichever occurs sooner. In the latter case, the remain-
der of the worker’s reward is transferred to the subsuming

3This process ensures that at most one fix is submitted per time
period, per root cause. This is done to avoid situations where two
or more overlapping or equivalent fixes might be submitted simul-
taneously.

fix. Hence if the worker’s fix is only subsumed after h∗ time
periods have passed, or not subsumed at all during the life-
time of the root cause, the worker is paid rtotal in its entirety.
Note that an instalment-based payment rule requires any on-
going instalments to other workers to be paid in Step 6 of
the fix-verify cycle.

The worker
In the current model the worker does not choose which bug
to work on, rather he is assigned to a bug at random. There-
fore the worker’s decision problem is to determine which
fix to submit, including the null fix to model a decision to
do no work. In addition the worker’s decision to work now
does not impact his decision in the future, since fixes are
produced instantaneously and the set of indirect competitors
faced by the worker does not include himself.

We define the worker’s utility function in the context of
the subsumption mechanism. Worker wj’s expected utility
for submitting fk to fix bk is equal to the sum of the pay-
ments he will receive, starting from the time period when he
submits the fix, minus his cost for fk:

E[yjk] = Eh[
h∑

t=0

rtotal

h∗
δt − cj |fk|] (2)

where δ is a discount factor applied to payment instal-
ments received at later time periods, and h = min(h∗, H)
such that H is a random variable representing subsumption
time (number of time periods before fk gets subsumed by
a later fix). wj chooses the fix that maximizes his expected
utility. Subsumption times vary amongst fixes. This is be-
cause each fix precludes a different set of bugs, which affects
the time till the next bug (and its fix) appears. Moreover each
fix permits a different set of future fixes to subsume it.

Mean field equilibrium
In order to understand the long-term behaviour of workers,
we need to consider the equilibrium of the present system.
Once equilibrium is established, performance metrics can be
meaningfully measured, and a market designer may be better
informed on conditions for desirable market behaviour.

Although our system is dynamic and complex, we can
simplify equilibrium analysis by opting for a solution con-
cept known as mean field equilibrium (MFE). MFE is an
approximation methodology suited to large market settings,
where keeping track of the strategies of individual agents be-
comes prohibitive. As the number of agents grows large, it is
reasonable to assume that any individual agent has negligi-
ble effect on overall outcomes. Accordingly, MFE assumes
that agents optimize with respect to long run estimates of the
distribution of other agents’ actions. MFE requires a consis-
tency check: the latter distribution must itself arise as a result
of agents’ optimal strategies.

Applying MFE to our setting, we assume that each worker
models the future as facing an i.i.d. distribution D of fix
depths submitted by opponents, where the set of possible
fix depths is {0, . . . , l}. The worker assumes that all fixes
associated with a particular fix depth occur with equal prob-
ability. This induces a probability distribution over the set of



all 2l possible fixes for a root cause. Now that the worker
knows the distribution over all fixes, he can infer the condi-
tional distribution of feasible fixes for a specific bug. Given
this, the worker chooses the fix that maximizes his expected
utility by estimating subsumption time when opponents play
according to D. Consequently a realization of fixes is gen-
erated every time period, which yields an empirical distribu-
tion on fix depths.

Let Φ(D) be the long-term empirical distribution that re-
sults when workers facing D apply their optimal strategy.
Definition 6. We define an MFE as a distribution D of fix
depths such that Φ(D) = D.

Simulation
We simulate the subsumption mechanism, with the goal of
estimating an MFE by converging to it.

Algorithm to estimate MFE
1. Initial distribution on fix depths Dn−1, n = 1.
2. A worker is assigned bug b. For each feasible fix fi, the

worker samples possible future trajectories assuming that
all other workers are playing according to the current dis-
tribution Dn−1 and arrives at an estimate for hfi

. He sub-
mits the fix f∗i whose expected subsumption time hf∗i

maximizes his total expected utility.
3. Let fd∗i be the fix depth of f∗i. Update distributionDn−1

to Dn.
4. Stop when convergence criterion is met (i.e. the distribu-

tion no longer changes with updates).

Sampling Given a fix fi submitted in the current time pe-
riod, bugs not (preemptively) fixed by fi might appear in
future time periods. In order to compute the expected util-
ity of submitting fi, we simulate the future. This is done
by running the mechanism repeatedly assuming fi has been
submitted, where each run is a possible future scenario. To
simulate how future competitors will play when assigned a
bug, the current distribution Dn−1 is used. Several trajec-
tories are sampled in order to realize subsumption time and
arrive at an estimate of the utility the worker can expect if
he submits fi.

To determine convergence we compare the distribution of
fixes in equilibrium in different epochs of time and use a
likelihood ratio test.

Comparing mechanisms
We compare the subsumption mechanism with two alternate
mechanisms that do not involve subsumption.
• In the “instalment mechanism”, when the worker submits

a fix, Step 4 of the fix-verify cycle simply makes a basic
check that the fix is feasible. The worker is still paid in in-
stalments, however the instalments stop as soon as a new
bug of the same root cause appears. Here workers do not
best-respond to competitors’ play. They simply optimize
with respect to the state of the environment.

• The “myopic mechanism” can be viewed as a baseline.
The worker is paid in full as soon as he submits a non-
null feasible fix.

Subsump'on	
  
Mechanism	
  

Instalment	
  
Mechanism	
  

Myopic	
  
Mechanism	
  

Coverage	
   15	
   15	
   15	
  

Coverage	
  Rate	
   7.68	
   4.27	
   2.16	
  

User	
  Cost	
   32.37	
   38	
   59.71	
  

#	
  of	
  Fixes	
   1	
   2	
   4	
  

%	
  Bugs	
  with	
  
Deep	
  Fixes	
   50	
   36.11	
   0	
  

Figure 2: Experimental results with l = 4.

Metrics In evaluating the mechanisms, we examine the
percentage of bugs that receive deep fixes, coverage rate,
and user cost. All metrics are computed once the system has
stabilized to an equilibrium. In particular, data is collected
from a root cause just before it regenerates. The final met-
ric values are calculated by averaging over all the individual
metric values computed for each root cause during a certain
length of time or epoch.

Coverage refers to how many bugs of a particular root
cause, during its lifetime before regeneration, have been
fixed by the current set of fixes. For a root causeRC with bit
string length l, coverage lies in the range {0 . . . 2l − 1}. Let
FRC denote the set of fixes submitted to RC. Let B(fRC

i )
denote the set of bugs ∈ RC fixed by fRC

i , where fRC
i ∈

FRC . Then coverage(RC) = |
⋃

iB(fRC
i )|. Coverage rate

is the average coverage achieved per time period. Given a
root cause, it is calculated by normalizing coverage with the
number of time periods elapsed during the root cause’s life.

Let BRC denote the set of bugs generated by RC. Let
rk denote the user reward for a fix for bk ∈ BRC . Then
user cost(RC) =

∑
bk∈BRC

rk. In words, user cost refers
to the total user reward collected for all the bugs reported in
a root cause’s lifetime before regeneration. The percentage
of bugs with deep fixes is a straightforward measure of the
mechanism’s performance. We also consider the final quan-
tity of fixes that a root cause ends up with. Recall that sub-
sumption discards fixes as they become redundant whereas
the other two mechanisms retain all fixes. Overall a good
mechanism has high coverage rate, low user cost, high per-
centage of deep fixes, and small final quantity of fixes.

Experimental results
The simulation is implemented in Matlab and run on the
Odyssey cluster supported by the Research Computing
Group at Harvard University. Unless otherwise specified, we
use the following settings: number of root causes X = 10,
bit string length l = 4, number of instalments h∗ = 10,
worker’s discount factor δ = 0.6, and user reward rk ∈
[1, 100]. With probability p worker cost is low (cj = 1) and
with probability 1− p it is high (cj = 2), p ∈ [0, 1].

Under these settings we find that the algorithm for com-
puting MFE under the subsumption mechanism converges
in accordance with the test criterion. Next we obtain prelim-
inary results on the performance of the mechanisms. We run
the simulation with parameters as mentioned above but with
rk ∈ {10, 20}. Figure 2 summarizes the findings. In another
run we change to the following settings, keeping all else the
same: l = 3, h∗ = 5, δ = 0.8, and rk ∈ {3, 7} (Figure 3).



Subsump'on	
  
Mechanism	
  

Instalment	
  
Mechanism	
  

Myopic	
  
Mechanism	
  

Coverage	
   7	
   6	
   7	
  

Coverage	
  Rate	
   3.39	
   2.44	
   1.49	
  

User	
  Cost	
   9.53	
   9.33	
   15.79	
  

#	
  of	
  Fixes	
   1	
   1.3	
   2.89	
  

%	
  Bugs	
  with	
  
Deep	
  Fixes	
   41.67	
   31.84	
   0	
  

Figure 3: Experimental results with l = 3.

What is happening here is that, at low to moderate reward
values, the instalment mechanism can not afford deep fixes
early in a root cause’s lifetime. Therefore it either produces
shallow fixes or allows unfixed bugs to accumulate. This has
the effect of aggregating user reward for these unfixed bugs.
After a time, the instalment mechanism is able to produce
a deep fix thanks to the unclaimed user reward that has col-
lected from prior unfixed bugs. On the other hand the sub-
sumption mechanism can avail itself of additional rewards
by subsuming fixes. This allows the subsumption mecha-
nism to “subsidize” deeper fixes to earlier bugs, and there-
fore provide higher coverage faster. The user cost results are
consistent with the fact that subsumption produces deeper
fixes and hence the user has to spend less to get most bugs
of a root cause fixed.

The myopic mechanism always submits the shallowest
possible fix to a bug. Since the myopic mechanism pays the
worker immediately in full, the user reward always exceeds
the worker’s cost for certain settings. At first glance the my-
opic mechanism seems to perform comparably to the instal-
ment mechanism (e.g. coverage). However as user reward is
increased the instalment mechanism produces deeper fixes
whereas the myopic mechanism remains unresponsive. In
the extreme case where user reward far exceeds worker cost,
the instalment and subsumption mechanisms produce simi-
lar results with respect to the above metrics. Even without
subsumption, instalment-based payment rules can still help.

Discussion and future work
In ongoing work we seek to unify the themes discussed in
the previous section into a formal model of user utility that
captures the user’s monetary cost, wait time for a fix, and
side-effects of fixes submitted. We also consider variations
of the subsumption mechanism and the worker cost model
introduced here. As a next step we are interested in relaxing
the following present constraints: 1) Instead of workers be-
ing assigned to bugs, suppose workers choose which bug to
work on. 2) How does the system behave when user rewards
are allowed to increase over time? Further on, we would like
to explore additional phenomena such as fixes that introduce
new bugs and overlapping root causes.
Acknowledgements We thank Edo Airoldi, Yiling Chen,
Alice Gao, John Lai, Greg Stoddard, Ming Yin, and the
anonymous reviewers for helpful feedback.

References
Adlakha, S., and Johari, R. 2010. Mean field equilibrium in dy-
namic games with complementarities. In Proceedings of the IEEE
Conference on Decision and Control, CDC’10.

Adlakha, S.; Johari, R.; and Weintraub, G. Y. 2011. Equilibria of
dynamic games with many players: Existence, approximation, and
market structure. In Working Paper.
Anvik, J.; Hiew, L.; and Murphy, G. C. 2006. Who should fix
this bug? In Proceedings of the 28th International Conference on
Software Engineering, ICSE ’06.
Bacon, D. F.; Chen, Y.; Parkes, D. C.; and Rao, M. 2009. A
market-based approach to software evolution. In Proc. 24th ACM
SIGPLAN conference companion on Object oriented programming
systems languages and applications, OOPSLA ’09.
Bacon, D. F.; Bokelberg, E.; Chen, Y.; Kash, I. A.; Parkes, D. C.;
Rao, M.; and Sridharan, M. 2010. Software economies. In Proc.
FSE/SDP Workshop on Future of Software Engineering Research.
Bountysource inc. website. https://www.bountysource.com.
Chawla, S.; Hartline, J. D.; and Sivan, B. 2012. Optimal crowd-
sourcing contests. In Proceedings of the Twenty-third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’12.
DiPalantino, D., and Vojnovic, M. 2009. Crowdsourcing and all-
pay auctions. In Proceedings of the 10th ACM Conference on Elec-
tronic Commerce, EC ’09.
Github inc. website. https://github.com.
Goues, C. L.; Dewey-Vogt, M.; Forrest, S.; and Weimer, W. 2012.
A systematic study of automated program repair: Fixing 55 out of
105 bugs for $8 each. In Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12.
Goues, C. L.; Forrest, S.; and Weimer, W. 2010. The case for
software evolution. In Proceedings of the FSE/SDP Workshop on
Future of Software Engineering Research, FoSER ’10.
Gummadi, R.; Johari, R.; and Yu, J. Y. 2012. Mean field equilibria
of multiarmed bandit games. In Proceedings of the ACM Confer-
ence on Electronic Commerce, EC’12.
Gummadi, R.; Key, P.; and Proutiere, A. 2011. Optimal bid-
ding strategies and equilibria in repeated auctions with budget con-
straints. In Proceedings of the Allerton Annual Conference on
Communications, Control and Computing.
Iyer, K.; Johari, R.; and Sundararajan, M. 2011. Mean field equilib-
ria of dynamic auctions with learning. In Proceedings of the ACM
Conference on Electronic Commerce, EC’11.
Liblit, B.; Aiken, A.; Zheng, A. X.; and Jordan, M. I. 2003. Bug
isolation via remote program sampling. In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design
and Implementation, PLDI ’03.
Mas-Colell, A.; Whinston, M. D.; and Green, J. R. 1995. Microe-
conomic Theory. Oxford University Press, Inc.
NIST. 2002. The economic impacts of inadequate
infrastructure for software testing. Planning report 02-3.
http://www.nist.gov/director/planning/upload/report02-3.pdf.
Ozment, A. 2004. Bug auctions: Vulnerability markets reconsid-
ered. In Third Workshop on the Economics of Information Security.
Schechter, S. E. 2002. How to buy better testing: using competi-
tion to get the most security and robustness for your dollar. In In
Infrastructure Security Conference.
Topcoder inc. website. https://www.topcoder.com.
Weimer, W.; Forrest, S.; Goues, C. L.; and Nguyen, T. 2010. Au-
tomatic program repair with evolutionary computation. Commun.
ACM 53(5).
Wright, C. S., and Zia, T. A. 2011. A quantitative analysis into
the economics of correcting software bugs. In Proceedings of the
4th International Conference on Computational Intelligence in Se-
curity for Information Systems, CISIS’11.


